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Background
Previous analyses of grey and white matter volumes have
reported that schizophrenia is associated with structural
changes. Deep learning is a data-driven approach that can cap-
ture highly compact hierarchical non-linear relationships among
high-dimensional features, and therefore can facilitate the
development of clinical tools for making a more accurate and
earlier diagnosis of schizophrenia.

Aims
To identify consistent grey matter abnormalities in patients with
schizophrenia, 662 people with schizophrenia and 613 healthy
controls were recruited from eight centres across China, and the
data from these independent sites were used to validate deep-
learning classifiers.

Method
We used a prospective image-based meta-analysis of
whole-brain voxel-based morphometry. We also automatically
differentiated patients with schizophrenia from healthy
controls using combined grey matter, white matter and
cerebrospinal fluid volumetric features, incorporated a deep
neural network approach on an individual basis, and tested the
generalisability of the classification models using independent
validation sites.

Results
We found that statistically reliable schizophrenia-related grey
matter abnormalities primarily occurred in regions that included
the superior temporal gyrus extending to the temporal pole,
insular cortex, orbital andmiddle frontal cortices, middle cingulum
and thalamus. Evaluated using leave-one-site-out cross-validation,
the performance of the classification of schizophrenia achieved by
our findings fromeight independent research siteswere: accuracy,
77.19–85.74%; sensitivity, 75.31–89.29% and area under the
receiver operating characteristic curve, 0.797–0.909.

Conclusions
These results suggest that, by using deep-learning techniques,
multidimensional neuroanatomical changes in schizophrenia are
capable of robustly discriminating patients with schizophrenia
from healthy controls, findings which could facilitate clinical
diagnosis and treatment in schizophrenia.
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Background

Schizophrenia is a highly complex mental disorder and the diagno-
sis primarily depends on the patient’s clinical symptoms along with
the psychiatrist’s training and expertise. Structural magnetic reson-
ance imaging (MRI) has been used to identify the neuroanatomic
correlates of schizophrenia, provide important information about
possible pathophysiological mechanisms and facilitate accurate
identification of the disorder. Voxel-based morphometry (VBM)
is widely used to evaluate alterations in regional grey and white
matter volumes across the whole brain.

Previous meta-analytic studies have concluded that patients
with schizophrenia exhibit reduced grey matter volumes in some
regions within the limbic and paralimbic zones, including the
insula,1 superior temporal gyrus,2 medial temporal gyrus,2 anterior
cingulate1 and thalamus.1 The pallidum3 and striatum4 have been
reported to have increased volumes in patients with schizophrenia.
However, conflicting findings have also been reported. For instance,
in one study smaller volumes in the putamen were reported in
people with schizophrenia5 but in another study the putamen
tended to increase in volume with illness duration.3 Additionally,
significant reductions in the temporal pole6 and occipital7 grey
matter volumes have been reported in schizophrenia, but these
regions have rarely been reported inmeta-analyses. These inconsist-
encies may have a variety of causes, such as limited sample sizes,
heterogeneity in clinical characteristics and symptoms, and differ-
ences in the scanning protocols and analytic methods.

Traditional meta-analyses that have summarised statistical find-
ings reported in the literature are coordinate-based and thus may be
limited by the reported peak coordinates in the primary studies,
leaving some regions unexplored or findings for some regions
inconsistent.3,4,8 With the rapid growth of neuroimaging data-
sets, large-scale multisite studies have shown that prospective,
image-based meta-analysis strategies that pool statistical results
computed at multiple sites using uniform image processing and
analytic methods8 are highly effective for identifying the consistency
of abnormalities related to brain disorders.

Use of deep-learning techniques

In contrast to group-level statistical analysis, deep-learning techni-
ques, such as convolutional neural networks (CNNs) and deep
neural networks (DNNs), have attracted recent interest for auto-
matically discriminating patients with schizophrenia from healthy
controls at an individual level. However, most of the studies have
assessed the resulting model’s generalisability using cross-validation
strategies in which both the training set and the test data were from
the same site. The task of validating classifiers in a completely inde-
pendent data-set is particularly meaningful for clinical translation
but is also very challenging.

