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SUMMARY

Allelic recombination frequency and pattern in fungi show strong
gene-to-gene variation. At least in two fungal species, Neurospora and
Schizophyllum, recombination frequencies in certain chromosomal seg-
ments are genetically determined. The possibility that chromosomal pro-
teins and/or synaptinemal complexes may play an important role in
regulation of recombination frequency and pattern is discussed.

1. INTRODUCTION

After the discovery that genetic recombination can occur between allelic
mutants, the interests of geneticists have been concentrated mainly on what
happens with homologous DNA segments in the course of the recombinational
process. However, in eukaryotes, DNA, together with some RNA, histones and
non-histone proteins, is packed into very complicated chromosome structures. In
early stages of meiosis, additional protein synthesis takes place and synaptinemal
complexes are formed.

Recombination occurs in prokaryotes and in somatic cells of eukaryotes. Thus
neither chromosomal proteins nor synaptinemal complexes are necessary for
recombination to take place.* But the question is whether or not they have any
influence on this process.

The intention of this paper is to analyse the data concerning recombination in
fungi which may indicate that chromosomal proteins and/or synaptinemal com-
plexes influence recombination and perhaps participate in its fine control (see
Simchen & Stamberg, 1969&).

2. GENE-SPECIFIC VARIATION IN ALLELIC RECOMBINATION PATTERN

Allelic recombination in various genes in fungi has many features in common,
such as the occurrence of both reciprocal and non-reciprocal exchanges (conversion),
polarization of conversion, clustering of exchanges over very short segments of

* If for mitotic recombination synaptinemal complexes were necessary, one would have to
assume that under the influence of mutagens such complexes are formed, since many different
mutagens strongly induce mitotic recombination frequency (for most complete review see
Zimmermann, 1971).
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genetic material (negative interference), non-additivity in intragenic recombina-
tion frequencies, map expansion, etc. There is, however, also a pronounced varia-
tion in the expression of these features.

Most abundant evidence on intragenic recombinational events comes from
studies carried out by means of tetrad analysis on Ascobolus immersus, using
genes 46 (Rizet, Lissouba & Mousseau, 1960; Lissouba, 1960; Lissouba et al. 1962;
Rossignol, 1964), 19 (Lissouba et al. 1962; Mousseau, 1967), 75 (Lissouba et al.
1962; Rissignol, 1967, 1969), 726 (Makarewicz, 1964), Y (Kruszewska & Gajewski,
1967), 84 W (Paszewski, 1967; Paszewski & Prazmo, 1969) and 164 (Baranowska,
1970).

The heterogeneity of the behaviour of the mutants is particularly visible in the
alleles of gene 75. The frequencies of 3 mutant: 1 wild-type segregation shown by
13 mutants in crosses with the wild-type strain varied from 0-2 to 46-9 per 103

tetrads, and lm:3w segregation varied from 0-6 to 38-6 per 103 tegrads. The
3m: l w + l m : 3 w segregation frequencies varied from 7-2 to 66-5 per 103 tetrads.
Most of the mutants had very different frequencies of 3m:lw and lm:3w
segregation, so that the coefficients of inequality (frequency of 3m: lw segre-
gation/frequency of lm:3w segregation) varied from 18 to 0-03. In neither of
the other six genes studied were such high conversion frequencies and so wide a
variation of these values found. The frequencies o f 3 m : l w + l m : 3 w segregation of
five Y alleles varied from 1 to 3-02, while these values for alleles of the remaining
genes were intermediate. The highest value of interallelic recombination, up to
72 per 103 tetrads, was also found in gene 75, while in genes 726, Y and 164 these
values did not exceed 14 per 103 tetrads.

Very strong polarization of 1 m: 3w segregation in mutant x wild-type crosses as
well as conversion in the mutant x mutant crosses, and extremely rare intragenic
reciprocal exchanges were found in gene 46. These data served as a basis for working
out the polaron model of recombination. In the remaining six Ascobolus genes
studied, however, polarization was very weak if present at all, while reciprocal
intragenic exchanges occurred with appreciable frequency, achieving 50 % of the
total numbers of intragenic recombinants in gene 164. Thus it appears that apart
from mutant specificities, and probable differences in the genetic backgrounds of
the different strains studied (as suggested by Rossignol, 1969), each of the seven
Ascobolus genes investigated had its individual features of recombination.

