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Abstract

We study the isc-structure space S? is¢(M) of a compact smooth manifold M. Informally speaking, this space
measures the difference between M, together with its diffeomorphisms, and the diagram of ordered framed con-
figuration spaces of M with point-forgetting and point-splitting maps between them, together with its derived
automorphisms. As the main results, we show that in high dimensions, the @isc-structure space a) only depends on
the tangential 2-type of M, b) is an infinite loop space, and c) is nontrivial as long as M is spin. The proofs involve
intermediate results that may be of independent interest, including an enhancement of embedding calculus to the
level of bordism categories, results on the behaviour of derived mapping spaces between operads under rationali-
sation, and an answer to a question of Dwyer and Hess in that we show that the map BTop(d) — BAut(E) is an
equivalence if and only if d is at most 2.
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1. Introduction

The classification of closed smooth d-manifolds and families thereof — smooth fibre bundles — is one
of the guiding problems of geometric topology. From a homotopy-theoretic perspective, it is the study
of the co-groupoid! #an(d)= of smooth closed d-manifolds and spaces of diffeomorphisms between

IThis work is written co-categorically, so we treat homotopy types and co-groupoids as indistinguishable. In this introduction,
readers unfamiliar with this principle may substitute topologically enriched categories or groupoids for co-categories or -groupoids;
the former being related to homotopy types by taking classifying spaces.
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them. A historically successful approach to relate — and partially reduce — the study of .#an(d)* in high
dimensions to more homotopy-theoretic and algebraic questions goes by comparison to the co-groupoid
&= of spaces via the functor .#Zan(d)® — &= that assigns a manifold its homotopy type. For a given
homotopy type X, one studies the fibre

§¢(X) = fib (Man(d)* — §*),

which can be thought of as the space of manifold structures on X. The path components of this structure
space are equivalence classes of manifolds with a homotopy equivalence to X,

pairs (M, ¢) of a closed smooth d-manifold M and
a homotopy equivalence ¢: M — X

7o S (X) =

(M,p) ~ (M’,¢") & there exists a diffeomorphism
a: M — M’ with [¢’ oca] = [¢] € moMapg(M, X),

and the path component of S (X) corresponding to such a pair (M, ¢) agrees with the identity com-
ponent of the fibre hAut(M) /Diff (M) of the map BDiff(M) — BhAut(M) induced by considering
diffeomorphisms as homotopy equivalences,

S (X)(m,¢) = (hAut(M)/Diff(M)) ;.

Surgery theory and pseudoisotopy theory combine to provide an approximation to the structure space
$9(X) up to extensions in terms of three infinite loop spaces — one in the realm of each, algebraic
K-theory, algebraic L-theory and stable homotopy theory (see [WWO01] for a survey). The unfortunate
defect of this approach is that it really is only an approximation, in the sense that it can only capture a
finite Postnikov truncation of S (X) depending on the dimension.

Motivated by Goodwillie~Weiss’ embedding calculus and factorisation homology, we pursue a
different approach to relate the study of .#an(d)= to more homotopy-theoretic and algebraic questions,
and we establish three fundamental properties of this alternative. Observing that the homotopy type of
a manifold M can be viewed as that of the space of ordered configurations of k points in M for k = 1,
this approach is motivated by the idea to remember the homotopy types of the configuration spaces for
all values of k, together with the natural point-forgetting maps between them. It is, in fact, beneficial
to consider configuration spaces of thickened points which admit more natural maps between them, by
‘splitting points’. To make this precise, one considers the co-category Disc, of finite disjoint unions
of d-dimensional Euclidean spaces (i.e., T x R¢ for finite sets T) and spaces of smooth embeddings
between them. A d-manifold M gives rise to a presheaf E,; : QZiscodp — & on Discy with values in the
oco-category & of spaces via

Pisc? 5 T x R =5 Bmb(T x RY, M) € . 1)

By taking derivatives at the centres, the space Ep; (T x R¢) is equivalent to the ordered configuration
space of k = |T| points in M together with framings of the tangent space of M at each of these points,
and the homotopy type of the ordinary ordered configuration space of k points in M (in particular, that of
M itself for k = 1) can be recovered as the quotient by the Diff(R?)” ~ O(d) -action on Ep; (T x R?)
obtained by functoriality. The assignment M +— E); as in (1) is natural in embeddings of M, so it, in
particular, defines a functor E: .#an(d)® — PSh(Qiscy)™ to the co-groupoid of &-valued presheaves
on QDiscy. The fibre of this functor at a presheaf X: Qisc®? —» &

S@iSC(X) = fiby (ﬁ%an(d)E £> PSh(@iSCd):)

is the eponymous Disc-structure space of X. Analogous to the more traditional structure space S¥ (X),
the Pisc-structure space SZ*°(X) can be thought as a space of manifold structures, this time on a
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presheaf as opposed to just a homotopy type. Similar to before, the path components 7o S¢(X) are
represented by pairs of a manifold with an equivalence of its presheaf to X,

pairs (M, ) of a closed smooth d-manifold M and
an equivalence of presheaves ¢: Epy — X

S@iso X —
0 X) (M, p) ~(M’, ") © there exists a diffecomorphism

a: M — M’ with [¢' o Eq] = [¢] € 1o Mappsy(gise,) (Enr. X).

and the path component of S?¢(X) corresponding to such a pair (M, ¢) agrees with the identity
component of the fibre Aut(E,,)/Diff (M) of the map BDiff (M) — BAut(E},) induced by E,

ST(X) (M) = (Aut(Enpr) [Dift(M)),q.

In particular, the space SZ*¢(X) is nonempty if and only if X ~ Ej; for some closed smooth d-
manifold M. If so, then S?%¢(X) ~ §?¥¢(E,,), so nothing is lost by assuming X = Ej;, in which
case we abbreviate S7¢(M) = S2¢(E,,). These are the spaces we focus on in this work. Informally
speaking, they measure by how many manifolds the presheaf X = E), is realised, and how much their
diffeomorphism groups differ from the automorphism group of X.

As the main results of this work, we establish three structural properties of S?%¢(M) that one could
summarise by saying that for most choices of M,

A) S?¢(M) depends only little on the manifold M,
B) S?¢(M) is an infinite loop space, and
C) S?¢(M) is nontrivial.

We state these results in terms of a more general version S?i“ (M) for manifolds that may have boundary,
which is crucial for our methods. We postpone its definition to Section 1.2.1 below.

A). Tangential 2-type invariance

To make the first property precise, recall that two manifolds M and N, possibly with boundary, have the
same tangential 2-type if there is a map B — BO so that the maps M — BO and N — BO classifying
the stable tangent bundles of M and N admit lifts to maps M — B and N — B that are 2-connected.

Example. Choosing B = BSpin X K (7, 1), one sees that two spin manifolds M and N have the same
tangential 2-type if and only if their fundamental groupoids are equivalent. In particular, all simply
connected spin manifolds have the same tangential 2-type.

Our first main result is that in high dimensions, the Disc-structure space S?iSC(M ) depends only on
the dimension d and the tangential 2-type of M.

Theorem A. For compact d-manifolds M and N with d > 5 that have the same tangential 2-type, there
exists an equivalence S?iSC(M) ~ S?”C(N).

In particular, the Disc-structure space of a compact spin d-manifold M with d > 5 only depends on
the fundamental groupoid, so we in particular have S?iSC(M ) = S?iSC(Dd) if M is simply connected.
Theorem A also implies that S?‘SC(M ) for a compact d-manifold M does not depend on the smooth
structure of M, since homeomorphic manifolds have equivalent tangential 2-types (see Example 5.2).

Remark. One ingredient in the above mentioned approximation to the conventional structure space
Sg(M ) has a similar invariance property (namely, the L-theory part depends only on the fundamental
groupoid), but the others depend more substantially on the homotopy type of M.
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Remark. Reformulated in terms of embedding calculus (see Section 1.1.1 for an outline of this relation),
Theorem A is an extension of a result of Knudsen—Kupers [KK24a, 6.23] which applies to certain path
components of S?iSC(M ) if M is 2-connected, of dimension d > 6, and dM = S9!

B). Infinite loop space structure

As previously mentioned, the more traditional structure space SS (M) is an infinite loop space after a
certain truncation and up to extensions. The Disc-structure space SQ’ 5¢(M) on the other hand is in high
dimensions an actual infinite loop space — no truncations or extenswns are necessary. This is our second
main result.

Theorem B. For a compact manifold M of dimension d > 8, the space S?iSC(M ) admits the structure
of an infinite loop space.

Remark.

(i) The bound d > 8 in Theorem B is not optimal. It can, for example, be improved to d > 6 if M is
simply connected and spin (see Theorem 6.1). Further improvements are likely possible.

(ii) The Disc-structure space S?i“ (M) extends to a space-valued functor on an co-category of compact
d-manifolds and embeddings between them (see Section 4.5.2), but our construction of the infinite
loop space structure on S?iSC(M ) has less functoriality (see Remark 6.8).

C). Nontriviality

At this point, a very optimistic reader may wonder whether the Pisc-structure spaces S ? isC( M) are just
contractible, which would in particular say that the diffeomorphism group Diff (M) of a closed manifold
M is equivalent to the automorphism group Aut(Ejs) of the associated presheaf. As our third main
result, we show that this is never the case if one assumes the manifold to be spin and of dimension d > 5.

Theorem C. For a compact spin d-manifold M # @ with d > 5, the space S? is¢(M) is not contractible.
Remark. There are partial results in low dimensions that complement Theorem C.

(i) For d < 2, Theorem A of [KK24b] implies SQ“SC(M ) =~ x (see Remark 1.1 (ii) loc.cit.).
(ii) For d = 3, we give several examples for Wthh SQZ“C(M ) is nontrivial, including M = D* and
M = S3 (see Remark 8.16).
(iii) For d = 4, Theorem B of [KK24a] implies that 7 SQ“C(M ) surjects onto the set of isotopy classes
of smooth structures on M as long as M is 1- connected and closed, so S“OZ“C(M ) is nontrivial for
all such M that admit more than one smooth structure.

This concludes the summary of our three main results. In the remainder of this introduction, we
briefly indicate how S?iSC(M ) relates to embedding calculus, the little d-discs operad and factorisation
homology, and then give a summary of the proofs of the main results, where we also make good for the
omitted definition of S?iSC(M ) for manifolds with boundary.

1.1. Relation to embedding calculus, the E z-operad and factorisation homology

1.1.1. Embedding calculus

Goodwillie and Weiss’ embedding calculus [Wei99, GW99] is a device to study embeddings via their
restrictions to submanifolds of the source that are diffeomorphic to T x R¢ for finite sets 7. It has the
form of an approximation to the space of embeddings

Emb(W, W) —> TooEmb(W, W) 2)
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whose target is the limit of a tower of maps whose fibres admit a description in terms of the configurations
spaces and frame bundles of W and W’. The main result in this context, due to Goodwillie—Klein [GK15],
says that (2) is an equivalence if the handle codimension (dimension of W’ minus handle dimension
of W) is at least three. In general, the map (2) can fail to be an equivalence, and in a sense, the Disc-
structure spaces may be seen as the ‘correction terms’ to (2) being an equivalence in codimension zero.
Let us make this more precise.

