
We present a solution for the scattered field caused by an incident wave interacting
with an infinite cascade of blades with complex boundary conditions. This extends
previous studies by allowing the blades to be compliant, porous or satisfy a
generalised impedance condition. Beginning with the convected wave equation,
we employ Fourier transforms to obtain an integral equation amenable to the
Wiener–Hopf method. This Wiener–Hopf system is solved using a method that
avoids the factorisation of matrix functions. The Fourier transform is inverted to
obtain an expression for the acoustic potential function that is valid throughout the
entire domain. We observe that the principal effect of complex boundary conditions is
to perturb the zeros of the Wiener–Hopf kernel, which correspond to the duct modes
in the inter-blade region. We focus efforts on understanding the role of porosity, and
present a range of results on sound transmission and generation. The behaviour of the
duct modes is discussed in detail in order to explain the physical mechanisms behind
the associated noise reductions. In particular, we show that cut-on duct modes do not
exist for arbitrary porosity coefficients. Conversely, the acoustic far-field modes are
unchanged by modifications to the boundary conditions. We apply our solution to a
cascade of perforated plates and see that a fractional open area of 1 % is sufficient
to significantly attenuate backscattering. The solution is essentially analytic (the
only numerical requirements are matrix inversion and root finding) and is therefore
extremely rapid to compute.

Key words: wave scattering, wave–structure interactions

1. Introduction
Turbomachinery noise remains a significant contributor to overall aero-engine noise

(Peake & Parry 2012). A considerable source of broadband noise is the so-called
‘rotor–stator interaction’, where unsteady wakes shed by compressor rotors interact
with downstream stators. Much progress has been made in understanding rotor–stator
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interaction noise when the blades are modelled as flat plates (Peake 1992; Glegg
1999; Posson, Roger & Moreau 2010; Bouley et al. 2017) or with realistic geometries
(Evers & Peake 2002; Baddoo & Ayton 2020). However, research into blades with
complex boundaries – where the blades are not necessarily impermeable and rigid –
is far less developed, especially from an analytic standpoint. This paper presents the
first analytic treatment of scattering by cascades with complex boundary conditions,
including compliance, porosity and impedance.

Aspirations for lighter and more efficient engines have driven the design of thinner
and lighter blades in turbomachinery (Saiz 2008). As a result, aeroelastic effects
such as flutter and resonance must be considered in modern turbomachinery design
and testing (Hall, Kielb & Thomas 2006). The rapid and accurate prediction of the
aeroacoustic performance of turbomachinery with consideration of aeroelastic effects
is therefore essential in evaluating the appropriateness of potential blade designs.
Analytic solutions are excellent candidates for this task (Peake 1992; Glegg 1999;
Posson et al. 2010), but are presently limited to impermeable and rigid blades with
no consideration of aeroelastic effects. The present study permits the consideration
of compliant blades (Crighton & Leppington 1970), where the blade deforms with a
(purely) local response to the pressure gradient across the blade and elastic restoring
forces are ignored. This is particularly relevant to marine applications where inertial
effects dominate elastic restoring forces and our solution is an important first step
towards modelling more general linearised elastic blades (Cavalieri, Wolf & Jaworski
2016).

An influential trend in aeroacoustic research is to modify aerofoils with noise
reducing technologies. A popular choice is a poroelastic extension, which was
originally inspired by the silent flight of owls (Graham 1934), and the corresponding
experimental support of Geyer, Sarradj & Fritzsche (2010). A detailed review of
research into the silent flight of owls is available in Jaworski & Peake (2020).
Poroelastic extensions have been applied to semi-infinite (Jaworski & Peake
2013) and finite (Ayton 2016) blades and have demonstrated considerable noise
reductions. Structural requirements limit the application of highly porous blades in
turbomachinery, but there remains the possibility that significant noise reductions are
available for modest porosity values. The approach of the present research permits
porous blades through the assumption of an impedance condition where the seepage
velocity through the blade is proportional to the pressure jump across the blade. We
will also consider the more general situation of an impedance relation along the
blades (Myers 1980).

In this paper we extend the analyses of Glegg (1999) and Posson et al. (2010) to
analyse the scattering by a cascade of blades with a range of boundary conditions.
The problem is solved with tools from complex variable theory, particularly the
Wiener–Hopf method. Taking a Fourier transform maps the problem into the spectral
plane where the Wiener–Hopf analysis is carried out in a similar way to Glegg
(1999). An inverse Fourier transform is applied to return the problem to physical
space, and contour integration is applied to recover the acoustic field (Posson et al.
2010). A significant advantage of the presented technique is that the method is
identical regardless of the boundary condition – the only effects of modifying the
boundary condition are to modify the kernel in the Wiener–Hopf method.

A striking feature of the analysis is that modifications to the boundary conditions
do not affect the modal structure of the solution in the far field. We arrive at
this result by interrogating the (meromorphic) Wiener–Hopf kernel, which takes an
interpretable form amenable to asymptotic and numerical analysis. We show that, in
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the spectral plane, the only effect of modifying the blade boundary condition is to
vary the locations of the zeros of this Wiener–Hopf kernel, which corresponds to
perturbing the duct modes of the cascade response function. Modifying the zeros has
a significant effect on the acoustic field in the inter-blade region, in part because
the cut-on frequencies of the duct modes are changed to account for energy being
absorbed or produced by the blades. In fact, we will show that, in the case where the
blades are porous, the duct modes are never cut-on. The poles of the Wiener–Hopf
kernel correspond to the acoustic modes scattered into the far field and are invariant
under modifications to the boundary conditions; the modes are a function of the
cascade spacing and incident field alone. Consequently, the cut-on frequencies of
the acoustic modes are unchanged and the modal structure of the upstream and
downstream acoustic fields are the same regardless of boundary condition, although
the coefficients of these modes do change, thus permitting a far-field noise reduction.

Our analysis is focussed on unloaded flat plates, although it is well known that
loaded blades have a significant effect on aeroacoustic performance (Fang & Atassi
1993; Evers & Peake 2002; Hall et al. 2006). The present work could be merged
with our recent solution for scattering by loaded cascades (Baddoo & Ayton 2020)
to account for both the effects of complex boundary conditions and non-trivial
geometries.

In the present study we consider four possible boundary conditions for the cascade
blades, labelled cases 0–III. Physically, case 0 corresponds to rigid and impermeable
blades; case I, porous or compliant blades with no background flow; case II,
porous blades with background flow; and case III, a general impedance relation.
Mathematically, case 0 corresponds to a Neumann boundary condition; case I, a
Robin boundary condition; case II, an oblique derivative boundary condition; and
case III, a generalised Cauchy boundary condition.

We begin by presenting a mathematical model for the cascade in § 2, including
the modelling of the various boundary conditions. We then present some details
of the mathematical solution in § 3. In § 4 we conduct a detailed investigation of
the effects of blade porosity. In particular, we present a range of results on sound
generation and sound transmission. Finally, in § 5 we summarise our work and suggest
future directions of research. The code used to produce all the results is available at
https://github.com/baddoo/complex-cascade-scattering.

2. Mathematical formulation
We consider a rectilinear cascade of blades in a uniform, subsonic flow as illustrated

in figure 1. It is useful to rotate the coordinate system and define

(x∗, y∗, z∗)= (x̃ cos(χ∗)+ ỹ sin(χ∗),−x̃ sin(χ∗)+ ỹ cos(χ∗), z̃),

so that the x∗ and y∗ coordinates are tangential and normal to the blades respectively,
which have dimensional length 2b∗. The blades are unloaded, but we do permit a
background flow tangential to the blades. Additionally, the background flow may have
a spanwise component such that U∗0= (U∗0 ,0,W∗0 ), as illustrated in figure 2. The blades
in the cascade are inclined at stagger angle χ∗, and the distance between adjacent
blades is ∆∗. Consequently, the spacing between blades is given by

(d∗, s∗)=∆∗(sin(χ∗), cos(χ∗)).

We assume, as it is often the case in practical scenarios, that the blades are staggered
and overlapping i.e. 0< d∗< 2b∗. The case of non-overlapping blades could be treated
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Unsteady perturbation

Î*

2b*

Shed wakes

Background flow
x~

y~

ç*

U0
*

FIGURE 1. An infinite, rectilinear cascade of flat plates with complex boundary conditions
subjected to an unsteady perturbation. The plates have dimensional length 2b∗ and are
inclined at a stagger angle of χ∗. The plates produce an unsteady wake in the case where
there is a non-zero chordwise background flow U∗0 .

in a similar fashion to Maierhofer & Peake (2020). The zero-stagger arrangement can
be recovered as a degenerate case of our results. We further assume that a vortical
or acoustic wave is incident on the cascade, resulting in a velocity perturbation u∗ to
the mean flow. The Kutta condition is satisfied by ensuring that there is no pressure
jump at the blades’ trailing edges, and the pressure singularity at the leading edge is
restricted to be integrable.

We introduce an acoustic potential function for the scattered field defined by

∇φ∗ = u∗.

Consequently, conservation of momentum gives the scattered pressure as

p∗ =−ρ∗0
D0φ

∗

D0t∗
, (2.1)

where ρ∗0 is the mean flow density and the (linearised) convective derivative is defined
as

D0

D0t∗
=

∂

∂t∗
+U∗0 · ∇=

∂

∂t∗
+U∗0

∂

∂x∗
+W∗0

∂

∂z∗
.

Accordingly, conservation of mass gives the convected wave equation

1
c2

0

D2
0φ
∗

D0t∗2
−∇

2φ∗ = 0, (2.2)
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U0
*

W0
*

x*

y*

d*

s*

z*

FIGURE 2. A three-dimensional view of the cascade in the rotated, dimensional (x∗, y∗, z∗)
coordinate system. The background velocities may have a spanwise component W∗0 . The
complex boundaries are illustrated by the holes on each blade, which may represent
compliance, porosity or impedance.

where c0 is the isentropic speed of sound.
We suppose that the unsteady perturbation incident on the cascade takes the form

φ∗i = exp[i(k∗x x∗ + k∗y y∗ + k∗z z∗ −ω∗t∗)]. (2.3)

Dimensional variables are denoted with ∗ whereas non-dimensional variables have no
annotation. Since the system is infinite in the spanwise direction, the scattered solution
u∗ must also have harmonic dependence in the z∗-direction. Accordingly, making the
following convective transformation and non-dimensionalisations

φ∗(x∗, y∗, z∗, t∗)=U∗0b∗φ(x, y) exp[iω(−(M0/β)
2x+ kzz− t)],

d∗ = b∗d, s∗ = b∗
s
β
, ∆=

√
d2 + s2,

x∗ = b∗x, y∗ = b∗
y
β
, z∗ = b∗z, t∗ =

ω

ω∗
t,

k∗x =
kx −M2

0ω

β2b∗
, k∗y =

ωβky

b∗
, k∗z =

ωkz

b∗
,

M0 =U∗0/c0, β =

√
1−M2

0,

ω=
b∗

U∗0
(ω∗ −W∗0 k∗z ), W∗0 =U∗0 W0,

w2
= (M0/β

2)2 − (kz/β)
2
+ 2kzM4

0W0(1+W0kz)/β
2,
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reduces (2.2) to (
∂2

∂x2
+
∂2

∂y2
+ω2w2

)
φ = 0. (2.4)

An alternative non-dimensionalisation is required when U∗0 = 0, but this is a trivial
modification. In terms of these new variables, the scattered pressure (2.1) becomes

p∗ = ρ∗0 U∗20 pe−iωt, p=−
∂

∂x
(φe−i(ω/β2)x)eiω(x+kzz), (2.5a,b)

where p is the non-dimensional pressure, and the incident perturbation becomes

φ∗i =U∗0 b∗φi(x, y)eiω(−(M0/β)
2x+kzz−t), φi = exp[i((kx/β

2)x+ωkyy)]. (2.6a,b)

2.1. Boundary conditions
We now introduce the boundary conditions for the problem. It is sufficient to specify
the behaviour along y= ns± for n∈Z. We use ∆n[ f ] and Σn[ f ] respectively to denote
the difference and sum of f either side of the nth blade or wake.

