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FINITE ALGEBRAS THAT GENERATE
AN INJECTIVELY COMPLETE MODULAR VARIETY

KEITH A. KEARNES

We extend Kollar's result on finitely generated, injectively complete congruence
distributive varieties to the congruence modular setting. By doing so we show
that, given any finite algebra A of finite type, there is an algorithm to decide
whether V(A) is an injectively complete, congruence modular variety.

1. INTRODUCTION

Many authors have considered the question of which finite algebras A generate an
injectively complete variety, that is, a variety in which every member can be embedded
into an injective member. It is known that a variety V is injectively complete, or has
enough injectives, if and only if it is residually small, has the congruence extension prop-
erty and has the amalgamation property. This follows from a combination of results
due to Banascheski [2] and Taylor [17]. Day, in [5], proved that every primal algebra
generates an injectively complete variety. Quackenbush extended this result in [16] by
proving that if A is quasiprimal then V(A) has AP (equivalently, is injectively com-
plete) if and only if A is demi-semi-primal. The characterisation of finitely generated
injectively complete varieties was further extended to congruence distributive varieties
by Kollar [12]. We extend Kollar's theorem to the modular setting with the following
result:

THEOREM 1 . 1 . Let V be a finitely generated, congruence modular variety. Let
K. = HSSI(V). Then V has enough injectives if and only if:

(a) /C Kon C2+R,
(b) each maximal SI is *-injective over K. and
(c) Every retract of a maximmal SI is isomorphic to a direct product of SI

algebras that are *-injective over K..

Here SI (V) denotes the class of subdirectly irreducible algebras in V. A maximal
SI is one that is maximal under embeddability in SI(V).
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304 K.A. Kearnes [2]

Theorem 1.1 yields an effective algorithm for determining if a finite algebra of finite
type generates an injectively complete modular variety. This is because the condition
that K. f=con C2+R can be effectively verified when V is of finite type and a finite
algebra generating V is known. If this condition holds then K. is a finite category.
Further, it is possible to give a bound on the cardinality and the number of isomorphism
types of algebras in K. in terms of the cardinality of the algebras that generate V.

Our notation for algebras is fairly standard and the reader is referred to [14]. For
the notation and basic results of modular commutator theory the reader is referred to
[7]-

An object I in a category K is injective over K. if whenever we have a diagram in
K:

A

where / is a monic arrow and g is arbitrary, then there is an arrow gf : A —> I satisfying
j o / = j . When we consider a variety as a category we choose the morphisms to be
the homomorphisms. An algebra J will be called *-injective with respect to a category
of algebras if the same property holds for J except the condition that / is monic is
replaced by the condition that / is 1-1. In a variety V the monic morphisms are
precisely the 1-1 homomorphisms, so these two definitions agree for varieties. In fact,
this holds for any full subcategory of V that contains the relatively free algebra Fy(l) .
However, for an arbitrary (full) subcategory of V, say HS SI(V), *-injectivity is weaker
than injectivity. In general, we can say that if I is injective over V then I is *-injective
over any full subcategory of V that contains I.

A subalgebra A of B is a retract of B if it is the image of an idempotent endo-
morphism of B. AeV is an absolute retract if it is a retract of any of its extensions in
V.

A variety of algebras V is said to have the amalgamation property if whenever
we have embeddings / i : A —» B and </i : A —+ C we can find an algebra D and
embeddings / j , g% which complete a commutative diagram:
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[3] Finite algebras 305

In this case we will say that the triple (fz; £2; D) completes the amalgam,
(A; fi, B; gi, C ) . V is residually small just in case it has a bound on the size of
its subdirectly irreducible members. V has the congruence extension property if for
every embedding / : B —> A and every congruence 81 Con B there is a congruence
i!> e Con A such that 6 = V>|B = f~l{$)-

We adhere to the custom of excluding the empty algebra from membership in a
variety V. When investigating injective completeness some authors prefer to consider
V U {4>} when V has no nullary operations. We will write Mod S(V) for V if V has
nullary operations or for V U {<f>} otherwise. (The morphisms for V U {<f>} are just all
homomorphisms and empty maps.) Let us compare these two situations in the next
theorem. We omit the easy proof.

THEOREM 1 . 2 . II <j>eModll{y) then

(a) Mod S(V) is injectively complete if and only if V is injectively complete
and every A e V can be embedded into an algebra in V that has a 1-
element subalgebra.

If V is locally finite then we can rewrite this as:

(a') ModE(V) is injectively complete if and only if V is injectively complete
and every maximal SI has a 1-element subalgebra.

In either case, the injective algebras in Mod E(V) are precisely the V-injectives that

have a 1-eiement subalgebra.

(b) AfodE(V) .has the AP if and only if V has the AP and given any two
algebras in V there exists a third that jointly embeds them.

(c) AfodS(V) is residually small if and only if V is.
(d) Mod £( V) has the CEP if and only if V does.

Using 1.2 the reader can easily adjust the hypotheses of any of our results if he

prefers to consider Mod E(V) instead of V.

2. LOCALLY FINITE, INJECTIVELY COMPLETE VARIETIES

THEOREM 2 . 1 . Let V be a locally finite, residually small variety with the CEP.
Then V has only finitely many nonisomorphic SI's, all of which are finite. In particular,

V is finitely generated.

PROOF: By [1], any locally finite RS + CEP variety is residually less than n for
some finite n. Hence all members of SI(V) are homomorphic images of the (finite) free
algebra Fv(")- D

This means that determining the locally finite, injectively complete varieties re-
duces to the question of which finite algebras generate an injectively complete variety.
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In this paper we focus on finite algebras that generate a congruence modular variety.
However, it is our expectation that analogous results hold for all finite algebras. At
least, we believe that given a finite similarity type p it is possible to recursively enu-
merate the finite algebras of type p which generate an injectively complete variety. So,
for this section, we prove results which do not require the assumption of congruence
modularity.