The relation of the map (2) to Disc-structure spaces is a reformulation of a result of Boavida de
Brito—Weiss [BABW 13], at least if M is closed (c.f. Remark 1.1). They show that (2) is equivalent to
the map Emb(W, W’) — Mappgy(gisc,) (Ew, Ew-) induced by the naturality of Ew in embeddings,
which — for closed W and W’ and after discarding non-invertible components in source and target — is
the map on mapping spaces induced by the functor E: .#an(d)® — PSh(Discy)™ used to define the
Disc-structure space. Since the path space of a co-groupoid between two objects is naturally equivalent
to the space of morphisms between the respective objects, this shows that the loop space of S?15¢(M) at
(M, idg,,) € no S?5°(M) is equivalent to the fibre at id of (2) for W = W’ = M, so

QSéZiSC(M) ~ hofibjq (Emb(M, M) — T..Emb(M, M)). (3)

Remark 1.1. A similar discussion applies if M has boundary, but this does not follow directly from
[BdBW13] since we deal with boundary conditions differently to loc.cit. (see Section 1.2.1).

Specialising Properties A—C to spin manifolds, they in particular imply the following:

Corollary D. For compact connected spin d-manifolds M + @ with d > 5, the fibre
hofibig (Diff 5(M) = Embs(M, M) — TEmby(M, M))
is nontrivial and depends only on the fundamental group of M. It is an infinite loop space for d > 8.

1.1.2. The operad E, of little d-discs

We continue by mentioning two connections between S?iSC(M ) and the operad E of little d-discs. The
first is that Disc, agrees with the monoidal envelope (also known as the associated PROP) of the framed
E 4-operad, so PSh(Qisc,) can be identified with the co-category of right-modules over this operad,
and hence, the definition of S;? is¢( M) for closed manifolds can be rephrased in these terms. There is a
similar reformulation if M has boundary.

The second relation is less obvious and once more a result of work of Boavida de Brito and Weiss
[BABW 18]. To explain it, observe that the standard action of O(d) on the disc D¢ induces an O(d)-
action on the operad E; of little d-discs. This action extends to the topological group Top(d) of
homeomorphisms of R4, 50 there is a map

BTop(d) —> BAut(E,) 4)

with Aut(E;) the automorphism group of the E -operad. Reformulated in our setting, their work (or
alternatively work of Ducoulombier—Turchin [DT22]) moreover implies that there is an equivalence

Q! (Aut(Eg) [Top(d)) = S57*(DY). 5)

In particular, Theorems B and C for M = D4 (or rather certain refinements of them) imply the following:

Corollary E. The map BTop(d) — BAut(E) is an equivalence if and only if d < 2. Moreover, its fibre
admits for d > 6 the structure of an infinite loop space after taking (d + 1)-fold loop spaces.

Remark 1.2. A couple of remarks on the equivalence (5) and Corollary E are in order.
(i) Dwyer and Hess asked whether the map (4) is an equivalence [Dwy14, 58 min]. The first part of

Corollary E gives an answer.
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(ii) The cases d < 2 of the first part of Corollary E are not due to us: Horel [Horl17] proved the case
d = 2. The case d = 1 is folklore and can be proved via Horel’s approach.

(iii) The equivalence (5) can strictly speaking only be deduced from [BdBW 18] or [DT22] after passing
to certain components (see Theorem 8.1), but a different proof that does not require this was given
as part of [KK24c] (see Remark 8.2).

1.1.3. Factorisation homology

The final relation of S :? is¢ (M) we would like to mention is one to factorisation homology (or topological
chiral homology) [SalOl, Fral3, And10, AF15, Lurl7]. In its simplest instance, this connection amounts
to the (quite tautological) observation that for a framed E ;-algebra A in a suitable co-category €, there
is a commutative diagram

Man(d)* —E— PSh(Discy)
\ l(_)®9ithA
JoA
©

of co-categories in which the diagonal arrow is given by factorisation homology with coefficients in A
and the vertical arrow by taking coends, using that A is in particular a functor A: Disc; — €. In fact,
the functor FE itself is an instance of factorisation homology — namely, with coefficients in the framed
E 4-algebra Eppa € PSh(Discy) — so E may be viewed as the universal factorisation homology invariant
on A an(d)=, and the study of Disc-structure spaces as closely related to the question to which extent
the theory of manifolds can be captured by factorisation homology.

1.2. Summary of proofs
We conclude with a summary of the proofs of Theorems A—C.

Some steps may be of independent interest. We highlight them with the Roman numerals (1)—(1II).

1.2.1. The case with boundary

The more general Disc-structure spaces S?iSC(M ) for manifolds M with boundary play a central role in
the proofs of all main results of this work, even when specialised to closed manifolds, so we first make
good on omitting its definition earlier.

Fixing a closed (d — 1)-manifold Q, one replaces .#an(d)™ with the co-groupoid .4 an(d)g of
compact d-manifolds with an identification of their boundary with Q, and spaces of diffeomorphisms
preserving these identifications. The definition (1) of the presheaf Ej, still makes sense if M has
boundary Q and thus yields a functor .# an(d)g — PSh(iscy)=, but if Q # @, then the presheaf E s
carries additional structure. Indeed, stacking cylinders induces an associative algebra structure on the
presheaf Egyx; € PSh(Ziscy) with respect to the symmetric monoidal structure on PSh(Qiscy) given
by Day convolution, induced by taking disjoint unions in Qiscy. Similarly, fixing a collar Q X [ <— M
of the boundary of M, the presheaf E»; becomes a right-Ep,;-module. Made precise, this enhances the
functor E : %an(d)é — PSh(Qiscy)~ to a functor

E: Man(d)y, — /%od(d)ggxl (6)

with target the co-groupoid .# od(d)ngl of right-E gx;-modules. The Pisc-structure space of a right-
Egxi-module X is then defined as the fibre

Sgisc(x) = fiby (_/%an(d)é LN ./ﬂod(d)zgx,)Q
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that this recovers the previous definition in the case Q = @ follows by observing that Egy; is the
monoidal unit. As in the closed case, we abbreviate S?iSC(M ) = SgiSC(E ) if the right-E gy ;-module
X = Ej is induced by a manifold M with identified boundary M = Q. This is the generalisation of
SZis¢ (M) for manifolds with boundary in terms of which we stated Theorems A—C above.

1.2.2. Extension to the bordism category

For the proofs of these results, we need to generalise the functor (6) further. Given another closed
(d — 1)-manifold P, we write Bord(d)p,o for the co-groupoid of compact bordisms W: P ~» Q and
spaces of diffeomorphisms preserving the identifications of the ends. For such a bordism, the associated
presheaf Ew becomes a (Epx;, Egxy)-bimodule in PSh(Ziscy), and we have a functor

E: Bord(d)p,o — %Od(d)ng,,Esz @

to the co-groupoid .# od(d)gpxl Eoxt of (Epxi, Egxr)-bimodules, generalising the case P = @ discussed
in the previous subsection. Given another closed (d — 1)-manifold R, one can show that there is a
commutative square of co-groupoids

Bord(d)p.o x Bord(d)p.r — 2Ty Bord(d)p &

E><E\L

- ® —_
Mod(d)7 , X Mod(d)y, x ———% Mod(d);

whose horizontal functors are induced by gluing bordisms and tensoring bimodules, respectively; this
is essentially an instance of what is known as ®-excision in the theory of factorisation homology. These
squares suggest that the functors (7) might, in fact, arise as the maps induced on mapping spaces by a
functor of co-categories

E: Bord(d) ™V — od(d) >V (8)

from the d-dimensional bordism category to a Morita category whose objects are associative algebras
in PSh(Ziscy) and whose morphisms are bimodules. This turns out to be the case, but to prove our
results, we need even more functoriality. For this, one notes that the presheaf Ej; of a manifold makes
equal sense if M is noncompact, so (8) ought to extend to a functor

E: ncBord(d) ™ — od(d)? 9)

of (0, 2)-categories from a larger bordism category of possibly noncompact manifolds that has codimen-
sion 0 embeddings as 2-morphisms, not just diffeomorphisms, to a larger Morita category .#od(d)(*?
that has morphisms of bimodules as 2-morphisms, not just invertible ones.

In Section 3, relying on work of Haugseng [Haul7], we carefully construct such a functor (9)
of (o0, 2)-categories and show that it can be enhanced to a functor of symmetric monoidal (0,2)-
categories. As part of Section 4, we show that for (possibly noncompact) bordisms W, W’: P ~» Q, one
can identify the map between mapping spaces of 2-morphisms induced by (9)

N E
Map,. gord(a)p.o (W W) —— Map y04(a)p o (Ew s Ew)
R R

Embg(W,W’) —— % T..Emby(Ew, Ew’)

with Goodwillie—Weiss’ embedding calculus approximation, so one might view the functor (9) as an
enhancement of embedding calculus to the level of bordism categories. In particular,

https://doi.org/10.1017/fmp.2024.25 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2024.25

8 M. Krannich and A. Kupers

(I) the functor (9) of symmetric monoidal (o0, 2)-categories equips the limit of the embedding calculus
tower with homotopy coherent gluing, composition and disjoint union maps.

The functor (9) and its relation to embedding calculus forms the technical backbone of the proofs of
Theorems A—C in the later chapters, whose proof strategies we summarise now.

Remark 1.3. As part of [KK24c], the functor (9) was generalised in several directions.

1.2.3. Theorem A: tangential 2-type invariance
The functor (8) in particular extends the Disc-structure space of a manifold S?ISC (M) to a space-valued
functor of co-categories

§21(-): @ord(d)é7"> S (10)
defined on the co-category of null bordisms (i.e., the undercategory of @ € PBord(d)(*")). Relying on
the relation to embedding calculus via (9), a version of an isotopy extension theorem for embedding
calculus due to Knudsen—Kupers [KK24a], and Goodwillie-Klein’s above mentioned convergence
theorem, we show that the functor (10) sends a bordism W: P ~» Q to an equivalence if W can be built
from a collar on P by attaching handles of index > 3. This leads to a proof of Theorem A, since it turns
out that the value of any functor of the form (10) with this property depends up to equivalence only on
the tangential 2-type. This is an instance of

(II) a general tangential k-type invariance result for the values of certain functors on the category
RBord(d) ;‘7’1’ of null bordisms.

The proof of (II) amounts to a sequence of surgery arguments that we became aware of through the
literature on the space of metrics of positive scalar curvature — in particular, [ERW?22, EW24].