2.1.1. Upstream boundary condition
There may be no discontinuities upstream of the blade row. Consequently, we write

∆n[φ](x)= 0, x< nd. (2.7)

2.1.2. Blade surface boundary conditions
We now introduce several possible blade surface boundary conditions that can

be modelled with our solution. The types of blades we consider are the classical
impermeable and rigid blade, a porous or compliant blade without background
flow, a porous blade with background flow and a blade with a general impedance
condition. All these blades admit closed-form, homogenised boundary conditions that
are relatively simple to express. Moreover, all the boundary conditions take the same
form. By solving for all possibly boundary condition simultaneously, we are able to
model a range of scenarios of practical interest without modifying our solution. As
we shall see later, the effect of modifying the boundary condition is to modify the
kernel in the ensuing Wiener–Hopf analysis.

In this initial study, we focus on boundary conditions that are locally reacting so
that the sound propagation at a given point on or inside the blade depends only on
the acoustic pressure above and below that point. Accordingly, the surface impedance
does not depend on the angle of the incident wave. For example, in the case of
porous blades, we consider blades that can be characterised by lattices of unconnected,
straight pores. In contrast, the sound field inside a connected pore will depend on
the sound field in the neighbouring pores in addition to the sound pressure above
and below the pore. The effects of non-locally reacting boundary conditions could, in
principle, be considered by our solution if the corresponding boundary conditions can
be homogenised for the infinitesimal blades that we consider. Additionally, we assume
that the impedance is the same at all points on the blade e.g. the porosity is constant
in both the chordwise and spanwise directions.

We now summarise the different types of boundary conditions that may be
considered.
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Scattering by cascades with complex boundary conditions 898 A16-7

Case 0
When the blade is rigid and impermeable, the no-flux condition is simply

uT · n= 0, nd< x< nd+ 2, y= ns±, (2.8)

where n is the normal vector directed away from the blade and uT denotes the total
(incident and scattered) velocity field. We sum the contributions of (2.8) either side
of each blade to obtain

Σn

[
∂φ

∂y

]
(x)=−2w0 exp[i((kx/β

2)(nd+ x)+ωkyns)], nd< x< nd+ 2, (2.9)

where w0 = iωky is the non-dimensional amplitude of the normal velocity of the
incident perturbation on the 0th blade. This case has been considered in detail in
previous research (Glegg 1999; Posson et al. 2010) and is therefore not considered
further in the present work.

Case I
We now consider blades with perforations such as the circular apertures illustrated

in figure 2. For a pressure load of frequency ω, the Rayleigh conductivity KR relates
the mass per unit time (Q) flowing through an isolated aperture to the pressure
difference either side of the aperture (p+ − p−) by (Strutt 1870)

KR =
iωQ

p+ − p−
, (2.10)

in our non-dimensional variables. The Rayleigh conductivity is a function of the
aperture shape: KR = 2R for a circular aperture of radius R in a zero-thickness plate.
Recently, Brandão & Schnitzer (2020) derived asymptotic expressions for the Rayleigh
conductivity of a cylindrical orifice in a plate of finite thickness. These solutions also
account for the viscous effects of a Stokes boundary later adjacent to the plate. A
thorough discussion of the Rayleigh conductivity may be found in § 5.3.1 of Howe
(1998).

The Rayleigh conductivity (2.10) can be deployed to derive an effective condition
for a blade with multiple apertures through a homogenisation procedure. Suppose that
the blade has N perforations per unit area, each of conductivity KR. Assuming that
the acoustic wavelength is large compared to the aperture size, the pressure either side
can be regarded as constant over the aperture length. If the apertures are sufficiently
far apart, their conductivity can be measured as if they were in isolation. Therefore,
(2.10) holds on the aperture scale and each aperture contributes a mass flux of Q.
Consequently, the total mass flux per unit area is NQ = NKR(p+ − p−)/(iω) which
must match with vT by continuity, where vT is the total velocity in the y-direction.
Accordingly, we may simply write the effective conductivity K̃R for a plate with N
apertures per unit area with conductivity KR as K̃R = NKR. This argument has been
made rigorous by Bendali et al. (2013). In the case of circular apertures of radius R,
the effective conductivity becomes

K̃R =
2αH

πR
,

for fractional open area αH .
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Substituting our flow variables into (2.10), we generalise the no-flux condition (2.8)
and obtain

vT =
K̃R

iω
∆n[p](x), nd< x< nd+ 2, y= ns±. (2.11)

Summing the contributions either side of the blade in (2.11) yields

Σn

[
∂φ

∂y

]
(x) = −2w0 exp[i((kx/β

2)(nd+ x)+ωkyns)]

−CI∆n[p](x), nd< x< nd+ 2, (2.12)

for constant CI = −2K̃R/(iω). In the absence of background flow, this condition
becomes (subject to an alternative non-dimensionalisation)

Σn

[
∂φ

∂y

]
(x) = −2w0 exp[i((kx/β

2)(nd+ x)+ωkyns)]

+CI∆n[φ](x), nd< x< nd+ 2. (2.13)

This boundary condition has gained popularity as a tool for analysing the aerodynamic
scattering of porous edges (Jaworski & Peake 2013; Ayton 2016; Kisil & Ayton
2018), but it is also valid in other scenarios: Leppington (1977) showed that (2.13)
is equivalent to the boundary condition for an impermeable, compliant plate. Indeed,
Crighton & Leppington (1970) used (2.13) to analyse the scattering of aerodynamic
sound by a semi-infinite compliant plate. In that study, the plate was modelled as
possessing inertia, but negligible elastic resistance to deformation. Consequently, the
pressure difference across the compliant plate was proportional to the specific mass
of the plate multiplied by the acceleration so that, in the notation of the present work,
the constant CI would instead become CI =−2/m where m is the (non-dimensional)
mass of the plate per unit area.

Case II
We now consider the case where the plates are porous and embedded in a mean

flow. The mean flow has a significant effect on the Rayleigh conductivity for an
aperture, and analytic expressions for KR are generally intractable. However, Howe,
Scott & Sipcic (1996) showed that, for a circular aperture in a grazing flow, the
Rayleigh conductivity is

KR(ω)= R
∫

S
ν(ξ, η, ω) dξ dη, (2.14)

where the integral is taken over the aperture area (ξ 2
+ η2 < R2). The function

ν(ξ, η, ω) corresponds to the displacement of fluid at the aperture interface and must
be found as the solution to an integral equation defined in Howe et al. (1996). This
equation must generally be solved numerically and a range of values for KR(ω) are
recorded in table 2 of Howe et al. (1996). Unlike case I boundary conditions, the
conductivity may be complex so it is convenient to separate the complex conductivity
into real and imaginary parts

KR(ω)= 2R(ΓR(ω)− i∆R(ω)),
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Scattering by cascades with complex boundary conditions 898 A16-9

where ΓR(ω) and ∆R(ω) are real valued functions of frequency. Using a similar
argument to the previous section, we may write the effective compliance for a
perforated plate as K̃R =NKR. The no-flux condition (2.8) now generalises to

Σn

[
∂φ

∂y

]
(x) = −2w0 exp[i((kx/β

2)(nd+ x)+ωkyns)]

+CII(i(ω/β2)∆n[φ](x)−∆n[φx](x)), nd< x< nd+ 2, (2.15)

where again CII = 2K̃R(ω)/(iω) is a constant.
Case III

We may also consider the effects of an impedance boundary condition. In the
presence of background flow, the impedance boundary condition is given by Myers
(1980)

uT · n=
(
∂

∂t
+U0 · ∇− n · (n · ∇U0)

)
p

iωZ
,

where n is now directed into the blade. The real part of the impedance Z is termed
the acoustic resistance and represents the energy transfer of the blade: if Re[Z] > 0
then the blades absorb energy whereas if Re[Z] < 0 then the blades produce energy.
Since the flow is uniform, this condition applied on the upper and lower surfaces of
the blades becomes, in terms of the present variables,

vT =∓

(
∂

∂x
− iω

)
p

iωZ
.

We now sum the upper and lower components of this impedance condition to obtain
a condition on the sum of the velocity either side of the blade

Σn

[
∂φ

∂y

]
(x) = −2w0 exp[i((kx/β

2)(nd+ x)+ωkyns)]

+CIII

(
−
ω2

β4
∆n[φ](x)−

2iω
β2
∆n[φx](x)+∆n[φx,x](x)

)
, (2.16)

where CIII = 1/(iωZ).
The presence of higher-order derivatives requires further regularity at the blades’

edges. Since the blades are fixed (and are only locally reacting), we additionally
enforce that ∆n[φx](0) is bounded.
Summary of blade surface boundary conditions

We may characterise all the modified boundary conditions (2.13), (2.15) and (2.16)
in the general form

Σn

[
∂φ

∂y

]
(x)=−2w0 exp[i((kx/β

2)(nd+ x)+ωkyns)]

+µ0∆n[φ](x)+µ1∆n[φx](x)+µ2∆n[φx,x](x), nd< x< nd+ 2, (2.17)

where the µn are summarised in table 1 for the different boundary conditions.
Furthermore, in the present analysis we do not allow any added mass generated in
the blades and enforce that there is no jump in the normal velocity either side of the
plate. Accordingly, we may write

∆n

[
∂φ

∂y

]
(x)= 0, nd< x< nd+ 2. (2.18)
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Case Model µ0 µ1 µ2

Case 0 Rigid and impermeable 0 0 0[1,2]

Case I Porous, compliant CI 0 0[3,4,5,6] (no background flow)

Case II Porous i(ω/β2)CII −CII 0[7] (with background flow)

Case III Impedance −(ω2/β4)CIII −(2iω/β2)CIII CIII[8,9]

TABLE 1. Summary of possible boundary conditions and corresponding µ0, µ1 and µ2
values for (2.17). The references highlight relevant papers, although only [1,2] consider
cascade geometries and are restricted to impermeable and rigid boundaries. The reference
numbers correspond to [1] (Glegg 1999), [2] (Posson et al. 2010), [3] (Leppington 1977),
[4] (Howe 1998), [5] (Jaworski & Peake 2013), [6] (Kisil & Ayton 2018), [7] (Howe et al.
1996), [8] (Myers 1980) and [9] (Brambley 2009).

y = ns±

x = nd x = nd + 2

No discontinuities (2.7)
Complex boundary (2.17) and
no normal velocity jump (2.18)

No pressure jump (2.20) and
no normal velocity jump (2.21)

FIGURE 3. Schematic illustrating where each boundary condition is applied.

2.1.3. Downstream boundary conditions
Downstream, we require the pressure jump across the wake to vanish:

∆n[p](x)= 0, x> 2+ nd. (2.19)

By employing the pressure definition (2.5) and integrating with respect to x, we may
write the above condition as

∆n[φ](x)= 2πiP exp[i(ω/β2)x], x> nd+ 2, (2.20)

where P is a constant of integration that will be specified by enforcing the Kutta
condition.

Additionally, the normal velocity across the wake must vanish, i.e.

∆n

[
∂φ

∂y

]
(x)= 0, x> nd+ 2. (2.21)

2.1.4. Summary of full boundary conditions
All in all, we have five boundary conditions. In the upstream region we do not

permit any discontinuities (2.7). Along each blade we have a relation for the sum of
normal velocities either side of the blade (2.17), and do not permit a jump in normal
velocity across the blade (2.18). Finally, across the wake we do not permit a jump in
pressure (2.20) or normal velocity (2.21). The boundary conditions are illustrated in
figure 3. This completes the description of the mathematical model.
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Mathematical model Generate integral equation

Wiener–Hopf method

Expression for ƒModel solved

Physical plane Spectral plane

FT

IFT

FIGURE 4. Schematic diagram illustrating the solution method. The abbreviations ‘FT’ and
‘IFT’ stand for ‘Fourier transform’ and ‘Inverse Fourier transform’ respectively.