In the next theorem we will let SIn(V) denote the set of n-generated subdirectly
irreducible algebras in V and let SIW(V) denote the set of finitely generated Sis.

THEOREM 2 . 2 . Let V be a variety t ia t has the CEP. 1/ SIn(V) = SIn+i(V)
{or some Unite n ^ 1, then SIn(V) = SIU(V). In addition, if Fy(w) is finite, then
SIn(V) = SI(V).

PROOF: For the first statement, assume the contrary. Then there is a k-generated
algebra AeSIu(V) which is not n-generated. Suppose that {gi,g2>--- >0*} generates
A and that /x = 0(a,b) is the monolith of A. Define a sequence of subalgebras of A:

Bi = < a, b,g1}... ,gt > , t = n - 1, n,... , k.

Since (a,b) e ^IB^ the inclusion of Bj into A is essential. V has the CEP so each B<
must be subdirectly irreducible. B n _ i is (n+l)-generated so by hypothesis we can find
an n-element set of generators. Bj+j is generated by B^ U {<7i+i} so inductively we
conclude that all B^ are n-generated. However, B* = A contradicting our assumption
that A is not n-generated.

For the second statement let CeSI(V). We can find a maximal non-trivial, finitely
generated, essential subalgebra of C. This is because all finitely generated essential
subalgebras of C are in SIu,(V), so by the preceding paragraph they are homomorphic
images of the finite algebra Fv(n) . Call such a subalgebra D. If x e C \ D then <
D, {x} > is a non-trivial, finitely generated, essential subalgebra of C that properly
contains D . Hence D = C and C must be finitely generated. By the previous paragraph
C can be generated by ^ n elements. U

Suppose that for a given finite similarity type p we have an algorithm to determine
if a finite algebra of type p generates a variety with the CEP. Then we can recursively
enumerate the finite algebras of type p that generate a CEP+RS variety. Here is the
procedure we use. At the n t h step in our procedure we compute all isomorphism types
of n-element algebras of type p (there are finitely many) and we use the algorithm to
eliminate those which do not generate a CEP variety. Then, for each A of cardinality
^ n about which we are still undecided, we compute the (finite number of) isomorphism
types in SIi(V(A)) , . . . ,SIn(V(A)) and check if SIm(V(A)) = SIm +i(V(A)) for some
m < n. If this happens, then A belongs on our list of finite algebras of type p that
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[5] Finite algebras 307

generate a CEP+RS variety. If not, then we remain undecided about A. This finishes
the n t h step.

Now we begin looking at the amalgamation property.

LEMMA 2 . 3 . Assume that V .has the CEP. Then V has the amalgamation prop-
erty if and only if we can complete each amalgam (A; / i , B; 51, C ) , where B is SI and
</i is essential, with a triple (/2j <72;D) where D is SI and /^ is essential.

If we can complete all the amalgams ( A ; / i , B ; £ i , C ) where all algebras are SI and
both maps are essential, then we can complete all amalgams in V where both maps are
essential.

PROOF: Suppose that we have an arbitrary amalgam ( A ; / i , B; </i, C ) . Let
B ^ Yl B/#i be a representation of B as a subdirect product of subdirectly irre-
ducible algebras and let 0A = 6i\x, 0p = a maximal congruence Oe Con C such
that <?|A = Of (there is at least one since V has the CEP). If we can amalgamate
each (A/6f-;f[l\B/0i;g[l),C/6?} then the product of the amalgamating algebras,

{Di I i ei}, amalgamates B with C/(flflp) over A. Reversing the roles of B and C and

taking the product again completes the original amalgam. Hence, all amalgams can be

completed if and only if we can complete those where B is SI and C is an essential

extension of the algebra A.

Consider ( A ; / i , B ; <7i,C) where B is SI and gi is essential. If (/2j<72;D) com-

pletes this amalgam then we may choose ip e Con D maximal with respect to the prop-

erty that V'IB = OB- Then, tp\x — 0 A and, since gi is essential, V'lc = Oc- Thus

(72~;<72~; D/V1) completes the amalgam with fi essential and (consequently) with H/rj>

subdirectly irreducible.

The argument for the second statement of this lemma is similar to the argument

above. Choose a family {6{ \ i e 1} of strictly meet-irreducible congruences that separate

the points of A. Let Of and 0p be maximal extensions of 0j to B and C respectively.

Necessarily, these congruences are strictly meet-irreducible and separate the points of

B and C respectively (that they separate points follows from the fact that B and C

are essential extensions of A). If all the amalgams [A/tfj; f[%\ B / 0 f ; j [ * \ c / 0 p ) can

be completed, then taking products completes the original amalgam. D

Next, we need a generalisation of injective hulls.

DEFINITION 2.4: We say that S is a shell of A if S is an extension of A (that
is, there is a distinguished embedding £ : A —» S) and S and £ have the following
properties:

(a) £ : A —> S is an essential extension.

(b) There is a set {0,- | te/} of strictly meet-irreducible congruences of A
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separating the points of A, a set { ( / j ,B j ) | i e 1} of maximal essential
extensions /,• : A/0,- —> B,- and a homomorphism A : S —» \\ B< such

that the following diagram commutes:

In this diagram 7/ denotes the natural map.

(c) S is maximal with respect to extension among algebras satisfying (a) and
(b).

Of course, a given A eV may have no shell or many nonisomorphic ones. The
problem of existence reduces to the question of the existence of the set { (/», B»)| i e 1}.
For this we need to know that each algebra A/0< has a maximal essential extension.
However, a result of Taylor in [17] shows that any algebra in a residually small variety
does have a maximal essential extension. It follows that if V is residually small then
every algebra A e V has at least one shell for every set of strictly meet-irreducible
congruences {6{ \ iel} which separate the points of A. If V is a locally finite CEP+RS
variety, then V has only finitely many nonisomorphic subdirectly irreducible algebras
and all are finite. One consequence of this is that if Ae V is finite, then we may
compute a finite bound on the size of the shells of A. This yields a bound on the size of
the essential extensions of A. Indeed, we can effectively locate all essential extensions
of A up to isomorphism.