To our knowledge, only a few studies have investigated inde-
pendent replications using neuroanatomical features for the identi-
fication of schizophrenia with deep learning, and each of them
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reported lower accuracies when using a different validation sample
than when using a single sample.9–12 For instance, Oh and collea-
gues trained 3D CNNs and obtained 70% accuracy in a completely
independent data-set.9 Previous studies used either shallow9 or
deep12 CNN architectures, but both had a poorer performance
when using a completely different data-set for validation. This
may be because the number of samples (hundreds) is relatively
small compared with the input of high-dimensional image data
with a large number of voxels (hundreds of thousands) in CNN
models; this can increase the risk of overfitting.

In terms of DNN studies, Vieira et al used surface- and voxel-
based volume and thickness features, tested traditional machine
learning and DNN models, and found that all the models general-
ised poorly to independent data-sets (with the highest accuracy
being 70.5%).10 To reduce the feature dimensions, they used princi-
pal component analysis, which is an unsupervised method and does
not account for clinical labels. The reduced reproducibility in inde-
pendent data-sets may also be attributable to a number of issues
such as sample variability and differences in imaging protocols.

Aims

To overcome the limitations of previous studies and more reliably
identify structural abnormalities associated with schizophrenia
and facilitate the generalisation to independent cohorts, the
present study recruited a relatively large sample of individuals
with schizophrenia from eight sites across China (1275 participants)
and harmonised the data acquisition. We used image-based group-
level statistical analysis and individualised pattern classification of
schizophrenia to detect reliable structural alterations related to
schizophrenia. We set out to differentiate patients with schizophre-
nia from healthy controls using neuroanatomical features via
feature selection, l1 norm regularisation and DNN architectures to
avoid overfitting. To assess the generalisability and robustness of
our classifiers, we validated our classification models using a
leave-one-site-out approach.

We hypothesised that, compared with healthy individuals,
patients with schizophrenia would show neuroanatomical abnor-
malities in brain regions in the limbic and paralimbic zones using
a group-level analysis and that these identified regions could be con-
sistently identified using data-driven DNNs and would have the
capacity to automate the identification of schizophrenia at the indi-
vidual-participant level. As schizophrenia is heterogeneous in its
clinical characteristics, we also anticipated that our classification
architecture would be able to discriminate subsamples, i.e. discrim-
inate both patients with a first episode and patients who have
relapsed from healthy controls. The present study set out to increase
understanding about the morphological features of schizophrenia
and also to facilitate the use of automated identification systems
in clinical settings.

Method

Participants

The participants were drawn from the Brainnetome Project for
Schizophrenia, a multisite study examining sensitive biomarkers
for the prognosis, diagnosis and monitoring of schizophrenia in
individuals aged 18- to 45-years-old. The participants were
recruited from seven hospitals in China: Peking University Sixth
Hospital; Beijing Huilongguan Hospital; Xijing Hospital; Henan
Mental Hospital; Guangzhou Brain Hospital; Renmin Hospital of
Wuhan University; and Zhumadian Psychiatric Hospital. Henan
Mental Hospital used two different MRI scanners, Siemens and
General Electric, therefore in total there were eight scanning sites.

The study at each site was approved by the local ethical review
board. All the participants provided written informed consent.

In total, 662 patients and 613 health controls were included in
the analysis. All the patients had a diagnosis of schizophrenia con-
firmed by trained psychiatrists using the Structured Clinical
Interview for DSM-IV-TR Axis I Disorders (SCID-I, patient
edition).13 None of the health controls had any personal history
of psychotic illness nor any family history of psychosis in their
first-, second- or third-degree relatives. For detailed descriptions
of the samples and methods please refer to the Supplementary
File 1 and Supplementary Tables 1–2 available at https://doi.org/
10.1192/bjp.2022.22.

Image acquisition and processing

Three types of 3 T MRI scanners (four Siemens, three General
Electric and one Philips) were used at the eight participating sites.
Uniform scanning protocols for all eight sites were set up by an
experienced expert to ensure equivalent and high-quality data
acquisition. The MRI scan sequences and parameters for each site
are listed in Supplementary Table 3. All the T1-weighted images
were processed using Statistical Parametric Mapping (SPM8,
Wellcome Department of Imaging Neuroscience, London, UK) to
obtain smoothed modulated grey matter, white matter and cerebro-
spinal fluid (CSF) maps.