3. Solution

We now present the mathematical solution to the Helmholtz equation (2.4) subject
to the boundary conditions (2.7), (2.17), (2.18), (2.20) and (2.21). For clarity, we
present a ‘road map’ of the solution in figure 4. Further details of the solution
procedure may be found in Baddoo & Ayton (2020).

As is typical in cascade acoustics problems we employ integral transforms to
obtain a solution that is uniformly valid throughout the entire domain (Peake 1992;
Glegg 1999; Posson et al. 2010). However, φ is discontinuous across each blade and
wake in the y-direction. Therefore, ∂φ/∂y possesses non-integrable singularities thus
preventing the application of a Fourier transform. Consequently, we must regularise
the derivatives of φ to remove these non-integrable singularities. To this end, we
introduce introduce generalised derivatives (Lighthill 1958) and write

∂2φ

∂y2
=
∂̃2φ

∂̃y2
−

∞∑
n=−∞

∆n[φ](x)δ′(y− ns)−
∞∑

n=−∞

∆n

[
∂φ

∂y

]
(x)δ(y− ns), (3.1)

where ∂̃ represents the partial derivative with discontinuities removed, and δ here
represents the Dirac delta function. The third term on the right side of (3.1) vanishes
because there is zero jump in normal velocity across the blade (2.18) and wake
(2.21).

The scattered solution must obey the same quasi-periodicity relation as the incident
field (2.3). Consequently, the scattered acoustic potential function in the entire plane
may be reduced to that of a single channel in the domain by writing

φ(x+ nd, y+ ns)= φ(x, y)einσ ′, (3.2)

where the inter-blade phase angle for φ is σ ′= (kx/β
2)d+ωkys. For example, we may

use (3.2) to reduce the jumps in potential to

∆n[φ](x)=∆0[φ](x− nd)einσ ′ . (3.3)
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Substituting (3.1) into the Helmholtz equation (2.4) and applying the inter-blade phase
angle relation (3.3) yields

∂̃2φ

∂̃x2
+
∂̃2φ

∂̃y2
+ω2w2φ =

∞∑
n=−∞

∆0[φ](x− ndφ)δ′(y− nsφ)einσ ′ . (3.4)

We define the Fourier integral transform and its inverse as

F(γ , η)=
1

(2π)2

∫
∞

−∞

∫
∞

−∞

f (x, y)eiγ x+iηy dx dy,

f (x, y)=
∫
∞

−∞

∫
∞

−∞

F(γ , η)e−iγ x−iηy dγ dη.

Applying the transform to the left-hand side of (3.4) yields

(−γ 2
− η2
+ω2w2)Φ(γ , η)=

1
2πi

∞∑
n=−∞

ηD(γ )ein(σ ′+γ dφ+ηsφ), (3.5)

where Φ is the Fourier transform of φ. The problem is now to find D(γ ) which
represents the Fourier transform of the jump in acoustic potential either side of the
blade and wake

D(γ )=
1

2π

∫
∞

0
∆0[φ](x)eiγ x dx.

We invert the Fourier transform to obtain an expression for the acoustic potential in
terms of D

φ(x, y)=
1

2πi

∫
∞

−∞

∫
∞

−∞

e−iγ x−iηy

ω2w2 − η2 − γ 2
·

∞∑
n=−∞

ηD(γ )ein(σ ′+γ d+ηs) dγ dη. (3.6)

The η integral may be performed by closing the contour of integration in an
appropriate upper or lower half-plane to obtain

φ(x, y)=−
1
2

∫
∞

−∞

∞∑
n=−∞

D(γ )sgn(ns− y)ein(σ ′+γ d)+iζ |ns−y|e−iγ x dγ , (3.7)

where ζ =
√
ω2w2 − γ 2. The branch cut is defined so that Im[ζ ]> 0 when γ is in a

strip for the Wiener–Hopf method.
To obtain an equation for the unknown D we must apply the relevant boundary

conditions. We first differentiate (3.7) with respect to y and consider the limits y→ 0±.
Summing the contributions from each of these limits yields the integral equation

Σ0

[
∂φ

∂y

]
(x)= 4π

∫
∞

−∞

D(γ )j(γ )e−iγ x dγ , (3.8)

where

j(γ )=
iζ
4π

∑
n∈Z

ein(σ ′+γ d)+iζ |ns|
=
ζ

4π
·

sin(ζ s)
cos(ζ s)− cos(γ d+ σ ′)

. (3.9)
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We now solve (3.8) subject to the remaining boundary conditions applied on y= 0

∆0[φ](x)= 0, x< 0, (3.10a)

Σ0

[
∂φ

∂y

]
(x) = µ0∆0[φ](x)+µ1∆0[φx](x)+µ2∆0[φx,x](x)

− 2w0 exp[i(kx/β
2)x], 0< x< 2, (3.10b)

∆0[φ](x)= 2πiP exp[i(ω/β2)x], x> 2. (3.10c)

The system ((3.8), (3.10a), (3.10b), (3.10c)) represents an integral equation subject to
mixed value boundary conditions. We solve this system via the Wiener–Hopf method
as detailed in appendix A. The solution for D is given by

D(γ ) =
w0

(2π)2i(γ + kx/β2)K−(−kx/β2)K+(γ )

+
w0(ω− kx)e2i(γ+kx/β

2)

(2πβ)2i(γ + kx/β2)(γ +ω/β2)K+(−kx/β2)K−(γ )

−

∞∑
n=0

(An + Cn)e2i(γ−θ−n )

i(γ +ω/β2)(γ − θ−n )
·

K−(θ−n )
K−(γ )

−

∞∑
n=0

Bn

γ − θ+n
·

K+(θ+n )
K+(γ )

, (3.11)

where all new variables are defined in appendix A. Note that the solution is identical
to that for the type 0 cascade (Glegg 1999), except the original Wiener–Hopf kernel
j is now replaced with the modified kernel K. This original kernel is recovered when
µ1 =µ2 =µ3 = 0 and the solution reduces to that derived by Glegg (1999).

3.1. Inversion of Fourier transform
We now invert the Fourier transform of the previous section to obtain the acoustic
potential function. Since D is now known, the Fourier inversion integral in (3.7) can
now be computed. Similarly to the analysis in Posson et al. (2010), the inversion is
performed by splitting the physical domain into five regions as illustrated in figure 5.
Each solution is simply a sum of exponential functions. The details can be found in
appendix C and the final results are stated below. All undefined functions are defined
in appendices A and C.

3.1.1. Upstream region (I)
In the upstream region,

φ(x, y)= 2πi
∞∑

m=−∞

D(1,3)(λ+m)A
r(x, y; λ+m). (3.12)

3.1.2. Inter-blade upstream region (II)
In the inter-blade upstream region,

φ(x, y) = −2π

∞∑
n=0

An + Cn

θ−n +ω/β
2
Ad(x, y; θ−n )+ 2πi

∞∑
n=0

BnAd(x, y; θ+n )

−
Ad(x, y; −kx/β

2)

K(−kx/β2)

w0

2π
+ 2πi

∞∑
m=−∞

D(1,3)(λ+m)A
r
u(x, y; λ+m).
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s

d

y

x
(I)

(I)

(II)

(II)

(III)

(III)

(IV)

(IV) (V)

(V)

2

FIGURE 5. Diagram indicating the different regions in the (x, y)-plane which require
different areas of contour integration in the Fourier inversion.

3.1.3. Inter-blade inner region (III)
In the inter-blade inner region,

φ(x, y) = −2π

∞∑
n=0

An + Cn

θ−n +ω/β
2
A(x, y; θ−n )+ 2πi

∞∑
n=0

BnA(θ+n , x, y)

−
A(x, y; −kx/β

2)

K(−kx/β2)

w0

2π
.

3.1.4. Inter-blade downstream region (IV)
In the inter-blade downstream region,

φ(x, y) = −2π

∞∑
n=0

An + Cn

θ−n +ω/β
2
Au(x, y; θ−n )+ 2πi

∞∑
n=0

BnAu(x, y; θ+n )

−
Au(x, y; −kx/β

2)

K(−kx/β2)

w0

2π

− 2πi
∞∑

m=−∞

D(2,4)(λ−m)A
r
d(x, y; λ−m)+ 2πiPAd(x, y; −ω/β2).

3.1.5. Downstream region (V)
In the downstream region,

φ(x, y)=−2πi
∞∑

m=−∞

D(2,4)(λ−m)A
r(x, y; λ−m)+ 2πiPA(x, y; −ω/β2). (3.13)

4. Results
We now use the analytic solution derived in § 3.1 to explore the aeroacoustic

performance of a blade row with modified boundary conditions. In particular, we
focus on the role of porosity due to its potential to attenuate sound, as seen previously
in Jaworski & Peake (2013) for trailing-edge scattering. Porous blades in flow are
represented by the case II boundary condition in the present nomenclature. The results
in the present research also show significant sound reductions for modest changes in
porosity. We argue that this is attributed to the strong effect of porosity on the duct
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2.01.51.0
x

0.50

0

Î
0[

p]

2

(a)

Case A

2.01.51.0
x

0.50

0

2

(b)

Case B

Present solution
Posson et al. (2010)
Mode-matching
LINSUB

FIGURE 6. Comparisons of surface pressure jump for flat plates for case 0 boundary
conditions and geometries defined in table 2. The real and imaginary parts (blue and
red respectively) of the pressure jump are compared to three alternative solutions: a
Wiener–Hopf method (Posson et al. 2010), a mode-matching technique (Bouley et al.
2017) and a numerical method (Hall 1997).

modes and unsteady loading: in cascade configurations, the blade loading changes the
upstream and downstream flows and therefore influences the intensity of the scattered
sound.

Although the solution is formally analytic, there are two steps that must be handled
numerically. First, the linear system comprised of (A 33) and (A 36) must be solved.
Second, the zeros of the meromorphic kernel K must be located in the complex plane.
For large zeros (|θj|� 1), the asymptotic approximations in § B.2 can reliably be used
as initial guesses for an iterative Newton scheme. For other zeros (|θj| ∼ 1), we use a
modified version of the Delves & Lyness (1967) algorithm to ensure that all the zeros
in a prescribed region are found. The relevant integrations are computed using the
trapezoidal rule, which converges geometrically for integrals of meromorphic functions
over ellipses (Trefethen & Weideman 2014). This rapid numerical implementation
allows all relevant aeroacoustic quantities to be evaluated in a fraction of a second
using the code publicised in the introduction.

4.1. Validation
We first present a comparison to three previous solutions for cascades of impermeable
and rigid blades in figure 6. First, we compare our results to a solution exploiting the
Wiener–Hopf method (Posson et al. 2010). Second, we compare to a quasi-numerical
a mode-matching technique (Bouley et al. 2017), and third, we compare to a fully
numerical method (Hall 1997). The solutions show excellent agreement – in fact our
case 0 solution is mathematically equivalent to the of Posson et al. (2010). It is worth
noting at this point that our solution satisfies the Kutta condition, as indicated by the
pressure jump vanishing at the trailing edge.

4.2. Duct mode analysis
The cascade may be divided into five regions as illustrated in figure 5. Since we only
consider the case where the blades are overlapping, the inter-blade inner region (called
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region III) is bounded by adjacent blades and therefore may be viewed as a duct. The
solution in the duct is matched to the upstream and downstream regions by virtue of
the inter-blade upstream region (II) and the inter-blade downstream region (IV). The
duct region is therefore essential in establishing the relationship between the upstream
and downstream regions, and controls the unsteady lift and sound power output. We
now explore the behaviour of the solution in the duct in order to understand the effects
of blade porosity.