1.2.4. Theorem B: infinite loop space

To construct an infinite loop space structure on S? is¢(M), we first use the tangential 2-type invariance
to show that it suffices to consider manifolds of the form M = P x D?" for P a closed manifold and
2n > 4. From the definition

S?iSC(P % D2n) — ﬁbEP (ggord(d)Pstn_l £) ﬂod(d); ), an

xD2" Pxs2n=lx]

it is clear that it suffices to prove that the right-hand map is a map of infinite loop spaces. After
restriction to certain path-components that does not affect the fibre, this is what we do. More precisely,
in the target, we restrict to modules equivalent to £ PxW,.1 for g > 0 where W, 1 is short for the bordism
(8" x SM¥#8\int(D¥): @ ~» $2"~!. In the source, we restrict to bordisms whose induced presheaf
is equivalent to Epxw,, for g > 0 as a bimodule. We then use the full coherence provided by the
functor (8) to enhance the restricted map to one of algebras over a certain higher-dimensional version
% of Tillmann’s surface operad [Til00], constructed out of bordisms of the form Lks§2n=l ., |l g2n-1
for k,I > 0 that are obtained from the manifolds W, ; by creating more boundary spheres. A variant
of this operad has already appeared in work of Basterra—Bobkova—Ponto-Tillmann—Yaekel [BBP*17]
on operads with homological stability. They proved that algebras over this operad are E;-spaces (via
a ‘pair-of-pants’ product) which group-complete to infinite loop spaces, the main ingredient being a
stable homological stability result of Galatius—Randal-Williams [GRW 17]. Translated to our setting,
this implies that the fibre of the group completion of the restricted map is an infinite loop space. Using
tangential 2-type invariance once more, we then show that in this case, group completion commutes
with taking fibres. This only shows that S?i“ (P x D?") is an infinite loop space after group completion,
but we also show that this E;-space is already group-complete, using the s-cobordism theorem.
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1.2.5. Theorem C: nontriviality

To show that S?iSC(M ) is nontrivial for all compact spin manifolds M of dimension d > 5, we first
reduce to the case M = D¢ using tangential 2-type invariance. The equivalence (5) then further reduces
this to showing that the fibre Aut(E,)/Top(d) of (4) has a nontrivial homotopy group in sufficiently
high degree, which we do by showing that the individual homotopy groups of Aut(E;) and Top(d)
are sufficiently different. While quite a bit is known about the homotopy groups of Top(d), especially
rationally, so far, almost nothing is known about the homotopy groups of Aut(E ;) besides for small values
of d. This is in stark contrast to the automorphism group Aut((E4)q) of the rationalised E ;-operad,
whose homotopy groups have a complete description in terms of graph complexes a la Kontsevich due
to work of Fresse—Turchin—Willwacher [FTW 17]. Thus, to learn something about the homotopy groups
of Aut(Ey), one could try to study the comparison map Aut(E;z) — Aut((E4)q) on homotopy groups.
This is what we do. More generally,

(III) we study the effect on homotopy groups of the map Map(0, &) — Map(Oq, Pq) for operads O
and &, induced by rationalisation.

For this, we first use work of Goppl and Weiss [GW?24] to decompose the mapping spaces as a limit
of a tower of mapping spaces between truncated operads and show that under mild assumptions, the
maps analogous to that in (IIT) between the stages of this tower are componentwise rationalisations.
Rationalisation does not commute with sequential limits in general, so this does not imply that the map
in (IIT) has the same property. However, we then show that this can only fail in an extreme way — namely,
when some of the homotopy groups of Map(®, &) are uncountable. We also explain similar results for
more general localisations and for more general towers of spaces.

Applied to 0 = P = E,, this shows that the homotopy groups of Aut(E,) either agree rationally
with those of Aut((E4)q), as described in Fresse-Turchin—Willwacher’s work, or some of them are
uncountable. In either case, we can conclude that they are different from that of Top(d): in the former
by comparing them with known partial computations of the rational homotopy groups of Top(d), and
in the latter by using that Top(d) has countable homotopy groups.

2. co-categorical preliminaries

Except for the final two sections (see Convention 7.1), we work in the setting of co-categories. This
section — which may be skipped on first reading and referred back to when necessary — serves
to establish some notation and to recall definitions and facts used in later sections, as well as to
prove a few technical results that we could not find in the literature. The topics are as follows:

2.1 Conventions. 2.6 Presheaves and the Yoneda embedding.
2.2 The coherent nerve. 2.7 oo-operads and generalisedoo-operads.
2.3 Cocartesian fibrations. 2.8 Associative algebras and bimodules.
2.4 The categoriesA,Gap, andFin,. 2.9 Haugseng’s Morita category.

2.5 Category and monoid objects. 2.10 Span and cospan categories.

2.1. Conventions
Unless mentioned otherwise, we follow the conventions and notation of [Lur(9a, Lurl7]. In particular,

e An oo-category is a quasi-category [Lur(9a, 1.1.2.4]. The oco-category of oo-categories Gats is
the coherent nerve Fats, := Ncon(Cats) of the Kan-enriched category Cate, of small co-categories
[Lur09a, 3.0.0.1]. We consider 1-categories as co-categories via their nerve.

e A space is a Kan complex. If topological spaces appear, we implicitly replace them by their singular
simplicial sets. The category of simplicial sets is denoted S and the full subcategory of Kan-complexes
by Kan c S. Both are enriched over themselves. The co-category of spaces § is the coherent nerve
& = Neon(Kan) [Lur09a, 1.2.16.1].
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We use the following notational conventions:

o The letters of, B, €, ... typically stand for co-categories, whereas the letters A, B, C, ... usually
stand for S-enriched, Kan-enriched or 1-categories.

e Given an co-category % and object ¢ of €, %gl/’ is short for (€,/)°P and similarly %75 is short for
(B/c)°P. In other words, slices are taken before opposite categories.

2.2. The coherent nerve and the homotopy category

The coherent nerve N.on: sCat — S is a functor from the 1-category sCat of S-enriched categories to
the 1-category of simplicial sets [Lur09a, 1.1.5]. Some of its properties are as follows:

(i) It is the right-adjoint in a Quillen equivalence [Lur(09a, 2.2.5.1], where sCat is equipped with the

Bergner model structure whose

(a) fibrant objects are Kan-enriched categories [LL.ur09a, A.3.2.24],

(b) weak equivalences are Dwyer—Kan equivalences, so simplicial functors that induce weak homo-
topy equivalences on each mapping space and are an equivalence (of 1-categories) on homotopy
categories [Lur(9a, A.3.2.4],

(c) fibrations are simplicial functors that are Kan fibrations on each mapping space and isofibrations
on homotopy categories [Lur(9a, A.3.2.24, A.3.2.25],

and S is equipped with the Joyal model structure of which we only need to know that its fibrant

objects are precisely oco-categories [Lur()9a, 2.4.6.1]. In particular, the coherent nerve of a Kan-

enriched category is an co-category.
(ii) Taking coherent nerves preserves objects and morphisms, in the sense that the 0- and 1-simplices

of Ncon(C) are the sets of objects and morphisms of C [Lur(9a, p. 23].

(iii) Taking coherent nerves preserves mapping spaces of Kan-enriched categories in that for a Kan-

enriched category C, we have Mapg(c, ¢’) = Mapy,_, ) (¢, ¢’) [Lur09a, 2.2].

(iv) There is a natural equivalence Ncoh(C°P) =~ N.on(C)°P. This is a consequence of the natural
isomorphisms € ([n]°P) = €([n])°P, where €(—) is the left adjoint to Neon(—).

(v) There is a canonical map N¢op (Fun(C, D)) — Fun(Neon(C), Neon (D)) obtained by appling Neop to
the evaluation Fun(C, D) X C — D, using that as a right adjoint, N (—) preserves products to get

Neoh (Fun(C, D)) X Neon(C) — Ncon(D), and adjoining over Neop(C).

Restricting Nop to Cat € sCat gives a fully faithful functor of 1-categories from ordinary 1-categories
to co-categories. Applying Ncon, we obtain a functor Cat — ®at., of co-categories. This has a left-
adjoint h: Fat,, — Cat that assigns an co-category its homotopy category. As described in [Lur(09a,
1.2.3], h€ has the same objects as &, morphism sets given by the path components of the respective
mapping spaces in €, and composition is induced by the composition maps of mapping spaces. Some
of its further properties are as follows:

(i) The functor & preserves products.
(i) The functor & preserves pullbacks if one of the maps is between 1-categories.
(iii) The functor i preserves cocartesian morphisms when the target is an 1-category.

These follow from the facts that taking mapping spaces in co-categories preserves pullbacks, and that
taking components preserves pullbacks in & whose bottom right corner is discrete.

2.3. Cocartesian fibrations

Lurie’s straightening equivalence [LLur(9a, 3.2]

Fun(%¥, ¥at,,) =~ Cocart(€) (12)
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identifies the co-category Fun(@¥, Gat.) for an co-category € with the co-category of cocartesian
fibrations, which is the sub co-category Cocart(€) C (€atw )/ With objects cocartesian fibrations
with target € and whose morphisms are maps of cocartesian fibrations, in the following sense:

Definition 2.1. Let ¢: & — 98 be a functor between co-categories.

(i) A morphism f: e — e’ in & is g-cocartesian if for every x € &, the square

Mapg(e’, x) f—) Mapg (e, x)

o 1¢
Map (0(e”). 0(x) L5 Map g (¢(e). p(x))

is homotopy cartesian.

(ii) The functor ¢ is a cocartesian fibration if for every object e € & and morphism f: <p(e) — b,
there exists a cocartesian lift of f (i.e. a -cocartesian morphism f: e — b for some b in & such
that o(f) = f).

(iii) A map of cocartesian fibrations from ¢: & — RB to ¢’': & — B is a functor & — &’ over B
that sends ¢-cocartesian morphisms to ¢’-cocartesian morphisms.

Given a cocartesian fibration ¢: & — 98 and an object b € A, one writes &, € Fato, for the fibre
of ¢ at b. Under the straightening equivalence (12), this corresponds to the value at b of the associated
functor B — Fat.,. Moreover, the value of this functor on a morphism b — b’ in 98 corresponds to a
functor &, — &, induced by choosing cocartesian lifts of b — b’.

Remark 2.2. Definition 2.1 makes equal sense for a functor ¢: E — B of Kan-enriched categories. In
view of the natural equivalence Mapg(c,¢’) = Mapy_, (c)(c, ¢’), one sees that a morphism f: e — ¢’
in E is ¢-cocartesian if and only if is Ncoh(¢)-cocartesian.

Given a cocartesian fibration ¢: & — 9 and an oco-category ¥, the functor ¢.: Fun(%,&) —
Fun(%, %) is again a cocartesian fibration [Lur(09a, 3.1.2.1]. In particular, given a functor f: € — &
and a natural transformation 7: (¢ o f) — #; to the constant functor #;: € — B with value b € B
(equivalently, an extension of (¢ o f) to a functor €~ — 9B on the right-cone whose value at the
cone point is b), we can use that ¢, is a cocartesian fibration to obtain a cocartesian lift to a functor
fi: € — & into the fibre over b. The functor f is called a cocartesian pushforward of f along 7.