Statistical analysis

Group differences in regional grey and white matter volumes were
investigated by comparing the pre-processed grey and white
matter images from the patients with schizophrenia with those
from the health controls using two sample t-tests at each individual
site with age and gender as covariates.14 Note that the modulated
grey and white matter images had been corrected by individual
brain sizes; therefore, intracranial volume was not needed as a cov-
ariate in the statistical models.

To evaluate the replicability of the abnormal morphological
regions across the eight sites, a second-level random-effects
image-based meta-analysis was used to pool the statistics from the
individual sites. The effect sizes were calculated using Hedge’s g,
which was calculated using each site’s means, s.d.s and correspond-
ing sample size to provide an unbiased standardised mean differ-
ence that incorporated a correction for small sample size.

A Bonferroni correction accounting for the number of voxels
tested (i.e. 422 078 voxels) was used for multiple comparisons
with a conservative threshold of P < 0.05/422 078 = 1.18 × 10−7. As
the characteristics of the structural signature of schizophrenia
may be affected by medication, we correlated the altered brain
volumes with the antipsychotic dosage while controlling for age,
gender and site.

Overview of multisite classification procedure

In addition to the voxel-based morphometry analyses, we con-
ducted an automated classification of schizophrenia based on the
multisite VBM pre-processed features (grey matter, white matter
and CSF) to examine whether the structural features can be used
to differentiate the patients with schizophrenia from the health con-
trols at the individual-participant level. To ensure generalisation
and reduce variability, we evaluated our model using a leave-one-
site-out cross-validation process, with one of the eight sites used
as test data and the remaining seven as training data. Thus, there
were eight experiments in total, and each research site was used
once as the test data. The final classification results represented
the average of these eight independent experiments. The classifica-
tion stages are listed in Supplementary Fig. 1 and described below.
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Feature extraction and selection

Voxel-based volumetric features were extracted from the normal-
ised and modulated grey matter, white matter and CSF images
prior to smoothing. Our feature-selection procedure, which was
conducted on the training set, consisted of several stages. First,
each feature vector was z scored across all individuals at each site
to reduce the range of variations caused by the scanners. Second,
to rule out demographic differences between the sites,15 we esti-
mated the age and gender effects within a pooled sample of health
controls in the training set using a general linear model, and the
coefficients of age and gender were then applied to all the partici-
pants in the training and test sets. Finally, feature selection was
achieved by ranking the features by Fisher scores and selecting
the top 10% of the ranked features. In the end, our selected
feature subset contained 20 023 features.

DNN models

In this study, we present a DNNs aimed at determining the
representation of high-dimension voxel features. The idea of
using DNN was inspired by the previous literature.16 We took
grey matter, white matter and CSF extracted from neuroimaging
data as the network input. The binary classifier output node corre-
sponded to the schizophrenia and health control groups. Formally,
let W = {Wl|l = 1, 2, …, L} be a DNN model consisting of L layers.
Let X = {xi|i = 1, 2, …, N} be the training feature set. N is the
sample size, and let Y = {yi|i = 1, 2,…, N} denote the corresponding
one-hot label set ([1, 0]T for a control and [0, 1]T for a patient). In
this paper, the optimisation for training the DNN model W is
defined as:

min
W

E(W) ¼
XN

i¼1

D(yi, p(yjxi, W))þ λ1
XL

l¼1

∥ Wl ∥1 ð1Þ

where the network loss function L(W) ¼ PN
i¼1 D(y

i, p(yjxi, W))
is averaged over the whole training feature set. D(yi, p(y|xi, W))
represents the cross entropy between the distribution of the training
sample and the output from a DNNs model. Specifically,
p(y|xi, W) is the softmax function in the experiment; thus