THEOREM 2 . 5 . Let V be a locally finite CEP+RS variety and 7et K, = HS SI( V).
The following are equivalent:

(a) V has enough injectives.

(b) (i) Each maxima/ SI is *-injective over K and

(ii) each retract R of a maximal SI is an absolute retract in V.

(c) (i) Each maxima/ SI is *-injective over K, and

(ii) Each retract R of a maximal SI is a shell for itself with respect to

some (in fact, every) set of strictly meet-irreducible congruences

on R that separate the points of R.

PROOF: If V has enough injectives then the class of injectives is precisely the class
of absolute retracts in V and therefore it contains the maximal Sis. Further, the class
of injectives is closed under retracts. This shows that (a) implies (b)(ii). To show that
(a) implies (b)(i), note that since maximal Sis are absolute retracts in V, they are
injective in V and so they are at least *-injective in K.
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To show that (b) implies (c) we only need to verify that (c)(ii) holds. As we have
remarked, the fact that V is RS implies that every algebra R in V has a shell S which,
by definition, is an essential extension of R . If R is a retract of a maximal SI then
(b)(ii) yields that R is an absolute retract, hence a retract of S. Necessarily R = S.
Thus, the only shell for R is R itself. Hence, R is a shell for itself with respect to any
set of congruences which separate the points of R.

We need to show that (c) implies (a). Equivalently, we must show that (c) forces
V to have AP. Let (A; / i , B ; g\, C) be an amalgam in V where all algebras are SI and
both maps are essential. Find fa and D such that D is a maximal SI and fa : B —> D
is 1-1. This gives us a diagram in /C:

C

A > B > D
h h

Since D is *-injective over K there is a map 52 : C —> D where </2 ° <7i = fa°fi-
52 is 1-1 since gi is essential and fa o fa is 1-1. Hence (fa;g2',&) completes this
amalgam. Lemma 2.3 shows that V admits a limited amount of amalgamation: we can
amalgamate diagrams in which both maps are essential.

Now let (A;/ i ,B; </i,C) be any amalgam where B is SI and gi is essential. If
we can complete the amalgam ( A ; / o / i , B ' ; <7i,C) where / : B —» B1 is 1-1, then
the amalgamating algebra together with the obvious composed maps will complete the
original amalgam. Therefore we may assume from now on that B is a maximal SI. Let
A' be a maximal essential subextension of A in B. Say

C

- T
A > A ' > B

h i

In (A; fa, A'; ffi, C) both maps are essential so we can find (h.2\ 52; C ) with both maps
essential which completes this amalgam. We have

c h* > c
91 T |93

A • A ' • B
h i

We need to show that (A';t,B; <72,C) can be completed. If we can do this then we
will have completed (A;/i ,B;5i,C) and the result of Lemma 2.3 implies that V has
AP. This will finish the proof.
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Let 0 be a maximal congruence of B that has the property that 0|A< = 0. We
have a diagram in K:

'I

where r\ denotes the restriction to A' of the natural map from B to B/0 . Further, t\

is 1-1 and essential. Since B is *-injective over K and rj is essential, there exists a 1-1
map i : B /0 —> B such that iorj = i. Hence i(B/0) is a subalgebra of B that is an
essential extension of A ' . The choice of A' forces t(B/#) = A ' . Hence A' is a retract
of B .

Now let us invoke (c)(ii). A' is a shell for itself with respect to some choice of
strictly meet-irreducible congruences that separate the points of A ' . There is some
choice of congruences {6i \ iel} on A' and some choice of maximal essential extensions
/,• : A'/0i —» Di such that v(A.') is a maximal essential subextension of itself in
Y[ D< where v is the natural embedding of A' into J\ D» • This means that f(A')
id id

has no proper essential subextensions in Y[ Dt-. Let Of1 be a maximal extension of
id

6i to to C . In the amalgam ( A ' / f l i j / i . D ; ; ^ 0 . C ' / f l f ' ) all algebras are SI and all

maps are essential, so we can complete this amalgam. The algebra that completes this

amalgam can be chosen to be an essential extension of both C'/Sf and D^. Since Dj

is already maximal with respect to essential extensions, we can complete this amalgam

with (idoiig^iHi) where g™ is such that U = 9? ° 9? • A/0,- -> C/6? -» D<

Now, taking products and letting 7 denote the composed map IIpj 0 1 / : C' —>

f] C'/Of' -f I ] D,-, we get that
id id

commutes. Since we know that 52 an essential embedding, that 7 is 1-1 and that A' is
a maximal essential subextension of \l D; we get that 52 is actually an isomorphism.

id
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Now let us return to our diagram:

c ——> c
fli Tsa

A > A ' > B
h i

We have just shown that g^ is an isomorphism. To complete (A';i,B; <72>C') simply let
/13 : C ' - » B be the map iog^1. This shows that the original amalgam (Aj/^Bj^ijC)
is completed by (ids!* °fl^1 o/»2;B). As we have remarked, this finishes the proof.
However, note that in this paragraph we have shown that if A' is retract of a maximal
SI and A' is a shell for itself with respect to some set of congruences, then there is no
proper essential extension C of A'. Hence A' is the only shell for itself and it is an
absolute retract in V. This explains our wording of condition (c)(ii): if V is a locally
finite, CEP+RS variety for which (c)(i) holds, then a retract of a maximal SI is a shell
for itself with respect to some set of congruences that separate points if and only if it
is a shell for itself with respect to any set of congruences that separate points. D

Again suppose that for a given finite similarity type p we have an algorithm for
determining if a finite algebra of type p generates a variety with the CEP. Then we
can recursively enumerate the finite algebras of type p that generate a variety with
AP+RS+CEP, that is, an injectively complete variety. We simply use the procedure
described earlier for enumerating the algebras that generate a variety with RS+CEP
and we check for AP along the way. That is, at the end of the nth step in our earlier
algorithm we isolate those algebras which have just been shown to generate varieties
with RS+CEP. We have already computed SI(V(A)) for these algebras so we can test
for AP by using Theorem 2.5(c). If we reach this stage, then K. has only finitely many
(nonisomorphic) algebras and all are finite. Checking 2.5(c) will only require a finite
amount of computation. Note that if A is of type p and belongs to a residually small
variety then we will decide in a finite amount of time whether or not A generates an
injectively complete variety, although if it does not belong to a residually small variety
we will remain forever undecided.