2.4. The categories Fin,, A, and Gap

Recall the 1-category Fin,. of pointed finite sets and pointed maps in between, with skeleton given by
(p)=A1,...,p,=} for p > 0. We write (p) = (p) \ {*} for the interior of {p). Three special types of
morphisms are relevant for us: a morphism a: (p) — (g) is

(i) active if it satisfies @~ ! (%) = {*},
(ii) inert if @~!(i) consists of a single element for all i € (§),
(iii) Segal if it agrees with p;: (p) — (1) for some 1 < i < p where p; (i) = 1 and p(j) = * otherwise.
Note this is equivalent to being inert with target (1).

A closely related 1-category is the simplex category A of nonempty finite totally ordered sets and
weakly order-preserving maps between them. We mostly work with its skeleton given by [p] = (0 <
1 <... < p)for p > 0. The wide subcategory of injective maps is denoted A;,; C A. Four special types
of morphisms are relevant for us: a morphism «@: [p] — [¢q] is

(1) active if it satisfies @(0) = 0 and a(p) = ¢
(ii) cellularif a(i+1) < a(i) + 1 for all i,
(iii) inert if it is the inclusion of a subinterval, i.e. a(i) = @(0) + i for all i, and
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Figure 1. The isomorphism (13) between A°P (on the left) and Gap (on the right, but we omitted the
elements that map to L or R). The morphism indicated is not active, cellular, inert or Segal.

(iv) Segal if it agrees with p;: [1] — [g] for some 1 < i < g where p;(0) =i — 1 and p(1) = i. Note
this is equivalent to being inert with domain [1].

Occasionally, we work with a different model for A°P, given as follows. For p > 0, we write (p] for
the totally ordered set (L < 1 < ... < p < R) and call L and R the left end and right end of (p)),
respectively. The sets (p| for p > 0 form the objects of the category Gap whose morphisms are weakly
order-preserving maps that are the identity on ends. There is an isomorphism

¢ A% =5 Gap (13)

that sends [p] to (p) and a morphism a: [p] — [¢] to the morphism c(@): (g) — (p]) given by

L i<a(0),
ir— 37 3Jjriela(j-1)+1,a()],
R i>a(p).

This isomorphism maps Aﬁf’. C A°P isomorphically onto the wide subcategory Gap,,, € Gap of
surjective maps. Introducing the notation (p) = (p)\{L, R} for the interior of (p), a morphism
@: (q) — (p), when considered as a morphism ¢~ (a): [p] — [¢] in A, is

() active if @™'(p) = () (we omit the parentheses in &~ (()) for legibility),
(ii) cellular if the restriction a: a~!(p) — (p) is injective,
(iii) inert if the restriction a: @~ (p)) — (p) is bijective,
(iv) Segal if it agrees with p[: (q]) — (1| for some 1 < i < g where p{(j) = Lif j < i, p/(j) = 1if
J=i,and p{(j)=Rif j > i.

Remark 2.3.

(i) We think of i € (p) as the ‘gap’ between i — 1 and i in [p], and observe that @: [p] — [¢] induces
a map the other way between these gaps; see Figure | for an example.

(ii) The functor ¢: A°?P — Gap is related to the functor Cut: A°? — ofssoc® of [Lurl7, 4.1.2.9]: the
pointed set Cut([n]) = (n) can be obtained from the set c([n]) by identifying L and R.

The three 1-categories Fin., A and Gap are related by a sequence of functors
A°® — Gap — Fin,, (14)
where the first arrow is the isomorphism (13), and the second arrow is obtained by identifying the left

and right ends L and R of objects in Gap and forgetting that morphisms are order-preserving.

2.5. Category and monoid objects

Fix an co-category € with finite limits.
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2.5.1. Category objects and monoid objects
A category object in € is a simplicial object X € Fun(A°P, &) satisfying the Segal condition, i.e., the
map

Xip1 — X111 Xxpop ** Xx70) X[1] (15)

(o]
induced by the Segal maps p;: [1] — [p] for 1 <i < p is an equivalence for all p > 0. We call Xy
the underlying object of X. A monoid object is a category object X for which the map X|g] — * to the
terminal object is an equivalence; equivalently, it is a simplicial object for which the analogues of the
maps (15) with pullbacks replaced by products are equivalences. We write

Cat(%¢) c Fun(A°*,¢) and Mon(®) C Fun(A, ®)

for the full subcategories of category objects and monoid objects. Replacing simplicial by semisimplicial
objects in this definition yields the categories
%) and Mony (%) c Fun(AY, 6)

inj’ inj

Cat, (%) C Fun(Af’I;
of non-unital category objects and non-unital monoid objects.

2.5.2. Commutative monoid objects

We may replace the role of the category A°P in the definition of a monoid object with Fin, to arrive at
the notion of a commutative monoid object: a functor X € Fun(Fin,, €) for which the maps X, —
X1y X...x Xy induced by the Segal maps p;: (p) — (1) for 1 <i < p are equivalences for all p > 0.
These span the full subcategory

CMon(¥) c Fun(Fin,, %)

of commutative monoid objects. Precomposition with the composition A°? — Fin, of (14) induces a
functor CMon(%) — Mon(%) that ‘forgets commutativity’.

Remark 2.4. There is a different perspective on commutative monoid objects in the form of an equiva-
lence of co-categories Mone, (%) ~ CMon(%) where Mone, (%) is the limit in Fat.,

Mone(€) = lim (- - - — Mon(Mon(Mon(%))) — Mon(Mon(%)) — Mon(%) — %)

over the maps induced ev(;}: Mon(€) — & (combine [Haul8, Proposition 10.11] with [Lurl7,5.1.1.5,
2.4.2.5]). In particular, there is an equivalence CMon(Mon (%)) ~ CMon(%).

2.5.3. Monoidal categories and double categories

For € = ¥at.,, (non-unital) monoid objects in & are also called (non-unital) monoidal co-categories,
(non-unital) category objects in € are called (non-unital) double co-categories, and (commutative)
monoid objects in Fat., or Cat(Fats) are (symmetric) monoidal oo- or double co-categories. Via the
straightening equivalence of Section 2.3, these can also be described as cocartesian fibrations .4 — A°P
(or M — Aﬁg in the non-unital case, or .# — Fin, in the commutative case) such that the functors

Mip) —> M) X ... X Mpyy o respectively M ip) — M) Xy, - - - R 1

induced by the cocartesian lifts of the Segal maps p; are equivalences.

Example 2.5. For an co-category € with finite products, taking products induces a symmetric monoidal
structure € — Fin, on &, the cartesian structure [Lurl7, 2.4.1]. Dually, if € has finite coproducts, it
carries a cocartesian symmetric monoidal structure €- — Fin, [Lurl7, 2.4.3].

https://doi.org/10.1017/fmp.2024.25 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2024.25

14 M. Krannich and A. Kupers

Remark 2.6. The definition of a monoidal co-category given in [Lurl7, 4.1.1.10] is different from the
one given above, but the resulting co-categories turn out to be equivalent [Lurl7, 4.1.3].

2.5.4. Mapping co-categories

Given a double co-category € € Cat(@at.,) and objects A, B € €[o], we define the mapping co-category
from A to B to be the co-category given as the fibre in Fat,,

%A,B = ﬁb(AB)((do,dl)Z %[1] e %[0] X %[0]).

These mapping co-categories come with composition functors €4, g X €5,c — Ga,c defined by taking
vertical fibres in the commutative diagram in Fat.,

@1) Xz(0) Cl1) —— B KAt

\L P13 \L

0] X €lo] X €] 0] X Glo] X Elo) — Clo] X €]

with top-left horizontal map induced by the Segal morphisms, top-right horizontal map by the unique
active morphism [2] — [1], and vertical map by the face maps.

2.5.5. Quasi-unital monoid and category objects
A non-unital category object X € Caty, () is quasi-unital if it admits a quasi-unit, which is by definition
amorphism u: X|o] — X[ together with a commutative diagram in &

X[o] : > X[
dm %},dl)
Xio1 X X[o]

such that the following two compositions are equivalent to the identity:

(u,id) d]

X1 = X0 Xxp0) X111 — X[1] Xx1) X117 = X121 — X1y, (16)
(id,u) d

X1y = Xp1) Xx,0 Xj0] —— X[1] Xx0) X(1] = X1 — X3

Quasi-units are unique up to equivalence [Hau21, Remark 4.8]. A morphism ¢: X — Y of non-unital
category objects is quasi-unital if there exists a commutative diagram in € of the form

o
Xjo) x > Yo x
¢
\ (do.dy) X[]] ! \ 7 Y[]] (17)
diag / diag (do.d1)
X[()J X X[()J > Y[()J X Y[OJ

(¢0,%0)

such that the outer triangles are quasi-units for X and Y. As a result of the uniqueness of quasi-units,
the composition of two quasi-unital morphisms is quasi-unital. We write Catq, (%) C Caty, () for the
subcategory of quasi-unital category objects in €, generated by quasi-unital objects and morphisms.
Every category object is quasi-unital (so: X[o] — X[1] is a quasi-unit), and by [Hau21, Theorem 4.14],
the forgetful functor Cat(%¢) — Cat,, (%) induces an equivalence

Cat(€) —> Catgy (). (18)
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Remark 2.7. Note that if X a quasi-unital category objectin €, Y a simplicial objectin € (not necessarily
a category object), and f: X — Y a morphism of semisimplicial objects in &, then

(i) it makes sense to ask for f to be quasi-unital (replace uy in (17) by the Oth degeneracy map). This
property is preserved by postcomposition with maps of simplicial objects,

(ii) if € = Fat, and Y’ C Y is a levelwise full subcategory that is a quasi-unital category object,
then a functor X — Y’ of non-unital category objects is quasi-unital if and only if the composition
X — Y’ C Y is quasi-unital in the sense of (i).

2.5.6. Double co-, (c0,2)- and (oo, 1)-categories
A double co-category has an underlying (o0, 2)-category (in fact, two, but we will not need this) which
in turn has an underlying co-category. More precisely, there are functors of co-categories

(=)= (=)=
Cat(Fate,) —— Gat(w 2 — Gate,

where @at( 2) is the co-category of (oo, 2)-categories. We denote the composition by
(=)D Cat(Fate) — Bateo,

These functors have the following properties:

(i) The functors (=)(? and (—)* preserve finite products and hence (symmetric) monoidal struc-

tures, and so does their composition () (1.

(ii) For € € Cat(®aty), the objects of (-2 can be identified with those of €. The analogous
property holds for the functor (=) and thus also for their composition ()1

(iii) For € € Cat(%at), the mapping co-category €4 p between two objects A and B in € can be
identified with the corresponding mapping co-category in & (*>?). The functor (=) is on mapping
co-categories given by taking cores (hence the notation), and thus, the same holds for (—)(*-D | so
we have %;B =~ Mapg () (A, B) for objects A and B in €.