L(W) ¼ �(1=N)
PN

i¼1

P2
j¼1 1{y

(i) ¼ j}log(p(yjxi, W)).
In addition, DNN model optimisation is inherently difficult

owing to the abundant parameters in the voxel-level high-
dimensional input. To overcome this issue, the lasso method has
been widely adopted to reduce the model complexity. The lasso in
the DNN model is an efficient feature-selection strategy that
yields a sparse solution, particularly in dealing with the high
dimensionality of the input and intrasubject variability. Therefore,
we added the l1 norm regularisation term ∥W∥1 with a weight

decay λ1. l1 norm regularisation is a sparsity constraint that
can also effectively reduce the risk of overfitting when using
high-dimensional features. Now, the optimisation problem can
be readily solved using the stochastic gradient descent algorithm.
Thus, the optimisation strategy can be formulated as
Wt

l ¼ Wt�1
l þ (∂L=∂Wt�1

l )þ λ1sign(Wt�1
l ).

In the present study, our DNN model consisted of a six-layer
architecture, of which the channels were 20 023, 5000, 2000, 800,
200 and 2. We used layer-wise relevance propagation (LRP) to
back-propagate the final two-dimensional classification scores,
and quantified the region of interest (ROI)-based contributions to
the DNNs and meta-analysis to ascertain the consistently altered
brain regions. The training setup and LRP calculations are in
Supplementary File 1.

For comparisons with the DNN, support vector machines
(SVMs) and CNNs were performed in the automated classification
procedure. In addition, DNN models with the same architecture
were retrained to separately discriminate the patients with a first
episode and the patients who had relapsed from the health
control group and to identify the discriminating features contribut-
ing to the DNN models.

Results

Statistical analysis

Sociodemographic and clinical data are presented in Table 1. No
statistically significant differences in age or gender were noted
between the schizophrenia group and the health controls.
Compared with the health controls, the schizophrenia group had
a significantly smaller regional grey matter volume at each of the
eight sites (Supplementary Fig. 2). At most of the sites the differ-
ences were most pronounced in the frontal and temporal lobes,
insular cortex and thalamus. We observed more circumscribed
frontal and temporal reductions in the data from the Henan
Mental Hospital (Siemens scanning site) and Zhumadian
Psychiatric Hospital sites. The most pronounced pattern of reduc-
tions in the patients obtained by a meta-analytic approach included
the inferior, middle and orbital frontal cortices, superior andmiddle
temporal gyrus, temporal pole, insula, middle cingulate cortex and
thalamus (Fig. 1a). The white matter volumes did not show consist-
ent abnormalities across the sites.

Classification performance

The performance characteristics were determined as the average of
eight classification experiments on an independent sample using a
combination of grey matter, white matter and CSF. The balanced
accuracy (BAC), sensitivity, specificity, and area under the receiver

Table 1 Demographic and clinical characteristics of the patients with schizophrenia and healthy controls

Patients Controls Statistics

(n = 662) (n = 613) t-test χ2 P

Age, years: mean (s.d.) 27.5 (6.5) 27.5 (6.1) 0.07 – 0.94
Gender, male:female, n 362:300 316:297 – −1.09 0.28
Global Assessment of Functioning,a mean (s.d.) 46.7 (13.8) 92.0 (6.6) −71.8 – <0.001
Duration of illness, months: mean (s.d.) 49.6 (51.6) – – – –

Age at onset, years: mean (s.d.) 23.5 (6.1) – – – –

First episode:relapse, n 269:393 – – – –

Chlorpromazine equivalents at scan (mg/d),b mean (s.d.) 411.0 (204.3) – – – –

Positive and Negative Syndrome Scale, mean (s.d.)
Positive 24.0 (4.2) – – – –

Negative 20.5 (6.2) – – – –

a. Data were missing for 39 patients and 26 controls.
b. Data were missing for 362 patients.
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operating characteristic curve (AUC) for the DNN and SVMmodels
are shown in Table 2; the receiver operating characteristic curves are
shown in Fig. 2.

Figure 2d shows the visualisation of the feature space of the last
hidden layer using the tSNE method to illustrate the feature dis-
crimination capability when the Beijing Huilongguan Hospital site
was used as the test data.

