BRAIN CHANGES AND TALKING THERAPIES

Wykes et al (pp. 144–152) administered cognitive remediation therapy (CRT) to seriously disabled patients with schizophrenia and used functional magnetic resonance imaging to study changes in brain activation during a task. Compared with controls, patients who received successful CRT had significantly increased brain activation in regions associated with working memory, particularly the frontocortical areas. Results suggest that the hypofrontality seen in schizophrenia may be ameliorated by psychological therapies – the question remains of whether these changes are durable. Neuroimaging in post-traumatic stress disorder is in its infancy. Hull (pp. 102–110), reviewing the evidence to date, suggests that after psychological trauma biological changes are not restricted to dysregulation of neurochemical systems but also involve alterations in brain structure and function. The most replicated structural finding is hippocampal volume reduction, and decreased activity in Broca’s area might explain the difficulty patients have in articulating their feelings. Whether talking therapies can reverse brain changes in post-traumatic stress disorder remains to be seen.

INCREASED MORTALITY IN DEPRESSION

Depression is known to increase mortality but it is unclear whether this results from other factors associated with depression that also increase mortality, for example smoking. Abas et al (pp. 123–128) examine the link between depression and mortality in a large cohort of people between the ages of 65 and 75 and control for the possible confounding effects of a wide range of other factors that may increase mortality. Results reveal the increased risk of mortality in depression to be present in males (but not females) and only in the younger members of the sample (aged 65–69 years). Although major depression was associated with increased mortality, it probably only accounted for approximately 2% of deaths in the sample.

ANTI-INFLAMMATORY TREATMENT FOR LATE-LIFE DEPRESSION?

Thomas et al (pp. 129–134) demonstrate that inflammatory changes consistent with cerebral ischaemia are associated with depression in the elderly. If it is confirmed that post-ischaemic inflammation is involved in late-life depression, the use of anti-inflammatory treatments may become indicated to reduce inflammation and prevent further tissue injury.

LIFE EVENTS . . .

W O R K S T R E S S . . .

As part of the Cardiff Depression Study, Farmer et al (pp. 118–122) suggest that high extraversion may exert some protective effect from depression. Extraversion is associated with an eventful rather than hazard-prone lifestyle, and experiencing an excess of such events may better equip individuals who score highly on extraversion to cope with threatening events when they do occur. Stressful job conditions cause depression, but in whom? Paterniti et al (pp. 111–117) in a study of over 20,000 employees of the French National Electricity and Gas Company identify the role of certain occupational characteristics, psychosocial stress and personality traits in predicting depressive symptoms. Results show certain psychosocial factors at work to increase depressive symptoms independent of personality traits. King et al (pp. 153–157) investigate whether sexual molestation in males is a significant predictor of psychological disturbance. Victims of child sexual abuse were over twice as likely to report psychological disturbance and nearly four times more likely to report deliberate self-harm in adulthood than others were. It is suggested that acts of self-harm in men should alert professionals to a possible history of sexual molestation.

SCHIZOPHRENIA – MOVEMENT DISORDERS AND MRI CHANGES

Movement disorders are common in schizophrenia. Based on a study of never-treated Indian patients, McCreadie et al (pp. 135–137) suggest that dyskinesia and parkinsonism are an integral part of schizophrenia, and are not necessarily drug-related. Temporal lobe changes have been reported in schizophrenia but it is unclear when these changes occur. Lawrie et al (pp. 138–143), studying individuals at high risk for developing the disorder, suggest that brain structure may change in association with development of psychotic symptoms.