Preliminary results have been obtained on a newly isolated strain ' 28' of
Ascobolus (Leblon & Rossignol, 1971). So far, recombination in two loci, b1 and b2,
has been studied. All kinds of recombinational events were about ten times more
frequent in 62 than in bv

The studies on intragenic recombination in the presence of spanning markers by
means of half-tetrad analysis in Aspergillus (Putrament, 1964, 1967) and tetrad
analysis in yeast (Fogel & Hurst, 1967), Podospora (Marcou, 1969) and Ascobolus
(Baranowska, 1970) show how far the data for Ascobolus discussed above are
comparable with those obtained in other fungi by means of single-strand analysis.

I t may safely be assumed that in the genes studied by means of single-strand
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analysis, both reciprocal and non-reciprocal intragenic exchanges occur, although
from the frequencies of wild-type recombinants with non-parental spanning marker
arrangements no conclusions can be drawn regarding reciprocality or non-recipro-
cality of intragenic events (for discussion see Putrament, Rozbicka & Wojcie-
chowska, 1971). Polarization was very strong in some genes such as me-2 in
Neurospora (Murray, 1968, 1969) and methA in Aspergillus (Putrament et al. 1971)
and less strong in others. In the cys gene of Neurospora (Stadler & Towe, 1963)
most frequent was the class of wild-type recombinants with parental marker
arrangement, while in me-6 and me-2 genes of Neuropsora (Murray, 1963, 1969),
adE (Pritchard, 1955, 1960), adF (Calef, 1957; Martin-Smith, 1961), pabaA
(Siddiqi, 1962; Siddiqi & Putrament, 1963) and lys-51 (Pees, 1967) genes of
Aspergillus the most frequent was one of the classes with non-parental marker
arrangement. In am-1 (Fincham, 1967), his-1 (Freese, 1957; Catcheside, Jessop &
Smith, 1964; Jessop & Catcheside, 1965), his-3 (Jha, 1967, 1969), his-5 (Smith,
1965, 1966), pan-2 (Case & Giles, 1958) and mtr (Stadler & Kariya, 1969) genes of
Neurospora polarization was very weak if noticeable at all.

The distribution of spanning markers among his-l+ recombinants is strongly
modified by a rec-1 gene (Thomas & Catcheside, 1969). Similar effects are produced
by rec-3 on am-2 allelic recombination (Smyth, 1971) and by rec-w and cog on his-3
allelic recombination (Angel, Austin & Catcheside, 1970), while rec-2 slightly modi-
fies the recombination pattern between his-5 alleles (Smith, 1966). A striking
difference in the allelic meiotic and mitotic recombination pattern between the
same pairs of pabaA mutants of Aspergillus was observed (Siddiqi, 1962; Siddiqi &
Putrament, 1963; Putrament, 1964, 1967).

Thus as far as comparisons are conclusive, the same type of gene-to-gene varia-
tion in the recombination pattern is present in Ascobolus, Neurospora and Asper-
gillus, while in yeast and Podospora intragenic recombination resembles that of the
three fungal species studied more extensively. Mutant specificity is independent of
and superimposed on the gene-specific recombination pattern. A possibility cannot
be excluded that the character of a mutant has a stronger influence on recombina-
tion pattern in those genes in which polarization is less pronounced or even absent:
mutant-specificity was observed in Y (Kruszewska & Gajewski, 1967), W84
(Paszewski, 1967; Paszewski & Prazmo, 1969), 75 (Rossignol, 1967, 1969) and
164 (Baranowska, 1970) genes of Ascobolus, but was not observed in gene 46, in
which polarization is very strong (Rizet et al. 1960; Lissouba, 1969; Lissouba et al.
1962; Rossignol, 1964).