The acoustic potential in the duct may be expanded into a sum of exponential
functions whose modes are the ‘duct modes’ (Glegg & Devenport 2017). For type 0
blades, the duct has rigid, impermeable walls and the modes are given by the standard
formula

θ̂±n =±

√
ω2w2 −

(nπ

s

)2
, (4.1)

where we have used ·̂ to indicate that this solution is valid for case 0 (CII = 0).
Conversely, there is no simple expression for the duct modes when the blades are
porous; for porosity constant CII the duct modes satisfy the transcendental equation

ζ (θ±n ) sin(sζ (θ±n ))= iCII(ω/β
2
+ θ±n )(cos(sζ (θ±n ))− cos(dθ±n + σ

′)). (4.2)

The solutions for large θ±n are available via the asymptotic analysis presented in § B.2,
but otherwise the solutions must generally be found with a numerical root finding
algorithm (Delves & Lyness 1967).

It is straightforward to see from (4.1) that the nth case 0 duct mode is pure
imaginary when ωw < nπ/s and pure real when ωw > nπ/s. These conditions
correspond to the duct mode being cut-off or cut-on. However, inspection of (4.2)
reveals that for an arbitrary finite porosity constant CII (but not pure imaginary), it is
impossible for the duct modes to be cut-on. This is readily seen by noting that there
are no real solutions to (4.2). If a real root did exist, then the left hand side would be
pure real. However, in that case the right hand side has a non-zero imaginary part, and
we have a contradiction. Consequently, for any non-imaginary porosity coefficients,
the duct modes are always complex and never pure real. Accordingly, blade porosity
effects a reduction in the magnitude of the pressure field in the inter-blade inner
region which, when matched to the upstream and downstream regions, results in a
reduction in the far-field scattered sound.

The dependence of the duct modes on blade porosity is illustrated in figure 7
for two frequencies. There are no acoustic modes cut-on in figure 7(a), whereas
there are two acoustic modes cut-on in figure 7(b). Modes located in the upper or
lower half plane (denoted by L±) are propagating in the upstream and downstream
directions respectively. We consider a range of arguments for the porosity coefficient
to represent a phase difference between the pressure jump and normal velocity,
which is permitted due to the presence of the background flow (Howe et al. 1996).
Evidently, the relationship between the duct modes is highly complex, although some
general trends may be observed. In compliance with the argument in the preceding
paragraph, all values of porosity (except pure imaginary) perturb the cut-on duct
modes away from the real line. For zero porosity, the duct modes are located at the
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FIGURE 7. The trajectories of the duct modes for a range of (complex) porosity
coefficients for case C described in table 2, with kx = 4. Along each line, the phase of
CII is held constant while its magnitude is increased from 0 to ∞. For example, the duct
modes corresponding to real and positive values of CII are illustrated in red. The duct
modes for case 0 blades (i.e. CII = 0) are denoted by u, the acoustic modes, λm, are
labelled denoted by p and the convected mode (−ω/β2) is denoted by q. Accordingly,
each trajectory begins at au and ends at either ap or aq. The upper half-plane L+ is
shaded in red and the lower half-plane L− is shaded in blue.

rigid duct modes, θ̂±n . As the porosity is increased, the duct modes follow a path that
generally ends at either the convected mode (−ω/β2) or an acoustic mode (λ±n ).

It is instructive to inspect the asymptotic forms of the duct modes for small and
large values of porosity. For small Rayleigh conductivity (|CII|� 1, arg(CII) 6=±π/2),
the roots are a small perturbation away from the case 0 duct modes

θ±n = θ̂
±

n −CII
i(ω/β2

+ θ̂±n )

s(1+ δ0,n)θ̂±n
(1− (−1)n cos(dθ̂±n + σ

′))+ o(CII). (4.3)

Conversely, for large Rayleigh conductivity (|CII| � 1, arg(CII) 6= ±π/2), the duct
modes are a small perturbation away from either the hydrodynamic mode or the
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FIGURE 8. The imaginary parts of the duct modes as a function of (real) porosity
coefficient CII . The asymptotic approximations for small porosity coefficients (4.3) as
illustrated by the dashed blue lines and the asymptotic approximations for large porosity
coefficients ((4.4a), (4.4b)) are denoted by the dashed red lines. The cascade parameters
are defined in case C in table 2 with ω= 5 and kx = 4.

acoustic modes:

θ0 =−ω/β
2
−

1
CII

iζ (−ω/β2) sin(sζ (−ω/β2))

cos(sζ (−ω/β2))− cos(σ ′ − dω/β2)
+ o(C−1

II ), (4.4a)

θ±n = λ
±

n ∓
1

CII

i(ζ±n )
2

∆(λ±n +ω/β
2)
√
ω2w2 − f 2

n

+ o(C−1
II ), n 6= 0. (4.4b)

In figure 8 we illustrate the imaginary part of the duct modes as a function of
porosity coefficient, along with our asymptotic approximations. These approximations
are particularly accurate for the duct modes that are initially close to the real
axis, and the accuracy deteriorates for modes with large imaginary part. The duct
modes undergo rapid changes as CII is increased to 1, which is suggests that large
aeroacoustic gains can be made for modest porosity coefficients. This assertion is
explored further in the following sections.

Further insight may be gained by examining the duct modes as a function of
frequency for fixed porosity values. Figure 9 illustrates the duct modes for four
porosity coefficients at a range of frequencies. For each porosity value, the imaginary
part of the mode decreases as the frequency is increased. However, in contrast for
case 0 blades, the imaginary part never vanishes for non-zero porosity values. In
some cases (in L+), the imaginary part of the duct modes undergoes a slight increase
before decreasing towards the real axis. The role of porosity is particularly important

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

41
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.417


Scattering by cascades with complex boundary conditions 898 A16-19

6420
Re[œ] ø

Im
[œ

]

Im
[œ

]
Im

[œ
]

-2-4-6

3(a)

2

1

0

-1

-2

-3
20151050

2015105

0(c)

(b)

-1

-2

2

1

0

CII = 0
CII = -0.1
CII = -0.5
CII = -1

FIGURE 9. The trajectories of a pair of duct modes as the frequency is increased for a
range of porosity constants. The duct modes for ω = 0 are denoted by u. The complex
trajectories are plotted in (a), and the imaginary part of the modes in the upper and lower
half planes are plotted in (b,c) respectively. The colours correspond to different porosity
parameters with black representing rigid and impermeable blades. The upper half-plane L+
is shaded in red and the lower half-plane L− is shaded in blue. The relevant parameters
correspond to case D in table 2 with kx = 2.

for small to moderate frequencies. As the frequency is increased, the difference
between the modes reduces.

We now consider the effect of porosity on sound generation and sound transmission.

4.3. Sound generation
Sound generation is caused when a pressure-free gust interacts with the blade row,
resulting in the production of pressure waves. The incident perturbation can also be
described as a ‘vorticity wave’ and is convected with the background flow so that
kx=ω. In order to enable comparison against prior works, we consider cases analysed
by Glegg (1999) and Posson et al. (2010) as defined in table 2. We consider cases
where CII < 0 so that the imaginary part of the Rayleigh conductivity is negative and
the pores dissipate energy.

4.3.1. Unsteady lift
During the solution to the Wiener–Hopf problem associated with the scattering

by a blade row with complex boundaries, we observed that the major difference
with the rigid, impermeable case is that the duct modes are modified by the
boundary conditions. Consequently, we expect complex boundary conditions to have
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Gap-to-chord Reduced Inter-blade
ratio Stagger angle Mach number frequency phase angle

Reference ∆/2 χ M0 ω σ

Glegg (1999) 0.6 40◦ 0.3 0–40 3π/4
Case A 0.5 0◦ 0.5 5π/4 π/2
Case B 0.5 0◦ 0.5 13π/4 13π/2
Case C 0.5 30◦ 0.3 5, 10 2π/3
Case D 0.8 10◦ 0.4 0–20 4π/3
Case E 0.8 30◦ 0.1 100 π/4

TABLE 2. Summary of parameters used in results section. All other parameters are taken
to be zero, unless otherwise stated.

a significant effect on the unsteady loading of the blades. In this section we test that
hypothesis.

The analytic expression for D (3.11) enables the swift calculation of the unsteady
loading on the blades. The unsteady loading is defined as the integral of the unsteady
pressure over the blade surface

CL =
1

2πw0

∫ 2

0
∆0[p](x) dx. (4.5)

Integration by parts and application of the boundary conditions (3.10a) and (3.10c)
yields the identity

D(−ωM2
0/β

2) =
1

2π

∫
∞

−∞

∆0[φ](x)e−iω(M0/β)
2x dx

= −
1

iω2π

∫ 2

0

∂

∂x
(∆0[φ](x)e−i(ω/β2)x)eiωx dx.

Consequently, the normalised unsteady lift (4.5) may be written as

CL =
iω
w0

D(−ωM2/β2).

The modified boundary conditions have a strong effect on the unsteady loading,
as illustrated in figure 10. The unsteady loading for a case 0 cascade is compared
against the loading for a range of porosity parameters, which correspond to the CII
values. The results indicate that the effect of the modified boundary conditions is to
shift the locations of the duct modes, as indicated by the shifts in the local maximum
around ω ≈ 12, which has previously been identified with the cut-on frequency of
the duct mode (Glegg 1999). As CII decreases, the pressure jump across the blade
must decrease in accordance with the Rayleigh conductivity (2.15), thus ensuring that
the seepage velocity through the blade is proportional to the pressure jump across the
blade. This is observed in figure 10, where the effects of increasing the porosity result
in an almost uniform reduction in the unsteady lift.

The impact of porosity on unsteady lift appears most pronounced when the
frequency is low, which is fortuitous since the homogenised boundary condition
(2.15) is most valid in the low-frequency regime. In particular, the range 0<ω< 7.62
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201816141210
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0

CII = 0
CII = -0.01
CII = -0.1
CII = -1

FIGURE 10. Unsteady lift for a range of frequencies and porosities. The aerodynamic and
aeroacoustic parameters are defined in table 2 and correspond to those in figure 3 of Glegg
(1999). The colours correspond to different porosity parameters with black representing
rigid and impermeable blades.

shows the largest reduction in lift, and the peak around ω ≈ 4 is greatly attenuated.
After the acoustic mode is cut-on at ω ≈ 7.62, the reductions in lift are generally
smaller, but this is possibly because the lift on the case 0 cascade is also reduced;
as a percentage, the reductions still appear significant.

4.3.2. Sound power output
Analytic expressions for the sound power output are available by a similar method

to Glegg (1999). The modal upstream or downstream sound power output for the mth
mode is given by

W±(m)=
ωπ2

∆
Re

[
|ζ±m D(λ±m)|

2√
ω2w2 − f 2

m

]
.

As noted multiple times in this paper, modifications to the surface boundary conditions
do not affect the acoustic modes λ±m . Consequently, the cut-on frequencies of these
upstream and downstream modes are unaffected by porosity, for example. This is
observed in figure 11(a), where the downstream sound power output for the first and
second modes are illustrated for a large frequency range. Clearly the modes are cut-
on at the same frequency, but the magnitude of the sound power output is strongly
affected by porosity. For small porosities (CII =−0.01, − 0.1) there is little impact on
the sound power output of the first mode until the channel modes become cut-on at
ω ≈ 12. Following this cut-on frequency, we observe a large decrease in the sound
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CII = -0.01
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FIGURE 11. Modal downstream sound power output for a cascade of porous blades at a
range of frequencies for (a) the first mode (m= 0) and (b) the second mode (m= 1). The
aerodynamic and aeroacoustic parameters are defined in table 2 and correspond to those
in figure 9 of Glegg (1999). The colours correspond to different porosity parameters with
black representing rigid and impermeable blades.

power for all modes. Similarly to the unsteady lift, this reduction in sound power
output can be attributed to the reduction in the pressure jump across the blade caused
by porosity, thereby reducing the scattered sound in the upstream and downstream
regions.

We define the sound power level as

LW±(m)= 10 log10

(
W±(m)
Wr±(m)

)
dB,
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FIGURE 12. Modal downstream sound power levels for a cascade of porous blades at a
range of frequencies for (a) the first mode (m= 0) and (b) the second mode (m= 1). The
aerodynamic and aeroacoustic parameters are defined in table 2 and correspond to those
in figure 9 of Glegg (1999). The colours correspond to different porosity parameters.

where we take the reference sound power Wr± to be the sound power for a case 0
cascade. The reduction in sound power level is illustrated in figure 12 for a range of
porosity parameters. We observe that even a modest porosity of CII =−0.1 is capable
of large sound power level reductions of 5 dB for the first mode and 20 dB for the
second mode.