One way to implement these oco-categories and functors between them is to use the equivalence
Cat,, =~ €SS(S) to Rezk’s complete Segal spaces (a certain full subcategory of Cat(s) [Hauls,
Section 3]) and model Gat( ) as the co-category of 2-fold complete Segal spaces €SS>(S) in the
sense of Barwick (a certain full subcategory of Cat(Cat($)) [Haul8, Section 4]). In these mod-
els, the functor ()2 : Cat(%ate.,) — Fat(w ) is explained in [Haul7, Remark 3.15], and the
functor (—)*1: Cat(®at,) — @at. can be constructed via the inductive description as 2-fold
Segal spaces as GSSy(S8) = BFSSgss(s)(FSS(S)) [Haul8, Section 7] by defining (-)*? as the
right-adjoint €SSgss(s) (ESS(S)) — ESSs(S) = ESS(S) =~ Fat, induced by the right-adjoint
evio]: €SS(S8) — & to the inclusion c: & — ESS(S) as constant simplicial spaces, using [Hauls,
Proposition 7.17].

It remains to justify properties (i)—(iii). That (i) holds for (=)(? is justified in [Haul7, Remark
3.15] and for (—)=2, it holds since it is a right adjoint. For (ii) and (iii), one uses [Haul7, Lemma
5.50/5.51] and that ev[g] corresponds to taking cores under the equivalence Fate, ~ €SS(S).

2.6. Presheaves and the Yoneda embedding

Given an co-category €, we write PSh(%) := Fun(€°P, &) for the co-category of §-valued presheaves.
This admits all small limits and colimits [Lur09a, 5.1.2.4], and there is a natural fully faithful Yoneda
embedding y: € — PSh(%) [Lur(9a, 5.1.3.1]. If € is (symmetric) monoidal, then its opposite
P is (symmetric) monoidal [Lurl7, 2.4.2.7], and PSh(%) carries a (symmetric) monoidal structure
by Day convolution [Lurl7, 2.2.6.17] which, firstly, preserves small colimits in each variable, and,
secondly, allows for an enhancement of the Yoneda embedding to a (symmetric) monoidal functor
[Lurl7, 4.8.1.12, 4.8.1.13]. Explicitly, a formula for Day convolution is given by (F ® G)(c¢”) =
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colimer—cger (F(c)XG(c”)) where the colimit is over the category of triples (¢, ¢/, u) with ¢, ¢’ € € and
u: c¢” — c®c’[Lurl7,2.2.6]. Moreover, from the construction, one sees that a lax (symmetric) monoidal
functor € — 2 (see Example 2.10) induces a lax (symmetric) monoidal functor PSh(2) — PSh(%)
by precomposition.

Remark 2.8. Given a Kan-enriched category C, there is a similar Yoneda embedding in Kan-
enriched categories ys: C — Fun(C°P, Kan). Taking coherent nerves and postcomposing with the map
Neoh (Fun(C°P, Kan)) — Fun(N¢oh(C)°P, Neon(Kan)) = PSh(Neon(C)) of Section 2.2 (v) yields a func-
tor Neoh(C) — PSh(N.on(C)) which turns out to agree with y up to equivalence, by the construction of
y for € = Neon(C) in [Lur09a, 5.1.3.1].

2.7. oo-operads
Recall the following definition from [Lurl7, 2.1.1.10].
Definition 2.9. An co-operad O is a functor p: ©® — Fin, with the following properties:

(i) O® has cocartesian lifts for inert morphisms in Fin,,
(ii) the map M(p;): @2’% — ML léﬁ) induced by the Segal morphisms is an equivalence,
(iii) given an object x € @2@ and cocartesian lifts x — x; of the Segal morphisms p;: (n) — (1), the

following commutative diagram in & is cartesian:

Mapge (y,x) ———> ML Mapge (v, xi)

i 1

Mapg;, ((m), (n)) —— ML Mapg, ((m),(1)).

A map of oo-operads is a functor over Fin, that preserves cocartesian lifts over inert morphisms.
Such a map 0® — P? is also called an O-algebra in P, and we write

Alg,(P) C Fungp, (0%, 2%)

for the full subcategory of such maps. Given an co-operad O, we call the objects of @fb the colours
of 0. Given colours x = (xq,...,%,) € I‘I"@?1> = @Z‘% and y € @?V the space of multi-operations
is the subspace Mulg(x;y) C Mapge(x,y) covering the unique active morphism (n) — (1) [Lurl7,
2.1.1.16]. If ©® has a single colour x € @?b, we abbreviate O (k) := Mulg(x, .. ., x;x) where x appears
in the domain k times. These spaces of multi-operations can be composed using operadic composition
maps, denoted og, that satisfy the axioms of a coloured operad in the classical sense up to coherent
homotopies [Lurl7, 2.1.1.17]. In particular, the homotopy operad h®® — Fin, (which is an operad as
a result of the properties of 4 discussed in Section 2.2 and satisfies Muly,s (x, y) = o Mulg (x, y)) gives

a coloured operad in the classical sense. By construction, there is a map of co-operads 6° — hO®.

Example 2.10. When viewed as a cocartesian fibration €® — Fin,. (see Section 2.5.3), every symmetric
monoidal category € is an co-operad. A map of co-operads between symmetric monoidal categories is
called a lax symmetric monoidal functor.

Example 2.11. Every coloured operad in the category of Kan-complexes in the classical sense gives rise
to an co-operad via the operadic nerve [Lur(09a, 2.1.1.27]. For example, the associative co-operad </ ssoc
[Lurl7,4.1.1.1,4.1.1.3] is the operadic nerve of the ordinary operad with a single colour *, whose k-ary
multi-operations &/ssoc(k) = Mulggsoc(*, . . . , *; %) is the set of linear orders of k = {1,2,...,k}, and
where operadic composition is concatenation of linear orders. An co-operad O is equivalent to </ssoc
if and only if there is an isomorphism A0 = hgfssoc of operads in the 1-category of sets and all spaces
of operations in @ are homotopy discrete.
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2.7.1. Suboperads, endomorphism operads, and algebras over them

Let O be an co-operad and Oy C 0O be a suboperad of the ordinary operad /0 in sets. The corresponding
suboperad O e Op of O is defined as the pullback 0® xj,5e O — Fin, in the co-category Opd,, of
oo-operads, which has limits by [Lurl7, 2.1.4]. In particular, we may restrict O to a fixed collection of
colours closed under equivalences to obtain a new oco-operad. We call this a full suboperad.

Remark 2.12. The forgetful functor Opd,,, — (€atw)/Fin, creates limits by [AFT17, Lemma 1.13], so
the pullback 0 %6 Og can be computes in Gate,.

Example 2.13. For a symmetric co-monoidal category € viewed as an co-operad, its homotopy operad
h€ is asymmetric monoidal 1-category in the classical sense. Given a sub symmetric monoidal category
of Cp C k¥ in the 1-categorical sense, the associated sub co-operad € X,¢ Co is again a symmetric
oco-monoidal category. Informally, this is given by restricting the objects and the components of the
mapping spaces according to Cy.

Fix € a symmetric monoidal co-category €, viewed as an co-operad. The endomorphism operad of
an object x in € is the full sub co-operad Endg (x) obtained by restricting to the colours equivalent to
x. Writing 1 for the unit in €, we can form the composition of maps of co-operads

evy

Endy (x)® — €® -5 PSh(®)® 25 &> (19)

to & equipped with the cartesian symmetric monoidal structure (see Example 2.5). The first map is
induced by the inclusion, the second map the symmetric monoidal Yoneda embedding (see Section 2.6),
and the third map the evaluation at the unit which is a map of co-operads by naturality of the Day
convolution in lax symmetric monoidal functors (see Section 2.6). The composition (19) enhances the
mapping space Mapg (1, x) to an Endg (x)-algebrain §.

2.7.2. Generalised co-operads

The condition (ii) in the definition of an co-operad O in particular implies that @% is trivial. Sometimes
it it useful to relax the notion of an co-operad to that of a generalised co-operad which need no longer
satisfy O % ~ %, The precise definition of a generalised co-operad is not important for us, but it suffices
to know that it is a functor ©® — Fin, satisfying some weaker axioms than those for co-operads, but
that the existence of cocartesian lifts for inert morphisms is still required. Maps of generalised operads
0 — & are defined in the same way as for co-operads. Generalising the case of co-operads, we denote
the resulting subcategory by Alg,; (%) C Fungi, (0%, 9®) and still call its objects O-algebras in P.

2.7.3. (Generalised) nonsymmetric co-operads

Replacing the category Fin, by AP defines nonsymmetric variants of all of the above definitions and
constructions (e.g. (generalised) nonsymmetric operads, maps between them, algebras in them, etc).
We use the same notation for the symmetric and nonsymmetric constructions (e.g., for (generalised)
nonsymmetric co-operads © and &, we write Alg,; () C Funpo (0€, %) for the co-category of maps
of (generalised) nonsymmetric co-operads aka (0-algebras in P).

Example 2.14. The following examples of generalised nonsymmetric co-operads will be important:

(i) Cocartesian fibrations obtained by unstraightening double co-categories.
(i) The projection A(/)[[’p] — A°P for all p > 0; see [Haul7, Lemma 4.10].
(iii) The restriction A(/’fp } = A of the projection A(/)‘[’p | = A to the full subcategory A () € Ajp)
spanned by the cellular maps in A; see [Haul7, Lemma 4.14].

Examples of maps between generalised nonsymmetric co-operads that will be important are

(i) The map A% = — A~ over A° induced by a morphism [p] — [¢] of A.

/1p] /lql
(i) The inclusion AP . — A% over AP [Haul7, Lemma 4.14].

P
/lp] [r]
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2.8. Associative algebras and bimodules in the nonsymmetric setting

Given a monoidal co-category viewed as a cocartesian fibration €® — A°P with underlying category
€ =% ﬁ], the co-categories Ass(%) and BMod(%) of associative algebras in € and bimodules in €
are defined as

Ass(€) = Alg,op(€®) and BMod(¥) = AlgAx/u[al] (€°).
These are the co-categories of A°P- and A(/’l[)”—algebras in € as in Section 2.7.3. There is a functor

BMod(€) — Ass(€) X € x Ass(€) (20)

consisting of the projections to Ass(€) induced by precomposition with the functors A = A o] — A1)
induced by the Oth and 1st face map [0] — [1], and the functor to %ﬁ] = € given by evaluation at
id[1] € A/q17- The fibre in €ate,

BModa 5 (€) = fiba ) (BMod(€) — Ass(€) x Ass(6))

at (A, B) for associative algebras A, B € Ass(%®) of the postcomposition BMod(€) — Ass(€)xAss(%)
of (20) with the projection is the co-category of (A, B)-bimodules.

Remark 2.15. Associative algebras are closely related to monoid objects in the sense of Section 2.5: for
a category € with finite products, equipped with the cartesian monoidal structure (see Example 2.5),
we have an equivalence of co-categories Ass(€*) ~ Mon(%) [Lurl7, 2.4.2.5].

Remark 2.16. Lurie uses different models for the co-categories of associative algebras and bimodules
in a monoidal co-category € (using the equivalent point of view on monoidal structures mentioned in
Remark 2.6), but these turn out to be equivalent to Ass(%) and BMod(%) as defined above. For Ass(%),
this is proved as [Lurl7, 4.1.3.19], and for BMod (%), it follows from an extension of that argument, or
from Remark 2.18 below.