The gene-specific recombination pattern can be modified by the genetic back-
ground of a strain (am-1, his-1, his-3 and his-5 genes of Neurospora), and is different
in the meiotic and somatic cells {pabaA gene of Aspergillus). Thus the primary DNA
structure of a gene and its modifications due to mutations are not responsible for
all gene-to-gene variation in allelic recombination pattern.
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3. GENETIC FACTORS INFLUENCING INTRA- AND
INTERGENIC RECOMBINATION

In Neurospora several rec genes influencing allelic recombination frequencies
have been identified (Angel et al. 1970; D. E. A. Catcheside, 1970; D. G. Catche-
side, 1966; D. G. Catcheside & Austin, 1969, 1971; D. G. Catcheside et al. 1964;
Jessop & D. G. Catcheside, 1965; Jha, 1967, 1969; Thomas & D. G. Catcheside,
1969). At least some of these and probably still other genes of the rec type influence
intergenic recombination frequency (D. G. Catcheside et al. 1964; Jha, 1967;
Smith, 1965, 1966; Case & Giles, 1958; Rifaat, 1969; DeSerres, 1958; Stadler &
Towe, 1962).

The rec-3 gene, which affects recombination frequency between am-1 alleles,
does not seem to affect the function of the am-1 gene (D. E. A. Catcheside, 1968).
This suggests that the rec genes are not involved in the regulation of gene function.

A similar system of genetic factors modifying recombination frequencies in
certain definite intervals has been found in Schizophyllum commune (Koltlin,
Raper & Simchen, 1967; Simchen, 1967; Connolly & Simchen, 1968; Simchen &
Connolly, 1968; Stamberg, 1968, 1969a, b; Simchen & Stamberg, 1969a; Stam-
berg & Simchen, 1970).

The loci that influence recombination are highly region-specific. For instance,
within the A mating-type factor, the following intervals can be distinguished:
A<x-pab-ade5-A/3. At least one factor modifies the recombination frequency within
the first interval, and a different one alters recombination frequency in the second
interval, while neither affects recombination within the third. A single factor may
influence recombination in more than one region. For instance, one of the factors
which in the homozygous condition increases recombination frequency in the
Aoc-A/3 interval affects in the same way recombination in the Afi-xl5 interval.
One of the factors which in the homozygous condition increases recombination
frequency in Afi-xl5 interval decreases recombination frequency in the B mating-
type factor.

The rec-x and rec-3 genes of Neurospora are most probably allelic. They modify
recombination in two unlinked loci, am-1 and his-2 (D. G. Catcheside & Austin,
1971).

Genetic factors differentially affecting recombination frequencies in certain
regions are present also in yeast (Simchen, Ball & Nachsohn, 1971).

Comparison of recombination frequencies at various temperatures at which
meiosis took place was used in Schizophyllum studies as a method of differentiating
the genotypes of the strains investigated. Depending on the genotypes of the
strains crossed, a definite temperature at which meiosis proceeds can increase, or
decrease, or have no influence on the frequency of recombination within a given
interval. Other data concerning the influence of temperature on recombination are
not in disagreement with this evidence (for discussion see Stamberg & Simchen,
1970). There are indications that intragenic recombination frequency and pattern
can also be modified by the temperature at which meiosis and premeiotic stages
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proceeded (Stadler, 1959; Lissouba, 1960; Boucharenc, Mousseau & Rossignol,
1966; Lamb, 1968, 1969a, b; Putrament et al. 1971).

To sum up, the genetic factors affecting recombination (see Simchen & Stam-
berg, 19696) have strictly localized effects. A single factor may influence recombi-
nation within several, not necessarily linked, chromosomal segments. Often the
temperature at which meiosis proceeds can modify the action of these factors
either in a co-ordinate or in a contrasting manner (e.g. Stamberg & Simchen, 1970,
tables 3 and 9).