Our results clearly show that the DNN could discriminate
between individuals with schizophrenia and health controls using
leave-one-site-out validation, with BACs ranging from 77.19% to
85.74% and sensitivities from 75.31% to 89.29% for single sites,
and with a BAC of 81.25%, a sensitivity of 80.97%, a specificity of
81.53% and an AUC of 0.852 for the average of the eight independ-
ent experiments. It outperformed SVM classifiers (a BAC of 76.07%,
a sensitivity of 78.14% and an AUC of 0.844 for the average of the
eight independent sites, P < 0.001 for the accuracy comparison)
and CNNs (Supplementary Table 8).

As shown by the voxel probability maps of the grey matter fea-
tures selected for classification (Fig. 1b), we observed a consistent
abnormal pattern in the grey matter in both the multisite meta-
analysis and the DNN. By quantifying the contributions of each
ROI to the DNNs and meta-analysis both methods showed that
the most severely and consistently altered ROI was the thalamus
(Supplementary Table 10).

The white matter and CSF features contributing to the DNN are
shown in Supplementary Fig. 5. We observed that most of the CSF
regions showed a strong relationship with schizophrenia and that
the white matter was less affected than the grey matter and CSF.
The exclusion of CSF from the classification models resulted in an
inferior performance, with about a 3.06% reduction in BAC
(Supplementary Table 7), validating the contribution of CSF in
identifying schizophrenia. We employed a partial correlation
between the grey matter volumes and the antipsychotic dosage
while controlling for age, gender and site. No significant

Temporal pole

(a)

(b)

Temporal pole

Insula, superior temporal Thalamus

Z = −24 X = −42

−15
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Thalamus
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orbitofrontal

Middle cingulate

Thalamus

Insula

Fig. 1 Similar patterns of grey matter abnormalities using meta-analytic (a) and pattern classification (b) approaches. (a) Statistical maps
displaying grey matter volume reductions in patients with schizophrenia compared with healthy controls. A Bonferroni correction was used for
multiple comparisons with a threshold of P < 1.18 × 10−7. The colour bar indicates T values. (b) Voxel probability maps of reliable grey matter
volumetric contributions to schizophrenia using eight classification experiments. A higher value indicates a greater discriminative ability for the
classification of patients with schizophrenia.

Table 2 Classification performance using a combination of grey matter, white matter and cerebrospinal fluid volumetric features in a deep neural
network (DNN) and a support vector machine (SVM) for patients with schizophrenia versus healthy controls

DNN SVM

Site BAC (%)
Sensitivity

(%)
Specificity

(%) AUC BAC (%)
Sensitivity

(%)
Specificity

(%) AUC

Peking University Six Hospital 82.32 81.82 82.83 0.866 74.24 78.79 69.70 0.841
Beijing Huilongguan Hospital 85.74 84.81 86.67 0.909 83.84 81.01 86.67 0.884
Xijing Hospital 78.08 75.31 80.85 0.802 71.36 70.37 72.34 0.787
Henan Mental Hospital (Siemens scanning site) 77.19 77.78 76.60 0.797 69.74 77.78 61.70 0.813
Guangzhou Brain Hospital 82.56 75.76 89.36 0.887 77.77 75.76 79.79 0.870
Henan Mental Hospital (General Electric scanning

site)
83.60 89.29 77.92 0.865 81.01 89.29 72.73 0.864

Renmin Hospital of Wuhan University 81.28 84.15 78.41 0.855 76.52 78.05 75.00 0.850
Zhumadian Psychiatric Hospital 79.23 78.82 79.63 0.832 74.10 74.12 74.07 0.844
Average 81.25 80.97 81.53 0.852 76.07 78.14 74.00 0.844

BAC, balanced accuracy; AUC, area under the receiver operating characteristic curve.
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correlations were observed after Bonferroni correction for multiple
corrections.

We retrained the DNN models to detect subsamples with only
the patients with a first episode or patients who had relapsed. The
relapse subgroup versus the health control group performance was
better than that of the first-episode subgroup versus the health
control group (Supplementary Table 5). The first-episode classifica-
tion model identified more circumscribed regions with lower contri-
bution degrees than the relapsed model (Supplementary Fig. 6).