The following lemma on free (A, B)-bimodules will be important later:

Lemma 2.17. For a monoidal co-category € and associative algebras A, B € Ass(%), the forgetful
Sunctor Us g: BModa g(€) — € given as the composition of the inclusion into BMod(®) followed
by (20) and the projection to € has the following properties:

(i) For a fixed oo-category I such that € admits all I-indexed colimits, the functor U, g preserves and
detects I-indexed colimits. The same holds for limits instead of colimits.
(ii) The functor U, p reflects equivalences.
(iii) The functor Ua g has a left-adjoint Fa p: € — BModa g (€) whose unit M — Ua pFa (M)
for M € € agrees with the map M — A ® M ® B given by tensoring with the units of A and B.
(iv) For a functor ¢: € — D of monoidal co-categories and M € G, the canonical morphism
Foua),08) (@(M)) = @(Fa g(M)) is an equivalence.

Proof. Using 2.16, the first part follows from [Lur17, 4.3.3.3, 4.3.3.9]. The remaining items follow from
[Haul7, Corollary 4.49]: The final part of this corollary in particular shows (ii) since right adjoints in
monadic adjunctions reflect equivalences [Lurl7, 4.7.3.5] and the first part shows (iii). This leaves (iv).
As a result of (ii), it suffices to show that

Ugpa),o(B Fo(a),o8) (0(M)) — Ugay, o) (0(Fa,p(M))) = o(Ua pFa,p(M))

is an equivalence. Using the second part of (iii) this follows from the monoidality of ¢. O

https://doi.org/10.1017/fmp.2024.25 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2024.25

Forum of Mathematics, Pi 19

2.9. Haugseng’s Morita category

In analogy with the classical Morita category of a ring, for a sufficiently nice monoidal co-category &,
one would expect a double co-category ALG(€) — the Morita category of € — whose co-category of
objects ALG(€)o) is the co-category of associative algebras Ass(%), whose co-category of morphisms
ALG(%)1) is the category of bimodules BMod(%€), and whose composition is given by ‘tensoring
bimodules’. Haugseng constructed such a Morita category in [Haul7] (denoted ALG; (%) therein)
under mild assumptions on €. In what follows, we recall his construction and establish some properties
not explicitly stated.

2.9.1. The pre-Morita category
For a monoidal co-category €® — AP, the pre-Morita simplicial co-category of € is the simplicial
oo-category ALG(€¥) € Fun(A°P, Fat,,) with

ALG(G)[p) = Algy (€%) C Funper (A7, €°).
The simplicial structure is given by precomposition with the functors A /,1 — A4 induced by post-
composition with morphisms [p] — [g¢] in A; this uses Example 2.14. By construction, ALG(-) is
natural in lax monoidal functors by postcomposition.

This definition extends the co-categories Ass(€) = m}(%)[o] and BMod(%) = m}@m to a
simplicial co-category ALG(%), but the result is not yet a double co-category: an object in ALG(%)|p)
gives associative algebras M (i) for 0 < i < p and (M (i), M(j))-bimodules M (i, j) for0 < i < j < p,
and, informally speaking, we need to enforce that M (i, j) is equivalent to the iterated tensor product
M, i+ 1) ®privty M+ 1,0 +2) ®pr(iv2) = - Opr(j-1) M(J — 1, ).

2.9.2. Composite algebras and the Morita category

The condition on the M (i, j) just mentioned can be made precise through the notion of a composite
algebra from [Haul7, Section 4.2]. It requires an assumption on & that Haugseng calls having good
relative tensor products [Haul7, Definition 4.18], which is in particular satisfied if the underlying
category € admits all geometric realisations (colimits indexed over A°P) and if they are preserved by
tensoring (on either side) with fixed objects of €; this follows from [Haul7, Lemma 4.19]. If € has
good relative tensor products, then the functor

* AT (Y - 0 ® °l ®
7,: ALG(€)[p) = AlgA/’[)n](Cg ) — AlgA/}[)p] (€

induced by the inclusion 7, : A(/’}[)p B A(/)I[’p] (see Example 2.14) admits a fully faithful left adjoint
Tp,! —_—
AlgA(/n[vp] (%) = AlgA(/v;[vp] (8°) = ALG(¥),

by [Haul7, Corollary 4.20], and M € ALG(%)|p) is called composite if M is in the essential image of
Tp,1, Or equivalently if the counit Tp’gT;M — M is an equivalence [Haul7, Definition 4.21]. By [Haul7,
Corollary 4.38], the simplicial structure on the pre-Morita category restricts to a simplicial structure on
the full subcategories ALG(€)[,] € ALG(®)[p of composite objects, and by [Haul7, Theorem 4.39],
the result is a double co-category — the Morita double co-category of €

ALG(%) € Cat(%at) C Fun(AP, Fat,).
Note that Aj[,] = Aj[p) for p = 0,1 s0 ALG(®)[p] S ALG(E)[p] is an equality for p = 0, 1; that is,

ALG(%)[0] = ALG(G)jo = Ass(8) and ALG(®)[1] = ALG(%)[1] = BMod(%). @21)
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In particular, the mapping co-categories between A, B € ALG(%)o) in the notation of Section 2.5.4 are
given as ALG(®)4.p = BMod4 5(%).

Remark 2.18. In [Lurl7, 4.4.3.10, 4.4.3.11], Lurie describes a Morita double co-category BMod(%)®
for monoidal co-categories € that admit geometric realisations which are compatible with tensoring with
a fixed object on either side (so they in particular admit good relative tensor products). One advantage
of Lurie’s model is that it is functorial in all lax monoidal functors, whereas Haugseng’s is a priori
only functorial in (strong) monoidal functors that are compatible with good relative tensor products
(see Section 2.9.4 below). However, it turns out that Haugseng’s Morita double co-category ALG(%)
is equivalent to Lurie’s BMod(®)®; see [Hau23, Corollary 5.14]. In particular, on O- and 1-simplices,
this comparison shows that Lurie’s and Haugseng’s models for the category of associative algebras and
bimodules in a monoidal co-category € are equivalent (cf. Remark 2.16), and on composition functors,
it shows that Lurie’s and Haugseng’s models for relative tensor products of bimodules are equivalent.

2.9.3. Composite algebras in terms of semisimplicial objects

We will now reformulate the condition on an object M € m(%)[ p] to be composite in a form closer
to the informal description mentioned at the end of Section 2.9.1, resulting in a convenient criterion for
an object M € ALG(%)(p) to be composite. Before turning to the technical details, we describe this
criterion informally. As mentioned before, the object M gives associative algebras M (i) for 0 <i < p
and (M (i), M (j))-bimodules M (i, j) for 0 < i < j < p. For each such bimodule, there is an ‘iterated
bar-construction’ semisimplicial object M (i, j)e in € augmented over M (i, j), with k-simplices

M@, D =MGi+DOM>I+ D @M@+ 1,i+2)@M(i+2)% - o M(j - 1) @ M(j - 1, ).

The criterion is then equivalent to requiring that the augmentation geometrically realises to an equiva-
lence for all 0 < i < j < p. In fact, for bookkeeping reasons, it is convenient to rephrase this criterion
slightly: For each ¢ > 0 and each sequence @ = (0 < ip < ... < iy < p) of integers, we have an
augmented semisimplicial object over M (ip,i1) ® M (i1,i2) ® ... ® M(i4-1,i4) given by the diagonal
of the g-fold semisimplicial object M (ig, i1)e ® M (i1,i2)e ® ... ® M(iy-1,i4)s. The criterion is that its
augmentation has to realise to an equivalence (see Corollary 2.25).

To make this precise, we denote by A the wide subcategory of A given by the active maps and by
€ ®2! the pullback of €® — A°P along the inclusion A*“°P — A°P_The unique active maps [1] — [p]
define a natural transformation from the inclusion A*%°P — A°P to the constant functor at [1] € A°P,
which we can precompose with the projection € ®-*t — AP Taking a cocartesian pushforward (see
Section 2.3) of the canonical map € ®*' — € ® along this natural transformation gives a functor

(-): €% — @, = 6. (22)

t
p

projection and A

Now write A';‘C[ I for the wide subcategory of A,[,] of those morphisms that map to A*" under the

e a
Funp o (A(/’I[’p], €®) and an object @: [g] — [p] of A

tl’f]p for the full subcategory of cellular maps. For M € ALG(%)[p| C
act,op

o o Ve consider the composition

((Aact,op)/a)|> Lan, (Aact,op)/n E)Aact,op ﬁ%ach@ (=) z

/lp] /lp] /lp] ’ (23)

where pr is the projection, (—)® is the right-cone (this freely adds a terminal object and can be modelled
by the join (=) * A?), and can is the extension of the inclusion (Ajc[llﬁp)/a c (A?C[;(ip)/a to the cone
((A?C[;(]p) /)" by sending the terminal object to id,.

Lemma 2.19. For a monoidal oo-category € with good relative tensor products, an object M €
ALG(8)(p) is composite if and only if the composition (23) is a colimit diagram for all a.
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Proof. By definition, M is composite if the counit 7,17, M — M is an equivalence. Using Proposition
4.16 and Corollary A.60 of [Haul7], this is equivalent to asking whether the identity T,M — 7,M
exhibits M as the operadic left Kan extension of 7,M along 7, in the sense of Definition A.56
loc.cit. By Lemma A.53 loc.cit., this is in turn equivalent to the condition that the functor ((A%“%P) x

/lp]
A L psetor) 10y (Az;c[;(]’p) x {0} — & induced by the restriction of
/1p]

(AT X A1 o AR S g

to A" x Al is a left Kan extension in the sense of [Lur09a, 4.3.3.2]. As A?Ct’()p C A;T;(ip is a full

/lp] (p]
subcategory inclusion, we can use the simpler characterisation of left Kan extensions from [Lur(9a,
4.3.2.2], which is exactly the condition of the statement. O

act,op

Unravelling the definitions, the category (A Ip] )/a for a@: [q] — [p] is the 1-category whose
objects are factorisations of @ into an active map followed by a cellular map,

L] \[r_]) [pl.

a

Note that if « is active, then so must be [r] — [p]. Given another such factorisation, with middle object
[#’], a morphism from the factorisation involving [r] to that involving [r’] is an active map [r'] — [r]
that makes everything commute:

it B e
l4] active [p]
s e

r']

Colimits over this category — as appearing in Lemma 2.19 — can be rephrased in terms of semisimplicial
objects that are easier to handle. Making this precise involves the following construction:

Construction 2.20. Let a: [¢q] — [p] be an object of A(/)lfp] considered as a sequence (iy < ... <
ig) € [p]. LetJ C [g — 1] be the set of indices j for whichi; <ij,j and setkq = X jey ({41 —ij = 1).
Enumerating the indices in the interval [io, i,] that do not lie in (iy, .. .,i,) in order as my, ..., my,,

there is a functor

. op ko act,op

given as follows: writing kfl =q+ Zf.‘:"l(ai + 1), it sends an object ([a1], ..., [aq4]) € (A°P)ka to
[4] > k5] > [pl.
a

where af is given by the weakly increasing sequence that contains (ip < ... < i,) as well as each m;

repeated a; + 1 times. The map a/g is the unique injective map such that a/f o a/g =a.
Example 2.21. If @: [2] — [p] is given by the sequence (i < i+2 < i+4), then k, = 2, the map ala is
given by the sequence (i <i+1<...<i+1<i+2< i+3<...<i+3< i +4) where i + 1 appears
ay + 1 times and i + 3 appears a; + 1 times, and the map aj is given by the inclusion of (i <i+2 < i+4)

into this sequence.