4.4. Sound transmission
We now use our model to investigate sound transmission through a cascade of flat
plates with complex boundaries. Sound transmission occurs when a sound wave
interacts with a cascade of blades, and is reflected and transmitted through the
blade row. In order to explore the effects of modified boundary conditions on the
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transmission and reflection we write the incident acoustic field (2.6) in the form

φi = eiζ−0 ye−iλ−0 x, x 6 yd/s,

where the mode is assumed cut-on, so that λ0 is real. Comparison with the solution
in § 3.1 shows that the reflected acoustic potential takes the form

φr =

∞∑
m=−∞

Rmeiζ+m ye−iλ+m x, x 6 yd/s,

and the transmitted acoustic potential takes the form

φt =

∞∑
m=−∞

Tme−iζ−m ye−iλ−m (x−2), x > 2+ yd/s,

where Rm and Tm are the reflection and transmission coefficients respectively. Note
that the hydrodynamic mode (ω/β2) corresponding to the jump in acoustic potential
across the wake is not included in this analysis since it does not contribute to the
pressure field.

By comparison with (3.12) and (3.13) we obtain the expressions for the transmission
and reflection coefficients as

Rm =+
πζ+m D(1,3)(λ+m)

∆
√
ω2w2 − f 2

m

, Tm =−
πζ−m D(2,4)(λ−m)

∆
√
ω2w2 − f 2

m

e−2iλ−m + δ0,m.

We now consider a practical example. Suppose that the blade is perforated with
holes of radius R∗ = 0.02b∗. We consider perturbations such that the pore-scale
reduced frequency is ωP = ω

∗R∗/U∗ = 2, which corresponds to a reduced frequency
of ω = 100 in our notation. Howe et al. (1996) calculated the components of
the Rayleigh conductivity in this case to be ΓR = 1.252 and ∆R = 0.705, so that
KR = 0.0250–0.0141i. The colormaps in figure 13(ai–ci) show the pressure field
for three different open area fractions. The case 0 (rigid and impermeable) cascade
shows significant diffraction and reflection of the incident wave, as indicated by the
relatively large reflection and transmission coefficients in figure 13(aii). Increasing the
open area fraction to the modest value of αH = 0.01 slightly decreases the strength
of the reflected and transmitted waves, as evidenced in figure 13(bii). Increasing the
open area fraction further to αH = 0.05 (figure 13cii) almost completely annihilates
the backscattering. The effect is similar in the downstream field, though the open area
fraction appears to have a slightly less significant effect, at least for the parameters
we consider here. This asymmetry can be attributed to the Kutta condition. In contrast
to the leading edge where the pressure is singular, at the trailing edge we require
that the pressure jump vanishes. Accordingly, increasing the open area fraction cannot
reduce the pressure jump by the same magnitude at the trailing edge as at the leading
edge.

Since the Rayleigh conductivity has negative imaginary part, the incident perturbation
transfers energy to the mean flow by means of the viscous action at the pore scale.
Howe et al. (1996) provide a more detailed treatment of this phenomenon, and
showed the perturbations can actually be amplified in certain frequency bands when
the imaginary part of the Rayleigh conductivity is positive. This suggests that acoustic
energy can only be absorbed by porous blades in certain frequency regimes, which
is in accordance with numerical experiments we performed for the cascade.
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FIGURE 13. (ai–ci) The total (incident and scattered), normalised pressure field.
(aii–cii) The amplitudes of the normalised reflection (blue) and transmission (orange)
coefficients. The open area fraction values are αH = 0, 0.01 and 0.05 respectively. The
darker bars indicate modes that are cut-on whereas the lighter bars are cut-off. The
parameters in this case are defined in case E of table 2. The arrow indicates the direction
of the incident wave.

5. Conclusions

We have derived an analytic solution for the scattering of an unsteady perturbation
incident on a rectilinear cascade of flat blades with complex boundaries. The analytic
nature of the solution means that it is extremely rapid to compute, and offers physical
insight into the role played by different boundary conditions. In contrast with previous
studies that focussed on the effects of rigid and impermeable blades (Glegg 1999;
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Posson et al. 2010), the formulation of the present research allows a range of
boundary conditions to be studied with minimal effort, such as porosity, compliance
and flow impedance. In terms of the spectral plane, the effect of modifying these
boundary conditions is to change the locations of the zeros of the Wiener–Hopf
kernel, whilst the poles are unchanged. Accordingly, the modal structure of the
far-field scattered pressure is invariant under modifications to the flat blades’ boundary
conditions. Conversely, the modal structure of the near-field region undergoes large
deformations since the zeros of the kernel correspond to the duct modes of the
inter-blade region. This has a strong effect on the surface pressure fluctuations and
unsteady loading, which has implications for the far-field sound.

We have focussed on understanding the role of blade porosity. The results show that
substantial reductions in both the unsteady lift and sound power output are possible for
even modest values of porosity. At low frequencies we observe a significant change
in the unsteady loading and a moderate effect on the sound power output. Conversely,
at high frequencies we observe a significant effect on the sound power output and
a small effect on the unsteady loading. Furthermore, the amplitudes of the reflection
and transmission coefficients rapidly decrease as the blade porosity is increased. We
attribute these considerable reductions to several physical mechanisms associated
with porosity. Increasing the blade porosity promotes the communication between
adjacent channels, which prevents large build-ups of pressure inside each channel.
Moreover, the flow seepage afforded by porous channels permits the dissipation of
energy through the blades, thus reducing unsteady pressure fluctuations on the blade.
This reduction in pressure fluctuations corresponds to reductions in the scattered
pressure and far-field sound. This study shows that modified boundary conditions can
have a large impact on the generation and transmission of sound in cascades, and
our analytic solution offers a useful design tool that models both aeroacoustic and
aeroelastic effects. Future work will focus on understanding how surface treatments
can be used to change the resonant frequency of a cascade to avoid lock-in and the
associated structural damage.

Declaration of interests
The authors report no conflict of interest.

Appendix A. Wiener–Hopf solution
We now solve the integral equation (3.8) subject to the boundary conditions of no

discontinuities upstream (2.7), a modified no-flux condition (2.17) and no pressure
jump across the wake (2.20). In a similar way to Glegg (1999), we split this problem
into four coupled problems that are amenable to the Wiener–Hopf method.

We write

∆0[φ](x)=∆0[φ
(1)
](x)+∆0[φ

(2)
](x)+∆0[φ

(3)
](x)+∆0[φ

(4)
](x), (A 1)

and its Fourier transform

D(γ )=D(1)(γ )+D(2)(γ )+D(3)(γ )+D(4)(γ ), (A 2)

where each ∆0[φ
(n)
] and D(n) satisfy a semi-infinite integral equation of the form

f (n)(x)= 4π

∫
∞

−∞

D(n)(γ )j(γ )e−iγ x dγ , (A 3)
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for n= 1, 2, 3, 4. The corresponding boundary conditions are

f (1)(x) = µ0∆0[φ
(1)
](x)+µ1∆0[φ

(1)
x ](x)+µ2∆0[φ

(1)
x,x ](x)

− 2w0 exp[i(kx/β
2)x], x> 0, (A 4a)

f (2)(x)=µ0∆0[φ
(2)
](x)+µ1∆0[φ

(2)
x ](x)+µ2∆0[φ

(2)
x,x ](x), x< 2, (A 5a)

f (3)(x)=µ0∆0[φ
(3)
](x)+µ1∆0[φ

(3)
x ](x)+µ2∆0[φ

(3)
x,x ](x), x> 0, (A 6a)

f (4)(x)=µ0∆0[φ
(4)
](x)+µ1∆0[φ

(4)
x ](x)+µ2∆0[φ

(4)
x,x ](x), x< 2, (A 7a)

and

∆0[φ
(1)
](x)= 0, x< 0, (A 4b)

∆0[φ
(1)
](x)+∆0[φ

(2)
](x)= 2πiP(2)ei(ω/β2)x, x> 2, (A 5b)

∆0[φ
(2)
](x)+∆0[φ

(3)
](x)+∆0[φ

(4)
](x)= 0, x< 0, (A 6b)

∆0[φ
(3)
](x)+∆0[φ

(4)
](x)= 2πiP(4)ei(ω/β2)x, x> 2, (A 7b)

where P(2) and P(4) are two constants of integration that will be specified to enforce
the Kutta condition. Summing the four above conditions results in the original
boundary conditions and, consequently, we may apply the Wiener–Hopf method to
each semi-infinite integral equation and sum the resulting contributions to obtain a
solution to the original equations.

A.1. Solution to first Wiener–Hopf equation – D(1)

In this section, we solve the integral equation (A 3) for n= 1

f (1)(x)= 4π

∫
∞

−∞

D(1)(γ )j(γ )e−iγ x dγ , (A 8)

subject to (A 4a) and (A 4b). Taking a Fourier transform of (A 8) in x gives

F(1)
−
(γ )+ F(1)

+
(γ )= 4πD(1)

+
(γ )j(γ ), (A 9)

where

F(1)
−
(γ )=

1
2π

∫ 0

−∞

f (1)(x)eiγ x dx, F(1)
+
(γ )=

1
2π

∫
∞

0
f (1)(x)eiγ x dx, (A 10a,b)

D(1)
+
(γ )=

∫
∞

0
∆0[φ

(1)
](x)eiγ x dx. (A 10c)
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The subscripts ± here indicate that the functions are analytic in the upper or lower
half planes, denoted by L±. We may employ (A 4a) to obtain

F(1)
+
(γ )=

w0

πi(γ + kx/β2)
+ (µ0 − iµ1γ −µ2γ

2)D(1)(γ ).

Consequently, the Wiener–Hopf equation (A 9) may be expressed as

F(1)
−
(γ )+

w0

πi(γ + kx/β2)
= 4πD(1)

+
(γ )K(γ ), (A 11)

where

K(γ )= j(γ )−
1

4π
(µ0 − iµ1γ −µ2γ

2). (A 12)

The multiplicative splitting K = K+K− is performed in appendix B. This splitting
enables us to write

F(1)
− (γ )

K−(γ )
+

w0

πi(γ + kx/β2)K−(γ )
= 4πD(1)

+
(γ )K+(γ ). (A 13)

We now additively factorise the left side of (A 13). We apply pole removal (Noble
1958) to obtain the additive splitting

1
(γ + kx/β2)K−(γ )

=
1

(γ + kx/β2)K−(−kx/β2)︸ ︷︷ ︸
+

+
1

(γ + kx/β2)K−(γ )
−

1
(γ + kx/β2)K−(−kx/β2)︸ ︷︷ ︸
−

,

where the underbrace ± denotes that the function is analytic in L± respectively.
Therefore, (A 11) becomes

F(1)
− (γ )

K−(γ )
+

w0

πi(γ + kx/β2)K−(γ )
−

w0

πi(γ + kx/β2)K−(−kx/β2)

= 4πD(1)
+
(γ )K+(γ )−

w0

πi(γ + kx/β2)K−(−kx/β2)
. (A 14)

We may now apply the standard Wiener–Hopf argument: since the left and right sides
of (A 14) are analytic in L∓ respectively, and they agree on a strip, each side defines
the analytic continuation of the other. Therefore, equation (A 14) defines an entire
function, E1(γ ). As |γ |→∞ in L−, the left side of (A 14) decays. This can be seen
by considering the growth of K−, which is explicated in appendix B. Similarly, as
|γ |→∞ in L+, the right side of (A 14) vanishes. Therefore, E1(γ ) is bounded in the
entire plane and must be constant according to Liouville’s theorem. Moreover, since
E1(γ ) decays, this constant must be zero. Finally, we rearrange the right side of (A 14)
to obtain the solution to the first Wiener–Hopf problem as

D(1)(γ )=
w0

(2π)2i(γ + kx/β2)K−(−kx/β2)K+(γ )
. (A 15)
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A.2. Solution to second Wiener–Hopf equation – D(2)

In this section we solve the integral equation (A 3) for n= 2,

f (2)(x)= 4π

∫
∞

−∞

D(2)(γ )j(γ )e−iγ x dγ , (A 16a)

subject to (A 5a) and (A 5b). Taking a Fourier transform of (A 16a) and applying
(A 5a) yields

(µ0 − iµ1γ −µ2γ
2)D(1)(γ )+ F(2)

+
(γ )= 4π(D(2)

−
(γ )+D(2)

+
(γ ))j(γ ), (A 17)

where

F(2)
+
(γ )=

1
2π

∫
∞

2
f (2)(x)eiγ x dx=

e2iγ

2π

∫
∞

0
f (2)(x+ 2)eixγ dx= e2iγF∗(2)

+
(γ ), (A 18a)

D(2)
+
(γ )=

1
2π

∫
∞

2
∆0[φ

(2)
](x)eiγ x dx=

e2iγ

2π

∫
∞

0
∆0[φ

(2)
](x+ 2)eixγ dx= e2iγD∗(2)

+
(γ ),

(A 18b)

D(2)
−
(γ )=

1
2π

∫ 2

−∞

∆0[φ
(2)
](x)eiγ x dx=

e2iγ

2π

∫ 0

−∞

∆0[φ
(2)
](x+ 2)eixγ dx= e2iγD∗(2)

−
(γ ).