4. THE POSSIBLE ROLE OF CHROMOSOMAL AND
SYNAPTINEMAL PROTEIN COMPLEXES IN RECOMBINATION

Recombination is mediated by enzymes which for the sake of simplicity will be
called recombinases. Neither their number nor their modes of action are known.
It is also not known whether all the recombinases produced by a cell or an organism
are necessary for every recombinational event. However, for any recombinational
event to take place two conditions must obviously be fulfilled: (a) the homologous
DNA segments must be available for the recombinases, and (b) there must be close
physical contact between the homolous DNA segments.

The question whether the chromosomal proteins are able to shield DNA from
the recombinases cannot be answered at present, although there is some evidence
concerning the action of chromosomal constituents on the availability of DNA for
some other enzymes.

Histones bind with DNA non-specifically (Bonner et al. 1968). At least some of
them (Koslov & Georgiev, 1970) interfere with the activity of RNA polymerase,
probably by strengthening the hydrogen bonds between complementary DNA
chains (Shih & Bonner, 1970a, b). The histone complex with unglucosylated
T2 DNA is less effective as a substrate for glucosylation by alfa-glucosyl trans-
ferase than histone-free T2 DNA (Olins, 1969). On the other hand, histones only
slightly interfere with DNA polymerase activity (Spelsberg, Tankersley &
Hnilica, 1969).

In chromatin only some regions of DNA are transcribed, depending on the tissue
from which the chromatin was isolated (Bonner et al. 1968). Chromatin reconstituted
after denaturation serves as a template for synthesis of RNA very similar to or
identical with that synthesized in the presence of native chromatin from the same
organ (Paul & Gilmore, 1968; Gilmore & Paul, 1969; Bekhor, Kung & Bonner,
1969; Huang & Huang, 1969). Chromosomal RNA (Bekhor, Bonner & Dahmus,
1969; Sirolap & Bonner, 1970) or non-histone proteins (Kleinsmith, Heidema &
Carroll, 1970) are responsible for masking the DNA in a highly specific manner
characteristic for a given organ, so that only the unmasked parts of the DNA are
available for transcription.

The number of different types of histones is very limited (Fambrough & Bonner,
1969), so that the same species of histone must be associated with many non-
identical DNA segments, as suggested by Bloch (1966). The number of different
species of non-histone proteins has not yet been established. However, it does not
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seem unreasonable to assume that the same species of non-histone protein can
also be associated with several non-identical segments of DNA. This seems to
apply also to fungi, although in their chromosomes no histones were found (Leighton
et al. 1971).

The evidence presently available indicates clearly that in meiosis homologous
chromosome pairing is mediated by the proteinaceous structures of synaptinemal
complexes in fungi (Rossen & Westergaard, 1966; Westergaard & von Wettstein,
1966, 1968, 1970; Engels & Croes, 1968; Lu & Raju, 1970) as well as in higher
plants and animals (Moses, 1968, 1969; Moens, 1970).

Synaptinemal complexes consist of a central component and lateral components
which merge with chromatin. Westergaard & von Wettstein (1970) suggest that
the lateral component of one chromosome must carry the information for the
specific site-to-site recognition and pairing with the lateral component of the
homologous chromosome. The material in the central component could operate in
mediating the site-to-site recognition of the lateral components.

I t is not yet clear whether the synaptinemal complexes are built of proteins
which are normally associated with chromosomal DNA or of different protein
species. In any case they must provide for a contact between homologous chromo-
somes as precise as is the regulation of transcription. Otherwise intragenic re-
combination would be impossible.

The synaptinemal complex stabilizes the homologous pairing, but apparently it
also restricts the contact between the homologues. In a given region only a small
fraction of DNA from each homologue can be present in the central component of
the complex (Moses, 1969; Westergaard & von Wettstein, 1970). It is not known so
far whether the same DNA segments are present there throughout the entire time
of synapsis or whether the DNA double chains undergo movement so that at the
beginning of pairing, e.g. A—A', segments are within the central component, then
successively B-B', etc.

Thus, the present knowledge of the structure of synaptinemal complexes sug-
gests the possibility that various segments of chromosomes have an unequal
probability of being brought sufficiently close together for recombination to take
place. In other words, the probability of a gene being involved in an effective
pairing segment may be unequal for different genes. Perhaps this might account
for the gene-to-gene differences in the conversion frequencies found in Ascobolus.