For later reference, we spell out how p, translates under the isomorphism A = Gap.
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Construction 2.22. Leta: (p) — (g be an object of Gap,,), considered as a sequence (i < ... <
ip) withi; € (). The quantity k, is then given by k,, := #{j € (p=1) | i; € (§) andi; = ij+1}. We
enumerate this set in order by n; < ... < ng,. The functor p, takes the form

act,op

. kll
Pa- Gap — (Gapqpb/)/a

and can be described as follows: abbreviating kf; =q+ ijl (a; + 1) as in the A°-case, for an object
(@) = ((a1),---,(ay)) € Gap*e, it sends (a) to the factorisation

1) =5 (ki) T (q).
\/

a

where ala: (p) — (k%) is given by the sequence obtained from the sequence (it £ ... <ip) by
inserting a gap of length a; between i,,; and i 41 for j = 1,..., ke, and aff : (kG ) — (g is the unique
surjective map such that a'g ) a/f‘ =a.

The following lemma is a generalisation of [Haul7, Lemma 4.17].
Lemma 2.23. The functor p o from Construction 2.20 is cofinal.

Proof. By [Lur09a, Theorem 4.1.3.1], it suffices to prove that ((A°P)ke)y ; has an initial object for all
objects X of (A?c[t]ﬁp) /a» i.€., for all factorisations X

[¢] — [r] — [p]

of @ into an active 8 followed by a cellular o’. The category ((AP)%e)y ; then has objects given by
active maps 4 [kg] — [r] such that in

[a1 25 (k31 2 11 25 11, (24)

the full composition agrees with a, the composition of the first two arrows with 5, and the composition
of the final two arrows with a/’f. The morphisms are induced by those of (A%)*e via [kg]. We now
describe an object of this category: define the number b by letting b; + 1 be the number of times m ; in
Construction 2.20 appears in o’ (b; > 1 since a’ is cellular and S is active). Then there is a unique map
[kb] — [r] that fits in a factorisation as above, and this map is active because [q] — [r] is active. For

another factorisation (24), one checks there is unique morphism ([a1], ..., [ak,]) = ([b1],..., [bk,])
in Ake that induces a morphism of factorisations, so the factorisation we described provides an initial
object in ((A"P)k“)x/ as wished. O

Example 2.24. In the case of Example 2.21 and X given by [2] — [6] — [p] with [6] — [p] given
by (i <i<i+1<i+1<i+2<i+3 <i+4) (which determines the active morphism [2] — [6]
uniquely), the initial object in ((AOP)k")X/ is given as follows: we get ko, = 2, ([b1], [b2]) = ([1], [0]),
kb =5, and 6: [5] — [6] is (0 <2 <3 <4 <5 <6). To see it is initial, note that equivalently it is
terminal among pairs ([a], [a2]) with factorisations [2] — [k‘:‘[] — [6] — [p], which is true since
§: [5] — [6] is bijective onto those elements in [6] which do not get mapped to the image of a.

‘We now consider the composition

i di N . ’ ‘
(M) 225 (A7) 5 (AR Lo (A 0)F < (AT, Ty AT,

ne
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which we abbreviate as n¢; similar for Gap instead of A°P. Unravelling the definitions, one checks
that n¢ maps an object [a] € A?IZ to af: [kf;] — [p] with @ = (a,...,a) and the cone point to
a: [g] — [p]. The unique map from [a] to the cone point is mapped to ag: [q] — [kf;]. Since the
inclusion A?If. C AP is cofinal [Lur09a, 4.1.1.8], the category AP is sifted, and hence, the diagonal
A% — (A°P)*is cofinal [Lur(9a, 5.5.8.1, 5.5.8.4], the functor p,, is cofinal by the previous lemma, and
cofinal functors are closed under composition [Lur09a, 4.1.1.3 (2)], the composition A}" — (Aaciﬁp )/a
is cofinal. As colimits in co-categories are unaffected by precomposition with cofinal functors [Lur(09a,

4.1.1.8], we can simplify the condition in Lemma 2.19 further to:

Corollary 2.25. For a monoidal co-category € with good relative tensor products, an object M €

ALG(®B)| is composite if and only if for all a € A(/JI[JPJ, the following is a colimit diagram:

(Aﬁﬂ)b AN Aé/m[t[ﬁp M eaa D o

Example 2.26. We spell out two exemplary cases of Corollary 2.25 and relate them to the infor-
mal description of Corollary 2.25 from the beginning of this subsection, involving the augmented
semisimplicial objects M (i, j).. First, for @« = (0 < 2): [1] — [2], we have k, = 1, and the functor
(A?}S)> - Aj‘é;’p sends [a] to the sequence (0 < 1 < ... <1 < 2) where 1 appears a + 1 times, and
it sends the cone point to (0 < 2). Applying M and (—);, we obtain the augmented semisimplicial ob-
ject corresponding to M (0, 2).. For @: [q] — [p] given by a sequence (ip < --- < iy) C [p] so that
ij+1 =ij+1, wehave k, = 0, so the composition in the statement is a constant augmented semisimplicial
object; this fits with the informal description since M (i, j) is constant if j =i + 1.

2.9.4. Functoriality and monoidality
Postcomposition induces a functor

ALG(-): Mon(®at,) — Fun(A°?, Bat.,), (25)

which is on p-simplices given by Alg,op o) (—). The latter preserves limits [Haul7, p. 1701], so (25)
does as well and in particular induces a functor between commutative monoid objects

ALG(-): CMon(Mon(%at,)) — CMon(Fun(A?, Fat,)).

The situation for ALG(-) is only slightly more complicated. Let Mon(Fatw )& C Mon(%ats) the
(non-full) subcategory of monoidal categories that admit good relative tensor products and functors
that are compatible with them. The latter is made precise in [Haul7, Definition 4.18], but all we need is
that (i) monoidal categories admit good relative tensor products if their underlying categories admit all
geometric realisations and these are compatible with tensoring with a fixed object on either side, and that
(ii) functors of monoidal categories that preserve geometric realisations are compatible with good relative
tensor products. Then ALG(-) gives rise to a functor ALG(-) : Mon(®ate )& — Cat(Fat.) (see
[Haul7, Corollary 5.41]). By [Haul7, Lemma 5.38 (iii)], the category Mon(®ate )& admits products,
and these are preserved by the forgetful functor Mon(ats, )8 — Mon(%Fate). Moreover, ALG(-)
is product-preserving: we may test this on p-simplices for p > 0, and since it has values in double co-
categories, it suffices to check this for p = 0, 1 where it follows from (21) and the corresponding fact
for ALG(-). ALG(-) thus induces a functor on commutative monoid objects:

ALG(-): CMon(Mon(%at.,)®"?) — CMon(Cat(Fate,)).

2.10. Span and cospan categories

We summarise the construction of a double co-category of cospans from [Hau 18, Section 5].
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2.10.1. Categories of (co)spans
For an co-category €, the pre-span simplicial co-category of € is

SPAN (%) := Fun(2°*, %) € Fun(A®, Fat.,),

where X°: A — Cat is defined as follows: on objects, it sends [rn] € A the poset X" of pairs (i, j)
with0 <i < j < n,and (i,j) < (i/,j’) if and only if i < i’ and j* < j, and on morphisms sends
¢: [n] — [m] to the functor X" — X™ given by (i, j) — (¢(i), ¢())).

If € has finite limits, then the span double co-category of €

SPAN*(%) € Cat(%Fate) (26)

is the levelwise full subcategory SPAN* (%) C SPAN (&) of cartesian functors, where (P — &) €
SPAN (€)(p] is cartesian if the natural map from it to the right Kan extension of its restriction to the
full subcategory A” c %P on (i, j) with j —i < 1 is an equivalence. By [Haul8, Proposition 5.14],

SPAN*(®) is indeed a double co-category. We have SPAN*(®)[0)] = €, and arguing as in [Haul8,
Proposition 8.3], one sees that the mapping co-categories are SPAN*(%)a p ~ 6 AxB-
Dually, one defines the cospan double co-category of € and its pre-version as

COSPAN (%) := SPAN (%°)® and COSPAN'(%) := SPAN*(&°P)P,

where the outer (—)°P denotes taking levelwise opposites, and the second definition requires € to have
finite colimits. The mapping co-categories are then given by COSPAN™(€)a, 5 = G aus,-

2.10.2. Relation to Morita categories

Cospan categories and Morita categories are not unrelated: if € has finite colimits, then it has good
relative tensor products as in Section 2.9.2 when equipped with the cocartesian symmetric monoidal
structure - [HMS20, Remark 2.5.14]. By Corollaries 2.6.8 and 2.6.10 loc.cit., there is an equivalence
of double co-categories

COSPAN*(%) ~ ALG(%Y). 27)

Moreover, functors that preserve finite colimits are compatible with good relative tensor products, so
COSPAN* (%) inherits the functoriality and monoidality properties from ALG(%") as discussed in
Section 2.9.4 for monoidal categories with finite colimits and functors that preserve those (there is also
an a priori description, but we will not need it). Tracing through the proof, one sees that under the
equivalence (27), an object M € ALG(%)[, is sent to the sequence of cospans

M(0,1) M(p-1,p)
— >
M(0) M(1) M(p-1) = M),

where the map M (i) — M(i,i+1) is given by M (i) Ine, M@ UMG,i+1) i M (i,i+1), and similarly
for M(i + 1) — M (i,i + 1). Here we used the notation from Section 2.9.1.

3. From the bordism to the Morita category

As part of the introduction, we announced in Section 1.2.2 the construction of a functor

E: ncHord(d) — M od(d) (28)
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of symmetric monoidal (co,2)-categories where the domain is an (oo, 2)-category of possibly non-
compact (d—1)-dimensional manifolds with bordisms as 1-morphisms and embeddings as 2-morphisms,
and the target is a Morita (oo, 2)-category of the symmetric monoidal co-category of presheaves on an
oo-category of disjoint unions of d-dimensional open discs with embeddings as morphisms and disjoint
union as monoidal structure. What we will actually do is to construct (28) as a functor between symmetric
monoidal double co-categories, which is more general by the discussion in Section 2.5.6.

For most of the arguments in the proofs of Theorems A—C, the precise construction of (28) does
not play a role. We summarise the key features in Section 4, so readers who mainly care about
Theorems A—C may skip this technical section on a first reading.