It seems likely that there is an algorithm for testing if a particular finite algebra
of finite type generates a variety with CEP+RS. If we have an algorithm to determine
if A generates a CEP variety, then the method described after Theorem 2.2 will not
terminate if A generates a residually large CEP variety. We pose the following:

PROBLEM. IS there a recursive function few" such that for any finite algebra gener-
ating a CEP + RS variety it must be that V(A) is residually < /( |A|)?

Emil Kiss has shown that a (possibly non-recursive) function with this property
does exist. If such a recursive function were known, then we could use the procedure
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described earlier for A and terminate the procedure after the /( |A|) step by rejecting
A if we had not already shown that V(A) has CEP+RS. On the other hand, if A is
shown to generate a CEP+RS variety, then we would apply Theorem 2.5(c) to check
whether A generates a variety with AP. Therefore, if we had an algorithm to test if
V(A) has the CEP and knew such a recursive function / , then we would have an
algorithm to test if V(A) has enough injectives.

For distributive varieties, a suitable recursive function is / D ( " 0 = n + 1. For
modular varieties such a function is / M ( I ) = n ' 9 n where lgn = log2 n. [fn works for
distributive varieties by Jonsson's Lemma. A proof that /M works for modular varieties
can be found in [9].] (On the other hand, the functions /o(n) = n and / M ( " ) =
n1/4(lgn) are too small for infinitely many values of n.)

Some work has been done toward understanding which locally finite varieties have
the CEP. See [10] and [13], for example. Still, we are a long way from knowing an
algorithm which decides if a finite algebra of finite type generates a variety with the
CEP.

3. CONGRUENCE MODULAR VARIETIES

For modular varieties many authors have linked commutator conditions to the
properties we are considering: RS [6], CEP [11], AP+RS [3] and AP+RS [8]. These
results enable us to provide an algorithm to test whether a finite algebra generates an
injectively complete modular variety. The relevant commutator conditions are:

Cl: [x • y,y] = x • [y,y]

C2: [x,y]=x-y[l,l]

C3: [x,y]=x-y

R: H B < A

What is most important for us are the following results.

THEOREM 3 . 1 . [6] A finitely generated, congruence modular variety V is RS if
and only if it contains only finitely many non-isomorphic subdirectly irreducible algbras,
all finite, if and only if V (= Con Cl.

THEOREM 3 . 2 . A finitely generated, congruence modular variety V has the CEP
if and only if V \= e<m C2+R and every SI in V has the CEP.

PROOF: This follows immediately from Theorems 2.2 and 2.5 in part II of [11]. D

THEOREM 3 . 3 . [7] if A is finite and V — V(A) is congruence modular, then
V \=con Ci for i = 1,2, or 3 if and only if A satisfies C» hereditarily. V f=eon C3 if
and only if V is congruence distributive.
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THEOREM 3 . 4 . If A is finite and V = V( A) is congruence modular, then V \= COn
C2+R if and oniy if A satisfies C2+R iereditarily.

PROOF: From Theorem 3.3, V will satisfy C2 if A satisfies it hereditarily. It follows
from Theorem 4.3 of part I of [11] that all that is left to verify is that the (nonabelian)
Sis of V satisfy R. By Theorems 8.3 and 10.1 of [7], the nonabelian Sis are members
of HS(A). We have assumed that S(A) \=Con R- If we can show that R is preserved
by onto homomorphisms we will be done.

Assume that B satisfies R, that / : B —> B ' is onto and that B ' fails to satisfy R.
There is a subalgebra C < B ' such that [1^,1'c] < [ 1 B , 1 B ] I C -

 L e t C = / " H 0 ' ) ^
let ij) denote the kernel of / . We've assumed that [ l c , l c ] = [ 1 B , 1 B ] | C - Using the
failure of R in C and the homomorphism property of the commutator we get

M e + [ 1 B , 1 B ] | C ) < (V- + [1B, 1B] ) |O .

By Theorem 6.3 of [7], ij> permutes with [1B, 1B]- Now choose (x,y)e(if> + [ 1 B , 1 B ] ) | C \

(V>|C + [ 1 B , 1 B ] | C ) . We have xij)z[l,\)y. We know that (x,z)etfi, that xeC and that
C = f~1(C). From this we may conclude that zeC Hence, s;V'|cz[l.>].]|c, y. But
this contradicts the fact that (a:,y) £ i>\c + [ 1 B , 1 B ] | C - This finishes the proof. D

Now let us record a few easy facts about injectivity in congruence modular varieties.

LEMMA 3 . 5 . Let V be a finitely generated, congruence modular variety that has
the CEP. V is residually small.

PROOF: CM+CEP implies that V satisfies the commutator congruence condition
C2 by Theorem 3.2, which in turn implies that V satisfies Cl. Any finitely generated
modular variety that satisfies Cl as a congruence identity is residually small by Theorem
3.1. D

PROPOSITION 3 . 6 . Let A be a modular abehan variety. Then any amalgam
(A;/i,B;£i,C) can be completed in A.

PROOF: A has a Malcev term p(x,y,z) that commutes with all the term opera-
tions. Let D = (B x A x C)/0 where 0 is the congruence defined by ((6,a,c),(6',o',c'))
e 6 if and only if

P
B(&)&',a')=/xeA,pc(c,C',a') = l /eA, and pA(/x,a,i/) = a'.