Discussion

Main findings

In this study, we identified robust schizophrenia-related grey matter
abnormalities using a group-level image-based meta-analysis of
whole-brain VBM and an individualised classification approach

with large-scale multisite structural brain images from 662 patients
with schizophrenia and 613 healthy controls. By validating our clas-
sification models at eight independent sites, the DNNs correctly
classified 81.25% of patients with schizophrenia in eight experi-
ments. The DNNs outperformed the SVM and CNN classifiers.
This study identified replicable abnormal neuroanatomical abnor-
malities in people with schizophrenia using two methods across
multiple sites. The identified markers were capable of discriminat-
ing patients with schizophrenia from health controls by using
hierarchical non-linear architectures that can be generalised to
independent cohorts.

Interpretation of our findings and comparison with
other studies

We first examined the reproducible anatomical patterns related to
schizophrenia using uniform imaging protocols, careful quality
control and the same imaging processing of the whole-brain VBM
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machines (SVM) models (b) and the comparison between the average DNN and SVM approaches (c); (d) visualisation of the DNN classification
feature space of the last hidden layer with Henan Mental Hospital (General Electric scanning site) as the test data and the remaining seven
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AUC, area under the receiver operating characteristic curve; PKUH6, Peking University Sixth Hospital; HLG, Beijing Huilongguan Hospital; XJ, Xijing Hospital; HMS, Henan Mental
Hospital (Siemens scanning site); GB, Guangzhou Brain Hospital; HMG, Henan Mental Hospital (General Electric scanning site); RWU, Renmin Hospital of Wuhan University; ZMD,
Zhumadian Psychiatric Hospital.
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analyses for each site, separately. Then we integrated each statistical
result using a prospective, image-based meta-analysis. This strategy
can potentially rule out the impact of sample heterogeneity, limited
sample sizes, differences in the imaging scanning protocols and
variability in the analytic methods.

We found consistently smaller spatially distributed grey matter
volumes in patients with schizophrenia relative to healthy controls
but observed no consistently increased grey matter or abnormal
white matter volumes in those with schizophrenia.

Grey matter volume or density reductions have been demon-
strated in people with schizophrenia in a number of studies,1,4,17

andmay reflect a loss of neurons, neuropil areas or interconnections
between regions,18 and further cause the functional deficits in those
with schizophrenia. Pattern recognition and meta-analysis have
identified similar schizophrenia-related patterns, which were
mostly characterised by disruptions of limbic and paralimbic
regions including the superior temporal gyrus1,17 extending to the
Heschl’s convolutions,17 insular cortex,4 orbital17 and middle
frontal cortices,4,17 cingulum1 and thalamus.3,4,17

Importantly, we identified the thalamus as the most severely
affected region in both the DNN models and meta-analytic
methods, suggesting a crucial role of the thalamus in the patho-
physiological processes of schizophrenia. The thalamus is a deep
grey matter structure that relays nearly all information to the
cortex, and thus acts as a hub involving multiple functions, includ-
ing processing sensory information, regulating consciousness, cog-
nition, emotions, etc. Our findings are consistent with previous
reports of structural and functional deficits in the thalamus in
schizophrenia.19

In addition, we found volumetric reductions in the bilateral
temporal poles in patients with schizophrenia using two methods.
The temporal poles, together with the insula, cingulate cortex, orbi-
tofrontal cortex and parahippocampal cortices are major regions in
the paralimbic zone.20 The temporal pole has been implicated in
some individual neuroimaging studies,6 but has rarely been
reported in traditional meta-analysis. The difference between the
two types of meta-analyses may have been that traditional meta-
analyses cannot fully explore the collected data.3 We observed
more circumscribed frontal and temporal reductions in the data
from the Henan Mental Hospital (Siemens scanning site) and
Zhumadian Psychiatric Hospital participants than from the other
research sites. These inconsistencies may in part be because patients
with schizophrenia present substantial heterogeneity in clinical
characteristics and symptoms, differences in imaging scanners,
etc. For instance, patients at the Henan Mental Hospital (Siemens
scanning site) had the fewest positive symptoms, which may poten-
tially have influenced structural abnormalities from their data. A
strength of our meta-analytic approach is that integrating data
from multiple sites provides a large sample size that raises statistical
power,21 and the use of maps derived from individual sites and
meta-analysis reduces the effects of intersite heterogeneity.