(A 18c)

Factoring out the e2iγ dependence and employing (A 12) transforms the Wiener–Hopf
equation (A 19) to

F∗(2)
+
(γ )= 4π(D∗(2)

−
(γ )+D∗(2)

+
(γ ))K(γ ), (A 19)

and we may use the multiplicative splitting of K to write

F∗(2)+ (γ )

K+(γ )
= 4π(D∗(2)

−
(γ )+D∗(2)

+
(γ ))K−(γ ). (A 20)

We may use the downstream boundary condition for this problem (A 5b) to write

D∗(2)
+
(γ )=−

P∗(2)

γ +ω/β2
−

1
2π

∫
∞

0
∆0[φ

(1)
](x+ 2)eiγ x dx. (A 21)

where P∗(2) = P(2)e2ikx/β
2 . To calculate the remaining integral we use the inversion

formula for the Fourier transform

∆0[φ
(1)
](x)=

∫
∞−iτ1

−∞−iτ1

D(1)(γ )e−iγ x dγ ,

for some τ1> 0. By substituting this representation into our desired integral, we obtain

1
2π

∫
∞

0
∆0[φ

(1)
](x+ 2)eiγ x dx=

1
2π

∫
∞

0

∫
∞−iτ1

−∞−iτ1

D(1)(γ1)e−iγ1(x+2) dγ1eiγ x dx.

Rearranging the order of integration and computing the resulting x-integral results in

1
2π

∫
∞

0
∆0[φ

(1)
](x+ 2)eiγ x dx=

1
2πi

∫
∞−iτ1

−∞−iτ1

D(1)(γ1)e−2iγ1

γ1 − γ
dγ1. (A 22)
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Since d < 2, we may close the remaining integral in L−. There are no branches in
the integrand so the integral consists of the residues of simple poles at γ =−kx/β

2,
θ−n . Consequently, inserting (A 15) into the above integral yields

1
2πi

∫
∞−iτ1

−∞−iτ1

1
(γ + kx/β2)K−(−kx/β2)K+(γ )

e−2iγ1

γ1 − γ
dγ1

=
e2ikx/β

2

(γ + kx/β2)K(−kx/β2)
+

∞∑
n=0

e−2iθ−n

(θ−n + kx/β2)K−(−kx/β2)K ′
+
(θ−n )(γ − θ

−
n )
,

where the derivatives of K± evaluated at the duct modes θ∓n are given by

K ′
±
(θ∓n ) =

K ′(θ∓n )
K∓(θ∓n )

=
1

4πK∓(θ∓n )

(
−
(θ∓n /ζ (θ

∓

n )) sin(sζ (θ∓n ))+ sθ∓n cos(sζ (θ∓n ))
cos(sζ (θ∓n ))− cos(dθ∓n + σ ′)

−
θ∓n s sin(sζ (θ∓n ))

2
+ dζ (θ∓n ) sin(dθ∓n + σ

′) sin(sζ (θ∓n ))
(cos(sζ (θ∓n ))− cos(dθ∓n + σ ′))2

+ iµ1 + 2µ2θ
∓

n

)
.

Therefore, substitution of (A 22) into (A 21) yields

D∗(2)
+
(γ ) =

w0e2ikx/β
2

(2π)2i(γ + kx/β2)K(−kx/β2)
−

∞∑
n=0

Ane−2iθ−n

i(θ−n +ω/β2)(γ − θ−n )
,

−
P∗(2)

γ +ω/β2
, (A 23)

where

An =
w0(θ

−

n +ω/β
2)

(2π)2(θ−n + kx/β2)K−(−kx/β2)K ′
+
(θ−n )

.

We use the notation

K̃−(γ , η−),
K−(γ )
γ − η−

,

so that substitution of (A 23) into the Wiener–Hopf equation (A 17) yields

F∗(2)+ (γ )

4πK+(γ )
= K−(γ )D∗(2)− (γ )− P∗(2)K̃−(γ ,−ω/β2)

+
w0e2ikx/β

2

(2π)2i
K̃−(γ ,−kx/β

2)

K(−kx/β2)
−

∞∑
n=0

Ane−2iθ−n

i(θ−n +ω/β2)
K̃−(γ , θ−n ). (A 24)

We note the additive splitting

K̃−(γ , η−)= [K̃−(γ , η)]+ + [K̃−(γ , η)]−, (A 25)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

41
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.417


Scattering by cascades with complex boundary conditions 898 A16-31

where

[K̃−(γ , η)]+ =
K−(η−)
γ − η−

, [K̃−(γ , η)]− =
K−(γ )−K−(η−)

γ − η−
.

Substituting these splittings into (A 24) yields

F∗(2)+ (γ )

4πK+(γ )
+ P∗(2)[K̃−(γ ,−ω/β2)]+ −

w0e2ikx/β
2

(2π)2i
[K̃−(γ ,−kx/β

2)]+

K(−kx/β2)

+

∞∑
n=0

Ane−2iθ−n

i(θ−n +ω/β2)
[K̃−(γ , θ−n )]+ =K−(γ )D∗(2)− (γ )− P∗(2)[K̃−(γ ,−ω/β2)]−

+
w0e2ikx/β

2

(2π)2i
[K̃−(γ ,−kx/β

2)]−

K(−kx/β2)
−

∞∑
n=0

Ane−2iθ−n

i(θ−n +ω/β2)
[K̃−(γ , θ−n )]−. (A 26)

In a similar way to § A.1, we now apply the typical Wiener–Hopf argument. We
enforce the unsteady Kutta condition (Ayton, Gill & Peake 2016) which restricts
the pressure at the trailing edge to be finite. Consequently, and using the results
of appendix B, the left side of (A 26) decays as |γ | → ∞ in L+ and the left side
of (A 26) tends to an unknown constant as |γ | → ∞ in L−. Applying analytic
continuation and Liouville’s theorem determines that this constant must be zero.
Accordingly, the coefficient of γ −1 on the left side of (A 26) must vanish so that

P∗(2) =
w0e2ikx/β

2

(2π)2iK+(−kx/β2)

1
K−(−ω/β2)

−

∞∑
n=0

Ane−2iθ−n

i(θ−n +ω/β2)

K−(θ−n )
K−(−ω/β2)

.

So that, after substituting in the downstream representation (A 23) and the above
expression for the pressure constant, the right side of (A 26) yields

D(2)(γ ) =
w0(ω− kx)e2i(γ+kx/β

2)

(2πβ)2i(γ + kx/β2)(γ +ω/β2)K+(−kx/β2)

1
K−(γ )

−

∞∑
n=0

Ane2i(γ−θ−n )

i(γ +ω/β2)(γ − θ−n )

K−(θ−n )
K−(γ )

. (A 27)

It should be noted that the only poles of D(2) in L+ are at the zeros of K−.

A.3. Solution to third and fourth Wiener–Hopf equations – D(3),D(4)

Since the integral equations for ∆0[φ
(3)
] and ∆0[φ

(4)
] are coupled, we must solve for

them simultaneously. Taking a Fourier Transform of (A 3) and applying the boundary
conditions for (A 6a) and (A 7a) for n= 3, 4 gives

F(3)
−
(γ )= 4π[D(3)

−
(γ )+D(3)

+
(γ )]K(γ ), (A 28)

F∗(4)
+
(γ )= 4π[D∗(4)

−
(γ )+D∗(4)

+
(γ )]K(γ ), (A 29)

where F(3)
− , D(3)

− and D(3)
+ are defined in an analogous way to (A 10a,b) and (A 10c),

and F∗(4)+ , D∗(4)+ and D∗(4)− are defined in an analogous way to (A 18a), (A 18b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

41
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.417


898 A16-32 P. J. Baddoo and L. J. Ayton

and (A 18c). Using a similar approach to § A.2, the upstream boundary condition
(A 6b) may be expressed as

D(3)
−
(γ )=

1
2πi

∫
∞+iτ0

−∞+iτ0

D(2)(γ1)+D(4)(γ1)

γ1 − γ
dγ1.

Consequently, we may express D(3)
− in terms of its poles θ+n as

D(3)
−
(γ )=−

∞∑
n=0

Bn

γ − θ+n
, (A 30)

where Bn are the residues of D(2)
− (γ1)+ D(4)

− (γ1) at γ = θ+n . The residues of D(4)
− are

currently unknown, but the residues of D(2)
− are given by

D(2)
r,k =

e2iθ+k

K ′
−
(θ+k )

{
−w0(ω− kx)e2ikx/β

2

(2πβ)2i(θ+k + kx/β2)(θ+k +ω/β
2)K+(−kx/β2)

+

∞∑
n=0

iAnei(θ+k −θ
−
n )K−(θ−n )

(θ+k +ω/β
2)(θ+k − θ

−
n )

}
.

We may now substitute (A 30) into (A 28) to obtain the Wiener–Hopf equation

F(3)
− (γ )

4πK−(γ )
+

∞∑
n=0

Bn

γ − θ+n
K+(θ+n )=D(3)

+
(γ )K+(γ )−

∞∑
n=0

Bn

γ − θ+n
(K+(γ )−K+(θ+n )).

The edge conditions are identical to those applied in § A.1, and we employ the typical
Wiener–Hopf argument to obtain

D(3)
+
(γ )=

∞∑
n=0

Bn

γ − θ+n

{
1−

K+(θ+n )
K+(γ )

}
.

Combining this solution with (A 30) yields

D(3)(γ )=−

∞∑
n=0

Bn

γ − θ+n

K+(θ+n )
K+(γ )

. (A 31)

We proceed to the solution for D(4). In a similar way to § A.2, we may invert the
Fourier transform for the downstream boundary condition (A 7b) to write

D∗(4)
+
(γ ) = −

P∗(4)

i(γ +ω/β2)

−
1

2πi

∫
∞−iτ1

−∞−iτ1

∞∑
n=0

Bn

(γ1 − γ )(γ1 − θ+n )

{
1−

K+(θ+n )
K+(γ1)

}
e−2iγ1 dγ1.

This integral can be closed in L− to obtain

D∗(4)
+
(γ )=−

P∗(4)

γ +ω/β2
−

∞∑
n=0

Cne−2iθ−n

i(θ−n +ω/β2)(γ − θ−n )
, (A 32)
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where

Cn =

∞∑
m=0

i(θ−n +ω/β
2)

(θ+m − θ
−
n )

K+(θ+m )
K ′
+
(θ−n )
·Bm.