(For ease of notation we are treating f\ and gi as inclusions.) Let fi : B —» D :
b H-> (b,a,a)/0 and let g2 : C —» D : c H-> (a,a,c)/6. Then (/2J52;D) is a completing
triple. The necessary verifications that 0 is a congruence and that f2 and g2 are 1-1
homomorphisms are easy. U
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COROLLARY 3 . 7 . Modular abelian varieties are injectively complete.

PROOF: Abelian varieties have RS+CEP as is easily seen from their relationship
with varieties of modules as delineated in Chapter 9 of [7]. They have AP by the
previous proposition. U

Recall that we do not admit the empty algebra. This is essential in Proposition
3.6 and its corollary or else, by taking A = <f>, the amalgamation property translates
into the joint embedding property which does not hold for arbitrary modular abelian
varieties. For example, let A =< {0,1},p, a > where p(x,y, z) — x + y + z (mod 2) and
s is the unary operation that switches 0 and 1. V(A) is a modular abelian variety in
which every linear algebra has only linear subalgebras and (of course) every nonlinear
algebra has only nonlinear subalgebras. Hence it is impossible to find an algebra in
V(A) that jointly embeds a linear algebra and a nonlinear algebra.

PROPOSITION 3 . 8 . Let V = V(A) be a modular variety generated by the
finite algebra A. Assume that V\=conR and let A C V be the subvariety of abelian
algebras in V. Then A = HSP(A/[1,1]).

PROOF: The free algebra Fv(n) is isomorphic to the subalgebra of AA that is
generated by the n projections. F^t(n) = Fv(n)/[1,1] which, by R and by the fact
that the commutator behaves well under finite products, is isomorphic to the subal-
gebra of (AA")/[1,1] = (A/[1,1])A" that is generated by the projections. But this
is isomorphic to the n-generated free algebra in HSP(A/[1,1]). Consequently, A and
HSP(A/[1,1]) satisfy the same equations and must be equal. D

A consequence of the last result is that it is fairly easy to locate the subdirectly
irreducible algebras in a finitely generated, congruence modular variety that satisfies
C2 and R.

COROLLARY 3 . 9 . If A is a finite member of a congruence modular variety and
A (=eon C2+R hereditarily, then V = V(A) \=con C2+R and

SI(V)CHS(A)USI(V(A/[1,1])).

PROOF: If S(A) (=con C2+R then V does by Theorem 8.3 By Theorems 8.3 and
10.1 of [7] the nonabelian Sis of V are in HS(A). The result of Proposition 3.8 shows
that the abelian Sis are in SI(V(A/[1,1])) and this finishes the proof. D

The next few results explore some less obvious facts about injectives in modular
varieties.

PROPOSITION 3 . 1 0 . IfVis congruence modular and A x B eV is injective in
V, then A is injective in V.
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PROOF: Suppose that we have a diagram:

D

'1

where i is 1-1. By taking products with B we get another diagram:

D x B

ixidB T

A x B is injective, so there is an / : D x B —> A x B such that / o ( t x tda) =
This leads to a homomorphism

g = TT0
AXB o / : D x B ^ A x B - ^ A

by composing / with the projection onto A. If 6 — ker <;, then 0|cxB 2 V^*B • There-
fore, if (u,v), (*,y)eDxB and ceC, then («>t>)i??xB(i(c),t»)tf-i?f

xB (i(c),»)i,?xB(*>y)
This shows that 6 • r)0 + 771 = 1. Of course, 0 • rj0 • rji — 0. Hence, if 6 • T]0 < »7o,
then the congruences 0, 0 • r)0, 770, 771 and 1 would form a pentagon, contradicting our
modularity hypothesis. We conclude that 6 ^ rjo • This means that g factors as

An easy check verifies that ~goi = f and we are done. U

We have just shown that, in a modular variety, a direct product of two algebras
is injective only if each factor is. By letting B represent a direct product of other
algebras in our proof, we see that this result holds for arbitrary direct products. It is
well-known (and easy to prove) that, in any category, an arbitrary direct product of
injective algebras is injective, so the converse of Proposition 3.10 is also true.

Essentially the same proof that we have given shows that, in a modular variety, if
an arbitrary direct product of algebras is an absolute retract then each factor must be.
Simply replace C by A and replace / by id A in our argument. It is not true that the
converse of this claim is true: there are modular varieties in which a direct product of
absolute retracts is not an absolute retract (although in any variety with the CEP a
direct product of absolute retracts is again an absolute retract).
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LEMMA 3 . 1 1 . Assume that V is congruence modular and that Be V. Suppose
that {a,- \ i e 1} is a nonempty set of atomic congruences contained in the centre of
B and that A is a subalgebra of B such that a^A > OA for all i. If a and a' are
congruences ofB such that a ^ V cti and a ^ a', then <*|A ^ <*'|A- -In particular, if

id

a > OB then O|A > OA •

PROOF: Let /3 = V a,-. Choose an element of A and call it 0. Let M(/3,0) be
id

the /3-class of B containing 0. The results of Chapter 9 of [7] show that M(/?,0) is the
universe of a module over the ring R = R(V,1,1) (we choose 0 as our only constant).
Since [l,/3] = V[l»ai] = 0! Theorem 9.9 of [7] shows that the lattice of submodules of

id

H.M(/3,0) is naturally isomorphic to the interval I[0,/3] in Con B. Since C*,-|A > 0A>

there exist UJ, u;eA such that a,- = Cg^{ui,Vi). Let z; = d(v.i,Vi,0)eA where d is
a modular difference term for V. Note that Xj ^ 0, since otherwise d(ui,Vi,0) =
d(vi,Vi,0) and the 1,/3-term condition in B forces Uj = d(ui,0,0) = d(v{,0,0) — Vi
which is false. Hence (si,0) = (<f(u,-,v;,O), d(v{,v,,0))eaj \ 0 and this implies that
<*j = CgB(«i,0). By the same argument, if (y,z)ect \ a', then (w,0)ea \ a' where
w =d(y,z,0).