Identifying schizophrenia on the basis ofMRI scans using a fully
automated procedure may facilitate clinical diagnosis and has pre-
viously been investigated in many studies. However, most of these
studies did not utilise independent samples to test the generalisabil-
ity of the models. The variety of the clinical presentations of schizo-
phrenia poses a challenge for independent replications; however,
designing generalised automated diagnostic systems that can be
used in clinical settings is highly desirable. In the present study,
our classification algorithm was evaluated using eight independent
samples to ensure generalisability. We found that the average accur-
acy over the eight samples marginally outperformed existing reports
that included an independent sample for validation and used SVM
classifiers (70.4–77% in15,22) or deep-learning approaches (70.0–
71.02% in9–12).

Strengths

The strengths of the present study may include the use of hierarch-
ical DNNs that can automatically capture non-linear relationships
and subtle hidden patterns in an enriched feature space.16

Accordingly, the brain features andnetwork architectures thatwe iden-
tified asdiscriminatingbetween thepatientswith schizophrenia and the
health controlsmay be the ones that aremost likely to contribute to the
symptomsof schizophrenia and/ormaybe signposts that canbeused to
uncover the underlying neural mechanisms of schizophrenia.

Another strength of the current study is that it includedmultiple
participating sites from different regions across China. These
regions can accurately represent ‘real-world’ clinical environments
with their heterogeneity in patients’ symptoms and scanners.

A third strength is the large sample size of 1275 participants,
providing less susceptibility to sampling effects. Notably, we
obtained a high sensitivity of 80.97%, with the highest sensitivity
being 89.29% for a single site. Such a high sensitivity indicates
that our models may be good identifiers for schizophrenia, which
is particularly important for patients’ clinical management.

Subgroup analysis

Classifying subsamples of patients showed that discriminating
ability was better for patients who had relapsed than for the patients
with a first episode. The first-episode classification model identified
more circumscribed regions with lower contribution degrees than
those in a relapse situation. Therefore, the generalisability of our
findings may be limited by the combination of subsamples experi-
encing various numbers of episodes, and the relapse subgroup
may contribute more than the first-episode subgroup in terms of
classification and structural alterations because of chronicity.

Inclusion of white matter measures

An automated, image-based classification system may benefit from
using measures of grey matter abnormalities along with examina-
tions of white matter and ventricular alterations. Although our mul-
tisite statistical analysis did not find reproducible differences in
white matter measures, the classification results indicated that
they were indispensable as the combination of grey matter, white
matter and CSF performed better than when employing grey
matter alone or the combination of grey matter and white matter
(Supplementary Table 7). This is possibly because pattern recogni-
tion techniques can capture non-linear and complex relationships
among various features. Different features may be mutually comple-
mentary in the enriched feature space, and their combination can
thus work as a good classifier. Indeed, white matter abnormalities
have been observed at a few individual sites in previous studies.23

Additionally, ventricular enlargement has been reported as one
of the earliest and most prominent findings in schizophrenia.24 This
may be related to the shrinkage of brain structures including the
thalamus, superior temporal gyrus and insula.25

Medication

The structural signature of schizophrenia may be affected by medica-
tion. The effect of medication on brain structure is controversial, and
we found no correlations between brain volumes and antipsychotic
dosage. This is consistent with previous findings26 indicating that
the altered brain volumes may not be because of medication use.

Limitations

There are some limitations to the present study. First, the sample
size was indeed large for psychiatric cohorts; however, in the
realm of neural nets, it is at the lower limit of mathematical
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applicability. Future replications are encouraged in larger cohorts
with more sites and participants.

Second, we acknowledge that some of the patients had experi-
enced a relatively long illness duration, although 25% of the patients
had been ill for less than 1 year. Because the pathological processes
associated with schizophrenia occur over a long time, the reliable
neuroanatomical signature identified in the present study can still
be useful for inferring useful information for the future identifica-
tion of high-risk patients or patients with several comorbidities.

Third, despitemaking an effort to reduce the influence of sites and
demographic effects, different scanning protocols cannot be fully iden-
tical. Finally, althoughT1-weightedmeasures were used, an even better
classification ability may be achievable by using neurophysiological
measures and/or other structural and functional imaging techniques.
Future studies will evaluate the incremental gain of other modalities of
features in such automated systems. However, it should be noted that
T1-weighted scans are non-invasive and economical tools that are
already widely used in screening assessments for many diseases.