After truncation, we may write this system of equations in matrix form

C = LB, (A 33)

where

{L}n,m =
i(θ−n +ω/β

2)

(θ+m − θ
−
n )

K+(θ+m )
K ′
+
(θ−n )

.

By applying the notation introduced in (A 25), we may express the Wiener–Hopf
equation (A 29) in the form

F∗(4)+ (γ )

4πK+(γ )
+ P∗(4)[K̃−(γ ,−ω/β2)]+ +

∞∑
n=0

[K̃−(γ , θ−n )]+
i(θ−n +ω/β2)

Cne−2iθ−n

=D∗(4)
−
(γ )K−(γ )− P∗(4)[K̃−(γ ,−ω/β2)]− −

∞∑
n=0

[K̃−(γ , θ−n )]−
i(θ−n +ω/β2)

Cne−2iθ−n . (A 34)

Employing the unsteady Kutta condition in (A 34) yields

P∗(4) =−
∞∑

n=0

Cne−2iθ−n

i(θ−n +ω/β2)

K−(θ−n )
K−(−ω/β2)

.

Finally, applying the downstream boundary condition (A 32) and rearranging (A 34)
yields

D(4)(γ )=−

∞∑
n=0

Cne2i(γ−θ−n )

i(θ−n +ω/β2)(γ − θ−n )

K−(θ−n )
K−(γ )

. (A 35)

We are now able to calculate the residues of D(3) as

Bn =D(2)
r,n −

∞∑
m=0

Cne2i(θ+n −θ
−
m )

i(θ+n +ω/β2)(θ+n − θ
−
m )

K−(θ−m )
K ′
−
(θ+n )

,

or, in matrix form,

B= Dr + FC, (A 36)

where

{F }n,m =
ie2i(θ+n −θ

−
m )

(θ+n +ω/β
2)(θ+n − θ

−
m )

K−(θ−m )
K ′
−
(θ+n )

.

We can combine (A 33) and (A 36) to obtain

(I − FL)B= Dr. (A 37)
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This matrix equation has important physical implications. If the matrix I − FL is
not singular then it can be inverted to find B, and then C by (A 33). On the other
hand, if I − FL is singular then there is no solution to the inhomogeneous linear
system. However, in such a scenario there is a zero eigenvalue, so the homogeneous
linear system (Dr = 0) has a non-trivial solution. Physically speaking, this means
that at certain frequencies there exist non-trivial solutions for the scattering by an
incident wave of zero amplitude. Such solutions correspond to the so-called ‘Parker
modes’ discovered by Parker (1967), who observed resonance caused by the shedding
frequency of the wake coinciding with the natural frequency of the cascade. Koch
(1983) extended Parker’s results to calculate the resonant frequencies for staggered
cascades in a mean flow by using a Wiener–Hopf approach much like the present
work. Woodley & Peake (1999) also deployed the Wiener–Hopf technique to calculate
the resonant frequency of tandem cascades. While we do not investigate this further
now, the present method could be used to investigate how surface treatments can
be used to avoid resonance; the aforementioned references only considered case 0
cascades, whereas our approach can consider more general boundary conditions.

Appendix B. Factorisation of kernel function
The kernel function is defined as (A 12)

K(γ )=
Kn(γ )

Kd(γ )
, (B 1)

where the numerator and denominator functions are respectively

Kn(γ )= ζ sin(sζ )− (µ0 − iµ1γ −µ2γ
2)(cos(sζ )− cos(dγ + σ ′)), (B 2)

Kd(γ )= 4π(cos(sζ )− cos(dγ + σ ′)). (B 3)

Our goal is now to obtain a multiplicative factorisation of K into two parts that have
no poles or zeros in L± respectively. We restrict our attention to the upper half plane
since a corresponding factorisation for the lower half plane can be constructed through
symmetry.

B.1. Factorisation of poles of K
Previous work (Peake 1992; Glegg 1999) has factorised the poles of K into the form

Kd(γ )=Kd(0)
∞∏

m=−∞

(
1−

γ

λ+m

)(
1−

γ

λ−m

)
,

where

λ±m =−fm sin(χ)± cos(χ)ζ ( fm), fm =
σ ′ − 2πm

∆
. (B 4)

The asymptotic behaviour of these poles is

λ+m ∼ λ
(0)+
R m+ λ(2)+R + o(1), (B 5)

λ+
−m ∼ λ

(0)+
L m+ λ(2)+L + o(1), (B 6)
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as m→∞ where

λ(0)+R =
2πie−iχ

∆
, λ(2)+R =

−ie−iχ

∆
σ ′,

λ(0)+L =
2πieiχ

∆
, λ(2)+L =

ieiχ

∆
σ ′.

 (B 7)

The subscripts R and L indicate that the pole is in the right or left side of L+
respectively.

B.2. Factorisation of zeros of K
We now outline the procedure for factorising the zeros of Kn. In contrast to previous
analyses for case 0 plates (Peake 1992; Glegg 1999), no analytic expression for the
zeros is available. In contrast, asymptotic expansions for the large zeros are still
tractable, which is useful in two regards. First, the asymptotic expansions provide
a good initial guess for a Newton solver to determine some of the actual roots.
Second, the asymptotic expansions can be used to bound the growth of the factorised
Wiener–Hopf kernel in L±. Understanding this growth is an important step in the
Wiener–Hopf procedure, specifically the determination of the relevant entire function.

We focus on the zeros located in the first quadrant of the complex γ -plane. These
roots are labelled as θ+n,R. The asymptotic behaviour of the roots in the other quadrants
can be determined by a similar procedure.

Recall the definition of the branch cut of ζ

ζ =
√
ω2w2 − γ 2 = eiψ1/2eiψ2/2|ω2w2

− γ 2
|
1/2,

where

ψ1 = arg(ωw− γ ), ψ2 = arg(ωw+ γ ),

and

π/2<ψ1 < 5π/2, −π/2<ψ2 < 3π/2.

Since the θ+n,R are in the first quadrant, we have

ζ (θ+n,R)∼ iθ+n,R, as n→∞.

This leads us to determine the following asymptotic behaviours:

sin(sζ (θ+n,R))∼−
1
2i

esθ+n,R,

cos(sζ (θ+n,R))∼
1
2 esθ+n,R, cos(dθ+n,R + σ

′)∼ 1
2 e−i(dθ+n,R+σ

′).

We now substitute these representations into (B 1) to obtain asymptotic expansions
for the roots θ+n,R. Each case must be considered separately, although the asymptotic
behaviours are similar.
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Case I boundary condition
For the no-mean-flow boundary condition, the asymptotic behaviour of the roots

obeys

θ+n,R ∼−µ0(1− exp[−i((d− is)θ+n,R + σ
′)]). (B 8)

We seek an asymptotic expansion of the first quadrant roots of the classical form

θ+n,R ∼

∞∑
m=0

a(m)R θ
(m)
R (n), (B 9)

where θ
(m+1)
R (n) = o(θ (m)R (n)) as n → ∞. In (B 8) we require the linear (left)

and exponential (right) terms to match. However, since |θ+n,R| → ∞ as n → ∞,
the exponential term will generally grow at a faster rate than the linear term.
Consequently, the real part of the argument of the exponential must be asymptotically
small compared to the imaginary part. We therefore expand the roots into real and
imaginary parts as θ+n,R = θ

r+
n,R + iθ i+

n,R and write

dθ i+
n,R − sθ r+

n,R =G(n), (B 10)

where G(n)= o(θ (0)R (n)). Rearranging yields

θ+n,R = θ
+

n,R + iθ i+
n,R =

(
1+ i

s
d

)
θ r+

n,R + i
G(n)

d
.

Since the arguments of the left- and right-hand sides of (B 8) must match, we obtain
an expression for the imaginary part of the argument of the exponential:

σ ′ + dθ r+
n,R + sθ i+

n,R = χ − 2nπ+ o(1). (B 11)

Applying the asymptotic expansion (B 9) and taking the leading-order terms of (B 10)
and (B 11) yields

θ
(0)
R (n)= n,

a(0)R =
2πie−iχ

∆
.

 (B 12)

We may now substitute the expansion for θ+n,R so far into (B 8) to obtain

2πie−iχ

∆
n+ o(n)∼−µ0(1− exp[G(n)− iχ ]).

We now match leading-order terms to obtain

2π

∆
n=−µ0 exp[G(n)],

so that

G(n)= log(n)+ log
(
−2π

µ0∆

)
.
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Similarly, taking the leading-order terms in (B 10) and (B 11) yields

θ
(1)
R (n)= log(n),

a(1)R =−
e−iχ

∆
,

 (B 13)

and

θ
(2)
R (n)= 1,

a(2)R =
ie−iχ

∆

(
π

2
+ χ + i log

(
−2π

µ0∆

)
− σ ′

)
.

 (B 14)

Substitution of ((B 12), (B 13), (B 14)) into the asymptotic expansion (B 9) yields

θ+n,R ∼
e−iχ

∆

(
2πin− log(n)+ i

(π

2
+ χ − σ ′

)
− log

(
−2π

µ0∆

)
+ o(1)

)
. (B 15)

Similar analysis yields the asymptotic behaviour for the roots in the second quadrant
as

θ+n,L ∼
eiχ

∆

(
2πin+ log(n)+ i

(π

2
+ χ + σ ′

)
+ log

(
−2π

µ0∆

)
+ o(1)

)
. (B 16)

Case II boundary condition
In the case of a porous blade in a background flow, the asymptotic behaviour of

the roots obeys the equation

1∼ iµ1(1− exp[−i((d− is)θ+n,R + σ
′)]). (B 17)

We assume an asymptotic expansion of the roots of the form (B 9). Similar reasoning
to the previous section yields that the leading-order terms are also given by

a(0)R =
2πie−iχ

∆
, a(0)L =

2πieiχ

∆
. (B 18a,b)

We may now solve (B 17) directly to find the coefficients of the next two orders of
the asymptotic expansion as

a(1)R = 0, a(1)L = 0,

a(2)R =−
e−iχ

∆

(
log
(

1+
i
µ0

)
+ iσ ′

)
, a(2)L =

eiχ

∆

(
log
(

1−
i
µ0

)
+ iσ ′

)
.

Case III boundary condition
For the case III boundary condition, the asymptotic behaviour of the roots obeys

1∼µ2θ
+

n,R(1− exp[−i((d− is)θ+n,R + σ
′)]). (B 19)

Similar analysis to the previous sections possesses an identical asymptotic expansion
(up to the terms considered) and we have, at leading order,

a(0)R =
2πie−iχ

∆
, a(0)L =

2πieiχ

∆
. (B 20a,b)

Substitution of (B 20) into (B 19) yields the coefficients of the next two orders of the
asymptotic expansion as

a(1)R = 0, a(1)L = 0,

a(2)R =−
iσ ′e−iχ

∆
, a(2)L =

iσ ′eiχ

∆
.
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B.3. Full factorisation of kernel, K
We propose a multiplicative splitting of K of the form:

K(γ )=K+(γ )K−(γ ),

where

K−(γ )= eE(γ )

∞∏
m=1

(1− γ /θ+m,R)(1− γ /θ
+

m,L)

∞∏
m=−∞

(1− γ /λ+m)

, (B 21a)

K+(γ )= e−E(γ )

∞∏
m=1

(1− γ /θ−m,R)(1− γ /θ
−

m,L)

∞∏
m=−∞

(1− γ /λ−m)

K(0). (B 21b)

The entire function E is included to ensure that K± has algebraic growth in L±
respectively. Previous works for case 0 (Peake 1992; Glegg 1999) have derived the
form of the entire function E and shown that it is a polynomial. In the remainder of
this section, we will show that E vanishes for cases I, II and III.