Since a ^ V a<, it follows from the natural correspondence between submodules
id

of H.M(/3,0) and congruences that are below /? that we ^2Rz;. In other words, there
are elements m^ , . . . , m<n in R such that w = m^ XJX H \- m.inXin . In B this means
that there is an (n + l)-ary term of V, / , such that w = /(ztx > • • • > »,-„,0). But all of
the elements 0,Xix, . . . , Xin are in A, so we get that w eA. Thus, (w, 0) ea\A \ « ' | A • D

THEOREM 3 . 1 2 . Assume that V is congruence modular and that Ae V is injec-
tive. If Con A satis£es the descending chain condition (DCC), then A is a finite direct
product of SI injectives.

PROOF: We begin with a claim. D
n

CLAIM. There is a subdirect representation A ^ J\ -A-,- where each Aj is SI and

(T]O • • • Vi ''' Vn)\x > 0 for all i. (Here TJ* denotes the unique upper cover of the
projection congruence 77,-.)

We will write rji to denote the restriction of rji to A. Now, our claim is equivalent
to the assertion that 0A is decomposable as a finite meet of strictly meet-irreducible
congruences 0A = Vo • • • Vn such that rjo '"Vi ' "Vn > 0 for each i.

To prove this claim, first let 5 be the set of congruences on A which are finite
meets of strictly meet-irreducible congruences on A. Since Con A has DCC, 5 has
at least one minimal element which we will call S. If r; is a strictly meet-irreducible
congruence, then the minimality of 6 forces r\ • 6 ^ 6 and so 77 ^ S. 77 was arbitrary so
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8 must be the zero congruence. This shows that OA has a finite decomposition: OA =
fjfo • • • rjn. Assume that n is the least natural number for which such a decomposition
exists. Let 77J = rjo • • -rii-iVi+i' "Vn- By the minimality of n, rfc > 0 for all t. Now,
{Vi + vD/Vi \ *Jt/O s o -̂ [Oĵ il ig a monolithic interval with unique atom rfi • rfc =
rjo • • • rfc • • • TJn. Hence our decomposition OA = »7o • • • Vn has the desired property that
Vo • • • Vi •'" Vn > 0 for each i. This establishes our claim.

We will establish that the subdirect representation obtained above is actually
a direct product representation. To do this it suffices to show that the embedding

n
A ^ Yl A-i is essential, since A is injective and consequently has no proper essential

j=o
extensions.

It is straightforward to show that since Con A has the descending chain condition
n n

that Con J | Aj also has DCC. Therefore, Con Yl A< is an atomic lattice. In order to
t=0 n t=0

prove that A ^ f| At is essential, we only need to rule out the possibility that there is
t=0 n

an atom a of Con ]~J A; with the property that a\\ — 0.
t=0

Let a ; denote the a tom T/̂  • 77J = 770 • • -rj* • • • t]n of Con \\ A i . Now choose an
n i=0

arbitrary atom a of Con Yl A*. Find an io such that Jjio ^ a . From the claim, we
«=o

see that the choice of the 7/f was such that a,-|A > 0 for all i, so if a = a^ we are
done. Assume that a ^ a^. Now, /[0, rj^ ] is a monolithic interval with unique atom
a,-0. We conclude that 77̂  ^ a. It follows that

0 = »7io • a + Vi0 •
 a 2 [»7io,a] + K , , a ] = [1,«]

so a is a central congruence of Yl A<. By reordering the 77; if necessary, we may assume
t=0

that there is a k ^ n such that t]i ^ a for i ^ k, but 77,- ^ a for i > k. Of course,
k

77* ^ a for all i, so a ^ 77J • • • 77̂  • 77^+1 • • • 77,, = /3. Notice tha t /9 = \J a,-. Notice also
t=0

that for i ^ k, a/0 f 77̂ /77̂  \ ai/0. This condition shows that a.j is central for
j ^ k. Now we are in the situation of Lemma 3.11. That is, a is contained in the join
of central atoms, each of which restricts nontrivially to A, and a is not contained in

n
the zero congruence of Yl Af. Hence, O|A is not 0. This rules out the possibility that

n »=0 n
Con Yl Aj has an atom that restricts to the zero congruence on A. Hence A = Yl Af •

i=0 t=0

By Proposition 3.10 each factor is injective and this establishes the theorem.
The proof that we have just given shows that, in a modular variety V, every algebra

whose congruence lattice has DCC can be essentially embedded into a finite direct
product of SI algebras (where each factor has DCC on congruences). One consequence
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of this is that any absolute retract in V whose congruence lattice has DCC is isomorphic
to a finite direct product of SI absolute retracts. This kind of factorisation theorem for
absolute retracts or for injectives does not hold for varieties in general. For example, if
Q is a variety of G-sets, then the G-set with three trivial orbits is injective but it has
no direct product decomposition into SI algebras. If S is the variety of semilattices,
then the three-element chain is injective in <S but it has no such decomposition. We
make the following conjecture:

CONJECTURE. If V is a locally finite variety with enough injectives, then every finite
injective algebra is isomorphic to a direct product of injective Sis if and only if V is
congruence modular.

A proof of this conjecture for any V which satisfies a nontrivial idempotent Mal'cev
condition can be found in [10].

The decomposition of injective algebras described in Theorem 3.12, along with
other known theorems of this sort lead us to pose two problems:

PROBLEM. Can one describe the structure of the injective algebras in an arbitrary
congruence modular variety which are directly indecomposable?

and

PROBLEM. IS there some kind of boolean construction which one can use to build arbi-
trary injective algebras in a congruence modular variety from indecomposable injective
algebras?

Kollar's Theorem states that if K = HSSI(V) where V is a a finitely generated,
congruence distributive variety, then V has enough injectives if and only if every maxi-
mal SI in V is *-injective over K. and every retract of a maximal SI is isomorphic to a
direct product of SI algebras that are *-injective over K. Before we prove Theorem 1.1,
which extends Kollar's Theorem, let us consider an example which shows that Kollar's
Theorem for congruence distributive varieties cannot be extended "intact" to include
congruence modular varieties. That is, Kollar's Theorem becomes false if we simply
replace the word "distributive" with the word "modular".