The possibility cannot be excluded that within some, but not all, chromosomal
regions, homologous DNA segments come into contact consecutively, so that
mutant sites on one side of a cistron have a greater probability of entering into the
recombinational process (and eventually being converted) than mutant sites on the
other side of the cistron. This perhaps may account for polarization of intragenic
recombination.

The chromosomal structural proteins as well as those of synaptinemal complexes
must be coded by their structural genes which can mutate. Judging from the
amazing uniformity of histones in eukaryotes (Fambrough & Bonner, 1969) one
can conclude that there must be a strong selection which eliminates individuals
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carrying mutations in the structural genes of chromosomal proteins (Bonner et al.
1968). Still, it seems possible that missense mutations of some synaptinemal com-
plexes and chromosomal structural proteins do not disturb the chromosome
metabolic activities, and lead only to changes in recombination frequencies in
certain chromosomal regions. The rec genes identified in Neurospora may, in fact,
be mutants of structural genes of these proteins. The same mutant protein mole-
cule may be responsible for increased or decreased recombination frequencies in
various chromosomal segments with which it is bound, depending on other
chromosomal components present in each segment. This assumption could possibly
account for the previously summarized Schizophyllum data.

It is well known that the conformation of proteins is easily modified by tempera-
ture. Perhaps temperature-induced modifications in a particular protein conforma-
tion may lead to modifications of recombination frequencies in those segments of
chromosomes with which this protein is associated. The final result, i.e. increased
or decreased recombination frequency, will largely depend on other chromosmal
constituents.

Of course, temperature may influence recombination in many ways — for instance,
by influencing the synthetic processes which take place in premeiotic and early
meiotic stages (Stern & Hotta, 1969), or by influencing the duration of synapsis, or,
as suggested by Lamb (19696), temperature may affect the level of activators of
an enzyme responsible for breakage of DNA. None of these alternatives, however,
can account for the genetically determined effects of temperature on recombina-
tion within strictly localized chromosomal segments, as was found in Schizophyllum.
In particular, Lamb's assumption that different recombinases operate in various
chromosomal segments calls for an additional assumption, namely that the
recombinases are strictly compartmentalized. But then the most probable factors
restricting the action of the recombinases are once more chromosomal proteins.

The assumption that chromosomal proteins can modify recombination fre-
quencies is not incompatible with the hypothesis (Angel et al. 1970) that there are
endonucleases capable of recognizing groups of similar sequences of nucleotides in
DNA molecules (cog regions), and of causing initiation of recombination. It seems,
however, that if as a rule there were regions of preferential DNA incisions initiating
recombination, then polarization of intragenic recombination would be always
observed, which is not the case.

It appears that on the basis of all these assumptions only a few predictions can
be advanced.

In intragenic recombination, polarization will be locus-specific, i.e. strong in
some genes and weak in others, even when a set of mutants identical in character
(e.g. AT-GC transitions) is intercrossed, as long as the genetic backgrounds of the
strains crossed are identical (cf. Rossignol, 1969).

Allelic recombination frequency and pattern will be modifiable by temperature
and by other factors which modify protein conformation, such as increased osmotic
pressure of the crossing medium (Hawthorne & Friis, 1964). Recombination will be
liable to modification only in some genes, some combinations of mutants crossed,
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and in some strains, since it depends on the structure of the chromosome segment,
the properties of which, in turn, are genetically determined.

Intergenic recombination frequencies will also be modifiable by all factors
which modify protein conformation without being toxic. More instances will be
found where a single genetic factor modifies recombination frequency in several
intervals, linked or unlinked either in a co-ordinate or in a contrasting manner.

No genetic factors modifying recombination frequencies in several intervals
either in a co-ordinate or in a contrasting manner will be found in prokaryotes.

The author is grateful to Professor W. Gajewski and Doctors H. Baranowska, A. Kruszewska
and A. Paszewski for a critical reading of the manuscript.
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