Asymptotic behaviour of proposed factorisation
We focus on K− since the asymptotic behaviour of K+ follows in an analogous

manner. We first note that the infinite product

P1 =

∞∏
m=1

(
a(0)R m+ a(2)R

θ+m,R

)(
a(0)L m+ a(2)L

θ+m,L

)
(B 22)

exists. This is seen by employing the asymptotic expansions (B 15) and (B 16) to
obtain

a(0)R m+ a(1)R

θ+m,R
= 1−

a(1)R log(m)

a(0)R m
+ o(m−1),

a(0)L m+ a(1)L

θ+m,L
= 1−

a(1)L log(m)

a(0)L m
+ o(m−1),

respectively. Substitution into the product (B 22) yields

P1 =

∞∏
m=1

(
1− R

log(m)
m
+ o(m−1)

)
, (B 23)

where

R=
a(1)R

a(0)R

+
a(1)L

a(0)L

= 0, (B 24)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

41
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.417


Scattering by cascades with complex boundary conditions 898 A16-39

and the last identity is due to (B 12) and (B 13). Consequently, the products (B 23)
and (B 22) exist via the comparison method. Moreover, we note that since

Im[a(0)R m1 + a(2)R − γ ]>m1Im[a(0)R ],

Im[a(0)L m1 + a(2)L − γ ]>m1Im[a(0)L ],

we can show that the infinite product

P2(γ )=

∞∏
m=1

(
θ+m,R − γ

a(0)R m+ a(2)R − γ

)(
θ+m,L − γ

a(0)L m+ a(2)L − γ

)
(B 25)

has, at worst, algebraic growth as γ →∞ in L−, i.e. ∃α s.t. P(γ ) ∼ γ α, up to a
multiplicative constant. We now use P1 and P2 to calculate the asymptotic behaviour
of K− by comparison with the product

P(γ )=
∞∏

m=1

(1− γ /θ+m,R)e
γ /θ+m,R(1− γ /θ+m,L)e

γ /θ+m,L

(1− γ /(a(0)R m+ a(2)R ))eγ /a
(0)
R m(1− γ /(a(0)L m+ a(2)L ))eγ /a

(0)
L m
. (B 26)

This function may alternatively be written as

P(γ )= exp

(
γ

∞∑
m=1

1
θ+m,R
−

1

a(0)R m
+

1
θ+m,L
−

1

a(0)L m

)
P1P2(γ ).

Since P1 exists and P2 has algebraic growth as γ → in L−, we have, up to a
multiplication constant,

P(γ )∼ P1γ
α exp

(
γ

∞∑
m=1

1
θ+m,R
−

1

a(0)R m
+

1
θ+m,L
−

1

a(0)L m

)
.

We now calculate the growth of the denominators of P. By applying the asymptotic
behaviour of the gamma function (Peake 1992, B7 & B8), we derive the relation

∞∏
m=1

(
1−

γ

am+ b

)
exp

[ γ
am

]
∼C exp

[
γ

a
(E − 1− log(−a))+

(
γ

a
−

b
a
−

1
2

)
log(γ )

]
,

where E is the Euler–Mascheroni constant and

C=
−b
√

2π
Γ

(
b
a

)
(−a)((b/a)−1/2) .

This representation may be substituted into the denominator of (B 26). Rearranging
yields the asymptotic behaviour

∞∏
m=1

(
1−

γ

θ+m,R

)
eγ /θ

+

m,R

(
1−

γ

θ+m,L

)
eγ /θ

+

m,L

∼ B2γ
α exp

[
γ

(
∞∑

m=1

1
θ+m,R
−

1

a(0)R m
+

1
θ+m,L
−

1

a(0)L m

)]
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× exp
[

γ

a(0)R a(0)L

((E − 1)(a(0)R + a(0)L )− a(0)L log(−a(0)R )− a(0)R log(−a(0)L ))

]
× exp

[(
γ

(
1

a(0)R

+
1

a(0)L

)
−

(
a(2)R

a(0)R

+
a(2)L

a(0)L

)
− 1

)
log(γ )

]
,

for some constant B2. We also note that

∞∏
m=−∞

(
1−

γ

λ+m

)
eγ /λ

+
m ∼ B3

(
1−

γ

λ+m

)
exp

γ
 1
λ+0
+

∞∑
m=−∞

m6=0

1
λ+m
−

1

λ(0)+R |m|




× exp
[

γ

λ(0)+R λ(0)+L

((E − 1)(λ(0)+R + λ(0)+L )− λ(0)+L log(−λ(0)+R )− λ(0)+R log(−λ(0)+L ))

]
× exp

[(
γ

(
1

λ(0)+R

+
1

λ(0)+L

)
−

(
λ(2)+R

λ(0)+R

+
λ(2)+L

λ(0)+L

)
− 1

)
log(γ )

]
,

for some constant B3. Noting that λ(0)+R = a(0)R and λ(0)+L = a(0)L , and using (B 7), we
obtain

∞∏
m=1

(1− γ /θ+m,R)(1− γ /θ
+

m,L)

∞∏
m=−∞

(1− γ /λ+m)

∼ B4γ
c,

for some constant B4 and

c= α −

(
a(2)R

a(0)R

+
a(2)L

a(0)L

)
.

In particular, on a correct selection of the logarithmic branches, we find the following
behaviours of the asymptotic factorisations of the kernels (subject to a multiplicative
constant):

(i) Case 0,

K±(γ )∼ γ 1/2
;

(ii) Case I,

K±(γ )∼ γ 1/2
;

(iii) Case II,

K±(γ )∼ γ ∓(1/π) cot−1(µ1)+n

for some non-negative integer n. It is worth noting that the above exponent has
appeared before in the porous aerofoil literature. Baddoo, Hajian & Jaworski
(2019) showed that an incompressible, irrotational velocity field near a porous
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edge must scale like ±(1/π) cot−1(ψ)+ n, where ψ is the porosity parameter. It
is not a coincidence that this factor also appears here: through the Wiener–Hopf
analysis, the behaviour of the unsteady velocity field at the endpoints of the
blade is governed by the behaviour of the factorised kernel at large γ . Since
the edge is self-similar, the singular behaviour is identical for the Laplace and
Helmholtz equations.

(iv) Case III:

K±(γ )∼ γ .

Appendix C. Details of Fourier inversion
The acoustic field is given by

φ(x, y)=
∫
∞

−∞

D(γ )A(x, y; γ ) dγ ,

where A= Au + Ad and

Au(x, y; γ )=−2π
ei(dγ+σ ′) cos(ζy)

Kd(γ )
e−iγ x,

Ad(x, y; γ )= 2π
cos(ζ (y− s))

Kd(γ )
e−iγ x

and Kd is the denominator of K as defined in (B 3). We calculate the above integral by
splitting the physical plane into five separate regions, as illustrated in figure 5. Both
Au and Ad have poles at the acoustic modes γ = λ±m (B 4) which are the zeros of Kd.
The residues at these points are

Ar
u(x, y; λ±m)=∓

ζ±m e±isζ±m cos(ζ±m y)

2∆ sin(sζ±m )
√
ω2w2 − f 2

m

e−iλ±m x,

Ar
d(x, y; λ±m)=±

ζ±m cos(ζ±m (y− s))

2∆ sin(sζ±m )
√
ω2w2 − f 2

m

e−iλ±m x,

where fm are defined in (B 4) and ζ±m = ζ (λ
±

m). In order to proceed, we split the
acoustic potential into four components

φ(x, y) =
∫
∞

−∞

D(1,3)(γ )Au(x, y; γ ) dγ︸ ︷︷ ︸
φu,u

+

∫
∞

−∞

D(1,3)(γ )Ad(x, y; γ ) dγ︸ ︷︷ ︸
φu,d

+

∫
∞

−∞

D(2,4)(γ )Au(x, y; γ ) dγ︸ ︷︷ ︸
φd,u

+

∫
∞

−∞

D(2,4)(γ )Ad(x, y; γ ) dγ︸ ︷︷ ︸
φd,d

,

where D(i,j)
=D(i)

+D( j), and evaluate each contribution individually. The poles of the
integrand, and relevant contours of integration, are illustrated in figure 14.

We first calculate

φu,u(x, y) =
∫
∞

−∞

D(1,3)(γ )Au(x, y; γ ) dγ

= −2π

∫
∞

−∞

{D(1,3)(γ )K+(γ )}K−(γ )
ei(d−x)γ+iσ cos(ζy)

Kn(γ )
dγ . (C 1)
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FIGURE 14. Illustration of the locations of poles in the complex γ -plane, and the relevant
contours of integration.

Inspection of (3.11) shows that |D(1,3)(γ )K+(γ )|→ 0 as |γ |→∞ except at the poles
at θ+n and −kx/β

2. Consequently, we may close the above integral in L+ if x< d and
in L− if x> d. Accordingly, we obtain for x< d

φu,u(x, y)=−2πi
∞∑

n=0

BnAu(x, y; θ+n )+ 2πi
∞∑

m=−∞

D(1,3)(λ+m)A
r
u(x, y; λ+m),

and for x> d,

φu,u(x, y)=−2π

∞∑
n=0

An + Cn

θ−n +ω/β
2
Au(x, y; θ−n )−

w0Au(x, y; −kx/β
2)

2πK(−kx/β2)
.

We proceed by considering

φu,d(x, y) =
∫
∞

−∞

D(1,3)(γ )Ad(x, y; γ ) dγ

= −2π

∫
∞

−∞

{D(1,3)(γ )K+(γ )}K−(γ )
−e−iγ x cos(ζ (y− s))

Kn(γ )
dγ .

Using a similar argument to the analysis for (C 1), we close the above integral in L−
if x> 0 in L+ if x< 0. Consequently, for x> 0 we obtain

φu,d(x, y)=−2π

∞∑
n=0

An + Cn

θ−n +ω/β
2
Ad(x, y; θ−n )−

w0Ad(x, y; −kx/β
2)

2πK(−kx/β2)
,
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and for x< 0 we obtain

φu,d(x, y)=−2πi
∞∑

n=0

BnAd(x, y; θ+n )+ 2πi
∞∑

m=−∞

D(1,3)(λ+m)A
r
d(x, y; λ+m).

We now consider

φd,u(x, y) =
∫
∞

−∞

D(2,4)(γ )Au(x, y; γ ) dγ

= −2π

∫
∞

−∞

{D(2,4)(γ )e−2iγK−(γ )}K+(γ )
ei(d+2−x)γ+iσ ′ cos(ζy)

Kn(γ )
dγ .

Following a similar argument to (C 1), |D(2,4)(γ )e−2iγK−(γ )|→ 0 as |γ |→∞ except
at the poles at −ω/β2, −kx/β

2 and θ±n . Consequently, we close the integral in L+ if
x< d+ 2 and in L− if x> d+ 2. For x< d+ 2 we obtain

φd,u(x, y)= 2πi
∞∑

n=0

BnAu(x, y; θ+n ),

and for x> d+ 2 we obtain

φd,u(x, y) = −2π

∞∑
n=0

An + Cn

θ−n +ω/β
2
Au(x, y; θ−n )− 2πiPAu(x, y; −ω/β2)

+
w0Au(x, y; −kx/β

2)

2πK(−kx/β2)
− 2πi

∞∑
m=−∞

D(2,4)(λ−m)A
r
u(x, y; λ−m).

The final integral is

φd,d(x, y) =
∫
∞

−∞

D(2,4)(γ )e−iγ xAd(x, y; γ ) dγ

= −2π

∫
∞

−∞

{D(2,4)(γ )e−2iγK−(γ )}K+(γ )
−ei(2−x)γ cos(ζ (y− s))

Kn(γ )
dγ .

Using similar arguments to the previous integrals, we close the above integral in L+
if x< 2 and in L− if x> 2. Consequently, for x< 2 we obtain

φd,d(x, y)= 2πi
∞∑

n=0

BnAd(x, y; θ+n ),

and for x> 2 we obtain

φd,d(x, y) = 2π

∞∑
n=0

An + Cn

θ−n +ω/β
2
Ad(x, y; θ−n )+ 2πiPAd(x, y; −ω/β2)

+
w0Ad(x, y; −kx/β

2)

2πK(−kx/β2)
− 2πi

∞∑
m=−∞

D(2,4)(λ−m)A
r
d(x, y; λ−m).

Summing the contributions from each integral yields the full Fourier inversion in § 3.1.
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