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Functions of asymptotic expansions
A. Brown and E.N. Dancer

The paper extends a theorem given by Entringer on the asymptotic

expansion of a composite function.

In a paper on usymptotic expansions, Entringer [2] considered the
problem: Given f(x) » © and f(x) vg(x) as « + «» , for what functions

h can we say that A{f(x)} ~ h{g(z)} as z -+ o ? His general conclusion
was that A{f(x)} ~ h{g(z)} 1f Aa(z) behaves like =¥ for large x but

not if h(x) behaves like &° . More precisely, he proves in the first

part of his Theorem 1:

If flz) >~ and flz) vglx) as = +», and if h(z) is
monotonic and h'(x)/h(x) = 0(1/x) for all sufficiently large =x , then
r{f(z)} v nl{glz)} as =+ .

As it stands, this theorem does not cover the situation typified by
the following example. From Copson [1, pp. 51-53], we have the relation

(as x + =)

o©
(1) logl'(x) v x(-1+logx) + %-log(Zn/x) + Z amxl_zm s
1

where the coefficients a, are known. (Following Entringer, we take the
variable to be real and use x instead of Copson's p ; also we have

corrected a misprint where Copson has p-2m instead of pl—2m .) The
question arises whether an asymptotic relation for T(x) can be obtained
from (1) by taking the exponential of suitable terms on the right hand

side. In fact this can be done; if we neglect terms of order x—2N-l in
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the power series in (1), we obtain a valid relation of the form
2N
(2) T(x) ~ (2n/x)l/2(x/e)x{l +] bmx-m + O(x-ZN—l)} R
1
where the coefficients bm can be found from the known values of
For instance, using a; = 1/12 , ay = ~-1/360 and

a a

12 sees dy -
neglecting the OLx_s) terms in (1), we expand exp{(a;/z)+(ay/z3}} as
far as x_h terms and get

bl = a = 1/12 ,

by = (1/2)a’ = 1/288 ,
by = ap + (al/6) = -139/518k0 ,
by = aya, + (a}/24) = -5T1/(10 x 125)

Thus b,, by, b3, by are easily evaluated and in this respect the above
method compares favourably with other ways of evaluating these
coefficients. (Compare, for example, the method given by Copson in the

next section of his book.)

This result does not conflict with Entringer's Theorem, which gives a
sufficient rather than a necessary condition. However, Entringer's

restriction on #4(x) can be relaxed when the relationship between f(x)

and g(x) as x > is of the form f(z) = g(a) + 0(x™") , where m >0 .

It will be seen that a relationship of this type arises from (1) if we take
flx) as logl{z) and g(x) as xz(-ltlogx) + %-log(2n/x) . (For greater

accuracy, we can include one or more terms from the power series in
g(x) .) We might expect this type of relationship between f and g to
be appropriate whenever logarithms are involved. With this interpretation

of fl(z) ~ g{x) , we prove the following theorem:

THEOREM. If f(x) »« and f(z) = g(x) + Oﬁr-m) as x + » , where
m >0, and if hlx) <s monotonic and h'(x) = O{h(x)} as x + < , then

r{f(z)} = [lg(x)][1+0(c™)] as =+ .

Proof. We note that if the theorem holds for A(x) then it holds for
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hy(x) = -h(x) and that one of these functions must be monotonic

increasing. So we can take Ah'(x) =20 for = > x, without introducing

any effective restriction. Also we can find positive constants A and B

and numbers x;, X such that

(3) 0

1A

h'(x) < A|h(x)| for z > x; ,

(%) 0

1A

|flz)-g(z)| < Bz for z > zy .

Since f(x) »« as x + o , the second of these inequalities shows that
g{x) +» also as x -~ ® . Hence if h{(x) = const. for x > x3 ,

h{f(x)} = h{g(xz)} for sufficiently large x and the theorem is trivial.
In particular, this covers the case where h(x) =0 for z > x3 . In all

other cases we cen find x, such that h(x) # 0 for = > xy, .

Let us suppose first of all that h(x) >0 for x > xy, . By taking
x large enough, say & > X; = max(xl, Lo, x,) , we can ensure that
h{x) > 0 and that inequalities (3) and (4) are valid simultaneously. For

x > Xy , we now have

(5) 0 = h'(x)/h(x) < A

and integrating from x5 to xg , with x5 and xg > X, ,
(6) 0 = |log{h(zg)/hlxs)}| < Alxg-z5| -

Now by taking « large enough, say <« > X, , we can ensure that
flx) > X, and g(xz) > X; . If we replace x5 by g(x) and xg by
flz) , we get

0 = |10g{n(f(z))/n(g(x))}] < Alf(x)-g(=)| < aBx™" ,

for x> X, = max{(X;, X2) . Hence for «x > X,

exp (-4Bx") < n{f(z)}/nig(z)} < exp(4Bz™")
Thus as X > @

nif(z)nlg(x)} = 1 + o(="") .

In the case where h(x) < 0 for «x > x, the proof follows the same
lines. In (5), h(x) must be replaced by -h(x) but relation (6) still

holds and the remainder of the proof need not be modified.

https://doi.org/10.1017/50004972700046530 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700046530

258 A. Brown and E.N. Dancer

This completes the proof of the theorem and it will be clear that it
covers the derivation of (2) from the expansion of logl(x) . By taking

h(x) = e , the asymptotic expansion for 1/P(z) can also be derived from

(1).
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