EXAMPLE 3.13: Let A be the symmetric group on 3 letters. It is a fairly easy
exercise to show that the only non-trivial Sis in V(A) are A, the 2-element group Z2
and the 3-element group Z3. The non-isomorphic groups in K = HS SI( V(A)) are just
these three groups and the trivial group. The only maximal SI is A. Z3 is the only
member of K which is not *-injective and it is also the only one which is not a retract
of A. Except for congruence distributivity, the conditions of Kollar's Theorem hold for
this variety. However, A does not satisfy C2 or R, so V(A) does not have the CEP.
V(A) cannot have enough injectives. (This variety is residually small and does not have
the CEP so, by one of the principal result of [8], it does not have AP.)
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Now we are in a position to prove Theorem 1.1.

THEOREM 1 . 1 . Let V be a finitely generated, congruence modular variety. Let
K = HSSI(V). Tien V has enough injectives it and only if:

(a) K |=con C2+R,
(b) Each maxima/ SI is *-injective over K. and
(c) Every retract of a maximal SI is isomorphic to a direct product of SI

algebras that are *-injective over K..

PROOF: First, we assume that V has enough injectives and we show that (a),
(b) and (c) hold. Every modular variety with the CEP satisfies C2+R, so K (=COn
C2+R. Now, any proper essential extension of a subdirectly irreducible algebra is SI,

so maximal Sis have no proper essential extensions. This implies that any maximal
SI is an absolute retract in V. Since V has enough injectives, maximal Sis must be
injective in V. A fortiori, any maximal SI is *-injective over K.. What remains to show
is that if R. is a retract of a maximal SI, then R. factors as a direct product of Sis that
are *-injective over K. Such an R must be finite (since all the Sis in V are finite) and
injective (since retracts of injective algebras are injective). Proposition 3.12 applies and
shows that R, does have such a factorisation.

Now assume that the conditions (a), (b) and (c) hold. Since /C \=Con C2 and /C
contains all the Sis, V \=con C2. V is finitely generated and satisfies C2 so it satisfies
the weaker condition Cl. By Theorem 3.1, V has only finitely many isomorphism
types of Sis, all finite. Hence V is RS. Now K. is closed under ultraproducts (since it
contains only finitely many isomorphism types of algebras, all finite) and K, contains all
Sis. Since K \=con R it follows from Theorem 2.2 of part II of [11] that V \=con R. By
Theorem 3.2 V has the CEP if and only if each SI in V has the CEP. To verify that this
is so let AeSI(V), let B be a subalgebra of A and let 0 be a strictly meet-irreducible
congruence of B. Now, B/0 is SI and we can embed it into a maximal SI, C:

ASI

B/e i S I

Since A, B and Ce/C and C is *-injective over K. we can extend / o rj to / :
A —> C, thereby extending 6 to ker / . This shows that every strictly meet-irreducible
congruence on B can be extended to A. By representing an arbitrary congruence as a
meet of strictly meet-irreducible congruences we see that arbitrary congruences on B
can be extended to A. Thus, A has the CEP.

To finish, we only need to verify condition (c) of Theorem 2.5. Note that (c)(i)
holds by hypothesis. Suppose that R is a retract of a maximal SI. By our hypothesis,
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R = J] Aj where each A,- is an SI which is *-injective over K.. Identify R with this
id

product and let {rji \ i G /} be the kernels of the coordinate projections. The 77; are
strictly meet-irreducible and they separate the points of R. Further, if / : R/tji = Aj —»
Bj is a maximal essential extension of A;, then / is an isomorphism. This is because
any essential extension of Aj is SI, and therefore in K. But A^ is *-injective in K.
which means that Aj is an absolute retract in K,; this precludes any proper essential
extensions of A,-. We may assume that Bj = Aj. Any shell S of R with respect to
the congruences {rji | i € / } is an essential extension of R which can be embedded in
Y[ Bj = Y\ -A-i = R- A cardinality argument already shows that S = R, so condition
id id

(c) holds. D

COROLLARY 3 . 1 4 . (J. Kollar [12]) Let V be a finitely generated, congruence
distributive variety. Let K, = HSSI(V). Then V has enough injectives if and only if
every maximal SI is *-injective over K. and every retract of a maximal SI is isomorphic
to a direct product of SI algebras that are *-injective over K..

PROOF: Congruence distributive varieties are congruence modular and satisfy
C2+R. D

Our phrasing is slightly different from Kollar's. Throughout his paper he uses the
word injective to mean what we call *-injective.

If we are given a finite algebra A of finite type there is an algorithm to determine
if it generates a congruence modular variety: compute all 4-variable terms and check
to see if any sequence of terms is a sequence of Day terms for modularity. If it gener-
ates a congruence modular variety, it is quite easy to check whether A satisfies C2+R
hereditarily. If not, then A does not generate an injectively complete variety. On the
other hand, if A does pass this test and |A| = n, then n 6 n bounds the size of the
subdirectly irreducible algebras in V(A). This number clearly bounds the size of the
algebras in K.. From this one can produce a bound on the number of algebras in K. as
well. Clearly there is an effective algorithm to check whether or not the conditions of
Theorem 1.1 hold, since these conditions only involve the algebras in K. Thus, there is
an algorithm to determine if a finite algebra generates a congruence modular, injectively
complete variety.

The conditions on the finite algebra A which guarantee that V(A) has enough
injectives can be phrased more directly in terms of A if we add some restrictive hy-
potheses. First we impose a restriction on the subalgebras of A and obtain conditions
phrasable in terms of the congruences on A. Then we impose a restriction on the con-
gruences of A and get conditions phrasable (for the most part) in terms of subalgebras.

COROLLARY 3 . 1 5 . Let A be a finite algebra with no non-trivial subalgebras
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which generates a modular variety. V = V(A) has enough injectives if and only if
A t=con C2.