Implications

In conclusion, this study showed a reliable pattern of grey matter
abnormalities in people with schizophrenia in the limbic and paralim-
bic regions and differentiated patients with schizophrenia fromhealthy
controls using a DNNmodel that combined grey matter, white matter
and CSF volumes for multisite, ethnically homogeneous participants.
To our knowledge, this is the first study that used image-based
meta-analysis to investigate volumetric alterations in people with
schizophrenia and replicated the findings using DNN models from
multiple independent samples. The consistently identified regions
may be related to the pathophysiology of schizophrenia and could
serve as promising biomarkers for the identification of schizophrenia
and may have applications in clinical settings as a diagnostic tool.
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Psychiatry in
Literature

Sensibility and schizophrenia: Wilhelm Waiblinger on Friedrich
Hölderlin’s life, poetry and madness

George Ikkos and Giovanni Stanghellini

‘Most German of Germans’ and key figure in German Romanticism, Friedrich Hölderlin (1770–1843) entered the
Monastery at Maulbronn in 1786, where he promptly fell in love with the daughter of its administrator. Terminating
their affair later, he wrote ‘surely you will understand that you could never have been happy with your morose,
ill-humoured, and sickly friend’. Having disappointed his mother’s expectations of a career in the cloth, failing work
as a tutor took him in 1793 to Bordeaux, where he composed his famous Andenken (Remembrance):

‘The current sweeps out. But it is the sea
That takes and gives remembrance,
And love no less keeps eyes attentively fixed
But what is lasting poets provide.’

Sadly, after only a few months in Bordeaux, Hölderlin returned home in Nürtingen on foot, ‘pale, cadaveric and
scrawny, his eyes possessed a wild, vacant look, his hair and beard were long […] dressed like a beggar.’
Diagnosed with ‘hypochondrias’ during the 1790s, in 1804, after 2 years as an in-patient in Tübingen’s University
Clinic under Dr von Autenrieth, he was deemed incurable and taken in by cultured carpenter Ernst Zimmer,
whose home was in a tower in the city’s old walls. Remaining there for life, he was visited regularly by Romantic
poet Wilhelm Waiblinger (1804–1830) between July 1822 and October 1826.

Friedrich Hölderlin’s Life, Poetry and Madness, Waiblinger’s loving short memoir of the great poet’s ‘existence in the
shadows and above all its terrible nexus’, offers elegant descriptions of psychopathology, even engaging psychological
formulations. Reported are mannerisms and stereotypies, agitation, blunted and inappropriate affect, grandiosity, for-
mal thought disorder, conversations with himself, age disorientation, altered identity, apathy and social deterioration.
For example, Waiblinger presents and explains bizarre behaviour: ‘You canmake out a fewwords, butmost are so con-
fused that it is impossible to reply […] The visitor now finds himself addressed as “Your Majesty”, “Your Holiness” and
“Merciful Father”’ and ‘I was convinced that this unceasingmonologuewith himself was nothingmore than the disequi-
librium of thought and his inability to gain significant purchase on any object’. The reported literary deterioration is par-
ticularly poignant: ‘He wrote to his mother, but always had to be urged to do so. These letters were not irrational; he
took trouble over them and theywere even lucid. But their stylewas that of a childwho cannotwrite in a fully developed
way or sustain a thought’. Waiblinger even speculates sympathetically how spiritual sensitivity, loftiness and humour-
lessness possibly contributed to the poet’s eccentricities and ‘terrifying’ solitude.

An unusual couple. A poet writing about another in the grip of schizophrenia. Is diagnosis important? Yes, but here
we follow Waiblinger who, with grace and tact, almost with shyness, leads us hand in hand through the labyrinth of
the wacky ghostly delicate lunar landscape of the most poetic of the forms of madness. Schizophrenia or not, a
sensible heart that feels the sensibility of another tormented by its own sensibility will always encounter a living
soul. The mutual attachment of the two poets is luminous and Hölderlin emerges as both stranger and one of us.
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