PROOF: The forward direction is clear. For the other direction, if A \=con C2
then S(A) \=con C2+R. We may conclude from Theorem 3.4 that V \=con C2+R.
K, = HSSI(V) satisfies C2+R as well. This shows that Theorem l.l(a) holds. Further,
the proof of Corollary 3.9 shows that the nonabelian algebras in K are homomorphic
images of A, hence they have no non-trivial subalgebras.

To verify Theorem l.l(b), assume that I is a maximal SI which is not *-injective
over K. We must have a diagram in K,

where / is 1-1 but there is no <7 such that g = </o/. Necessarily, / is not an isomorphism
and the image of g has more than one element. Since the nonabelian algebras in K.
have no non-trivial subalgebras, all three algebras are abelian. But I is a maximal SI
in the abelian subvariety of V. This means that I is injective in the abelian subvariety.
This contradicts the assumption that no "g exists so l.l(b) holds.

The only non-trivial retracts of maximal Sis occur in abelian maximal Sis. They
must factor into a direct product of SI algebras in V since they do in the abelian
subvariety of V. The factors are injective in the abelian subvariety of V, so they can't
fail to be *-injective in K. This is because, as we have noted, the only "interesting"
injectivity diagrams involve only abelian algebras. D

COROLLARY 3 . 1 6 . Let A be a finite simple algebra such that V - V(A) is
congruence modular. Then V is injectively complete if and only if A is abelian or:

(a) A is hereditarily simple,
(b) V is congruence distributive and
(c) every isomorphism between non-trivial subalgebras of A extends to an

automorphism of A..

PROOF: By Corollary 3.7, any abelian algebra generates an injectively complete
variety so let us assume that A is nonabelian and generates an injectively complete
variety. If A is simple and has the CEP then it is hereditarily simple. A/[l, 1] is trivial
so, by Proposition 3.8, V has no abelian algebras. This means that each subalgebra of
A is simple and nonabelian. A must satisfy C3 hereditarily so, by Theorem 3.3, V is
congruence distributive. We only need to show that condition (c) holds to conclude the
proof of the "only if" part of this corollary.
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Suppose that B is a non-trivial subalgebra of A and that j \ and g\ are two
embeddings of B into A. (B; / i , A;^i, A) is an amalgam where both j \ and g\ are
essential. By Lemma 2.3, there is a completing triple (f2,g2,D) where g2 : A —> D
is essential. Necessarily, D is SI and, by (a) and (b) and Jonsson's Lemma, D is a
subalgebra of A. By cardinality considerations f2 and g2 are isomorphisms. Let a
denote the automorphism of A given by g^1 o f2. We have g\ = a o / l l 6 O these two
embeddings of B differ by an automorphism of A. This shows that condition (c) holds.

Now we assume (a), (b) and (c) hold and we'll show that V is injectively complete.
By (a), (b) and Jonsson's Lemma, K. = HSSI(V) consists of the subalgebras of A and
trivial algebras. The only maximal SI in K. up to isomorphism is A and A has only
trivial retracts. By Corollary 3.14 we only need to show that A is *-injective over K..
To verify this, assume that B, CeK and

B —=-» A

where / is 1-1. If g is constant, then let </ be the constant homomorphism that
satisfies "g o / = g. If g is nonconstant, then \C\ ^ \B\ > 1 so B, CeS(A) and g is
1-1. Let i : C —» A be the inclusion map. Now g and i o / are embeddings of the
non-trivial algebra B into A. By condition (c), there is an automorphism a of A such
that a oi o f = g. Let j = a o j : C—»A. We have 'g°f — 9 so we are done. U

An immediate consequence of this corollary is the result of Day:

COROLLARY 3 . 1 7 . Every primal algebra generates an injectively complete va-
riety.

PROOF: Primal algebras are finite, simple, have no non-trivial subalgebras and
generate a distributive variety. D

DEFINITION: A finite algebra A is called quasiprimal if it has a ternary term t
satisfying:

tA(x,y,z) = x if x ^ y, and tA(x,y, z) = z ii x = y.

We call t a discriminator term for A.

Pixley [15] has characterised quasiprimal algebras as finite, hereditarily simple
algebras that generate an arithmetical variety (that is, one that is both distributive and
permutable). In particular, quasiprimal algebras generate CEP+RS varieties. Armed
with these facts and Corollary 3.16 we get Quackenbush's result:

COROLLARY 3 . 1 9 . If A is quasiprimal then V( A) has AP if and only if every
isomorphism between non-trivial subalgebras of A extends to an automorphism of A
(that is, A is demi-semi-primal).
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THEOREM 3 . 2 0 . Assume that V is a locally Suite, modular variety that is the

join of its minimal subvarieties. Then V is injectiyely complete.

PROOF: Any locally finite variety has finitely many minimal subvarieties and each

one is generated by a strictly simple algebra (a finite, simple algebra that has no non-

trivial proper subalgebras). A strictly simple member of a modular variety is abelian

or else satisfies C3 (hereditarily). Hence minimal, locally finite, modular varieties are

either abelian or distributive. Let A denote the join of the abelian minimal subvarieties

and let T> denote the join of the distributive ones. A is abelian and 23 is distributive, so

V = A®T>. It is easy to see that K = HSSI(V) consists of these strictly simple algebras

and trivial algebras, so the only homomorphisms in K which are not isomorphisms are

the constant homomorphisms. Every member of K. is simple or trivial and is *-injective

over K,. Clearly the conditions of Theorem 1.1 must hold. LJ

COROLLARY 3 . 2 1 . (A. Day [5]) Every minimal, locally finite CD variety is

injectively complete. (Actually, Day's result is expressed in terms of ModYj(V) and so

it looks a little different.)

Outside the modular domain Theorem 3.20 and Corollary 3.21 fail. In [4], Bergman

and McKenzie have provided examples of minimal, locally finite varieties that are not

residually small. Local finiteness is also an essential hypothesis for us. In [17], Taylor

gives an example to show that minimal CD varieties that are not locally finite may be

residually large.
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