The steps we take in this section to construct the functor (28) are as follows:

Step @ Construct a non-unital double co-category ncZBord(d)™ € Catpy(Fats,) of possibly non-
compact (d — 1)-manifolds with embeddings and bordisms between them.

Step @ Construct a monoidal co-category #an; € Mon(%ats) of possibly non-compact d-manifolds
and embeddings between them, monoidal via disjoint union.

Step @ Construct a morphism E&°: nc%ord(d)™ — ALG(.#any,) of semisimplicial co-categories to
the pre-Morita category of .#an, from Section 2.9, viewed as a semisimplicial object.

Step @ Show that the composition

E: ncBord(d)™ — ALG(Many) — ALG(PSh(.#an,)) — ALG(PSh(Ziscy))

lands in the Morita category #od(d) := ALG(PSh(Qiscy)) < ALG(PSh(Qiscy)). The
second map is induced by the Yoneda embedding and the third map by the full subcategory
Discy C Mang on manifolds diffeomorphic to T x R< for finite sets T.

Step ® Argue that nc%Bord(d)™ can be enhanced to a (unital) double co-category ncABord(d) €
Cat(%at.,), and that E can be enhanced to a functor of double oco-categories as in (28).

Step ® Argue that the resulting functor E: nc%Bord(d) — #od(d) can be enhanced to a functor of
symmetric monoidal double co-categories.

We will conclude the section with some enhancements of the bordism category nc%ord(d):

Step @ Construct variants Bord(d), ncBord(d)? and ncBord? (d) of ncBord(d) by restricting to com-
pact manifolds and diffeomorphisms instead of embeddings, allowing manifolds with boundary,
and adding tangential structures.

Step ® Construct for a closed p-manifold P a map of symmetric monoidal double co-categories P X
(=): ncHord(d) — ncHBord(d + p) induced by taking cartesian product with P, and extend
this construction to the variants from Step @.

Remark 3.1. Some remarks on the construction of the functor (28):

(i) One may ask whether this construction can be ‘fully extended’; that is, whether one can upgrade
ncAord(d) to a symmetric monoidal (d + 1)-fold co-category and the functor E to a map of such
objects with target the symmetric monoidal (d + 1)-fold Morita co-category of PSh(Qisc,) from
[Haul7, Section 5], which would in particular give a functor of symmetric monoidal (co,d + 1)-
categories. There are no conceptual issues in doing so, but it would involve additional bookkeeping
and make our construction less transparent. Since we do not need it to prove the main results, we
did not include it.

(i) We construct (28) as a functor of symmetric monoidal double co-categories, but all later arguments
only use the underlying functor of symmetric monoidal (co, 2)-categories.

(iii) There are at least three constructions of a Morita (oo, 2)-category of a sufficiently nice monoidal
oco-category € that for € = PSh(Qisc,) might serve as potential targets for (28):
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(a) Lurie’s model BMod(%) from [Lurl7, 4.4.3.11],
(b) Haugseng’s model ALG| (%) from [Haul7, Section 4], denoted ALG(%) in Section 2.9,
(c) Scheimbauer’s model Alg, (%) from [Sch14, Section 3].
Haugseng’s and Lurie’s model are known to be equivalent (see Remark 2.18). For our purposes,
Haugseng’s model turned out to be the most convenient choice.

(iv) For some of our later arguments, it is crucial that E is defined on the bordism category nc%ord(d)
that involves noncompact manifolds; the restriction to the typically considered subcategory
PBord(d) that only involves compact manifolds is not sufficient. If one is mainly interested in
a functor from the compact variant Bord(d) to a Morita category of PSh(Qiscy), then there are
other potential routes to a construction (e.g., by modifying a construction of Scheimbauer [Sch14]
or relying on the cobordism hypothesis [LurO9b]).

Throughout the following subsections corresponding to the steps above, we generically refer to
Section 2 for a recollection of the co-categorical concepts and facts involved.

Step @©. The bordism category via manifolds with walls

We will construct the non-unital double co-category ncBord(d)™ € Caty,(Fat) as the levelwise
coherent nerve of a semisimplicial object in Kan-enriched categories

ncBord(d)™ € Fun(A:®, sCat). (29)

inj’

Convention 3.2. Throughout this section, we fix a constant 0 < € < L We write tr;: R — R for the

2
translation by A € R. For a subset W C R x R®, we write
Wia:=Wn(AXxR”) c RxR"”

for subsets A C R. If A = {a} is a singleton, we abbreviate W|, = W|;,;.

We first set up some language. A [p]-walled d-manifold for [p] € A is a pair (W, u) of a d-
dimensional smooth submanifold W ¢ RxR* without boundary and an order-preservingmap u: [p] —
R such that the following is satisfied

1) (@) +e<pu(i+1)—eforalli,
(ii) the projection pr: W — R to the first coordinate is transverse to u: [p] — R,
(iii) W|[M(,~)_€’”(l~)+f] =ty [—e, +€] x W|,u(i) for all 7;

see Figure 2 for an example. The space
Emb((W, ), (W', 1)) € Emb(Wl(u(0)-e.u(preels Wl 0)-e. (p)+e)))

of embeddings between [ p|-walled d-manifolds (W, u) and (W, u’) is the subspace of those embeddings
 that satisfy the following properties for all i:

(i) they satisfy the equality ¢! (W’'|[,(i)re w(iv1)-€]) = Wliu(i)+e.u(i+1)-e] as well as the equality
O W ()-eqvirel) = Wlin(i)-e.u(i)+e]» and
(i) they restrict on W|[,(i)—e,u(i)+e] to an embedding of the form

(tru/(i)_ﬂ(i) X (,01')2 tl‘#(i) [—E, +6] X W|,u(i) — trﬂ/(i) [—E, +6] X W’|’u/(,')
for some embedding ¢; € Emb(W/|, i), W'l i))-

Using this terminology, ncBord(d)™ is defined as the semisimplicial Kan-enriched category whose
Kan-enriched category ncBord(d i‘ﬁ ! of p-simplices has possibly non-compact [ p]-walled d-manifolds

https://doi.org/10.1017/fmp.2024.25 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2024.25

Forum of Mathematics, Pi 27

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
n(3) R
|

#(v2)
Figure 2. A [3]-walled 1-manifold. The vertical projection is u and the intervals in R are the [u(i) —

€, u(i) + €|’s, which are disjoint in accordance with (i). The dashed lines indicate the hyperplanes
{u(@)} x R®. Note that W is transverse to these and a product near them, as imposed in (ii) and (iii).

(W, u) as its objects, spaces of embeddings between [ p]-walled d-manifolds as morphisms, and compo-
sition given by composition of embeddings. The semisimplicial structure is given by ‘forgetting walls’
(i.e., by precomposition of u: [p] — R with morphisms in Ajy;).
The non-unital double co-category
op
ncHBord(d)™ € Cat(Fate,) C Fun(A;, @ate)

is now defined as the levelwise coherent nerve of ncBord(d)™ (i.e., we have (ncRBord(d)™)(p) =
Neon((ncBord(d)™)[p1)). This implicitly claims that the semisimplicial object ncZBord(d)™ €
Fun(A?IS., @ at) is indeed a double co-category (i.e., that it satisfies the Segal condition).

Lemma 3.3. nc%ord(d)™ is a non-unital double co-category.

Proof. This is straightforward, so we will only sketch the proof. One first observes that the Segal maps
ncBord(d)F;‘)] — ncBord(d)Ff] XncBord (d)fy, + + - XncBord(d)? ncBord(d)Fl"] before taking coherent nerves
are Dwyer—Kan equivalences, so weak equivalences in the Bergner model structure from Section 2.2
(). Since the ncBord(d)f‘;] are Kan-enriched, they are fibrant in this model structure. Next, one shows
that source and target maps ncBord(d ﬁ]] — ncBord(d)‘[’(')"] are Kan fibrations on morphism spaces and
isofibrations on homotopy categories, so they are fibrations in the model structure and the pullbacks
appearing in the above maps are homotopy pullbacks. Using that the coherent nerve is the right Quillen
functor in the Quillen equivalence between the Joyal and the Bergner model structure (see Section 2.2 (i))
and therefore preserves homotopy pullbacks and weak equivalences between fibrant objects, it follows
that the Segal maps nc%’ord(d)?;] — nc%’ord(d)ﬁ‘l XncBord(d)py - + - XneBord(d)y nc%’ord(d)ﬁ‘] in Cat,,

are equivalences. )

Step @. The monoidal category of manifolds and embeddings

We construct the monoidal co-category of (possibly noncompact) d-manifolds and embeddings between
them as a cocartesian fibration .# ang — A°P = Gap obtained as the coherent nerve of a functor

Man$ — Gap (30)

of Kan-enriched categories. Objects of Man?; are pairs ((p)), W) of (p) € Gap and a smooth submanifold
W c (p]) x R x R® without boundary; the distinguished R-coordinate is not necessary but comes in
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handy later. To define the space of morphisms, given A C (), we write
WA = Wn (A xR xR®)
to distinguish it from the notation W|4 for A ¢ R from Convention 3.2. Using this, we set
Mapyans ((P), W), ((P"), W) = L pemapeny (1 1.0y EMD(WI#T 12D, W7),, 31)

where the subscript (—),, indicates that we restrict to embeddings that cover ¢ (i.e., that make

e (FDXRXRE > W|¢ (F) » W c (') xRxR®

Prll lprl

¢~ (F') > (7D

commute). The composition in ManS’ is induced by the composition in Gap and composition of embed-
dings. The functor (30) sends ((p), W) to (p). Taking coherent nerves defines .#an’; — Gap = AP,
which one easily checks to be a monoidal co-category using the description in terms of cocartesian
fibrations from Section 2.5.3.

Remark 3.4. By construction, the underlying category .#an, of the monoidal co-category .# ang’ —
A°P (the fibre over [1] € A°P) agrees with the coherent nerve of the Kan-enriched category whose
objects are smooth submanifolds W c R* without boundary and spaces of embeddings between them.
Informally speaking, the monoidal structure is given by taking disjoint unions. Note that this monoidal
structure is not cocartesian, since typically Emb(M U N, W) # Emb(M, W) X Emb(N, W).

Step @.1. Cocartesian pushforward along active maps
For later reference, we spell out a model of the cocartesian pushforward

(=): Man$*" — (Man®)y) = Mang
from Section 2.9.3 in the case €% = ./ an?. It is the coherent nerve of a simplicially enriched functor

®,act

Mand

— (Man?)[1] =: Many, (32)
defined on the pullback of Manf? along the inclusion Gap**' — Gap of the wide subcategory of active
maps as in Section 2.4. The functor (32) is given by taking ‘taking disjoint unions’, using that the
restriction to active maps in Maned"z”aCt means precisely that the embeddings appearing in (31) are defined
on the whole manifold W, not just on a subset depending on the maps ¢. As a point-set implementation,
one can model this ‘disjoint unions’-functor induced by viewing a submanifold W C (p) X R x R® as
a submanifold of R X R x R* using the inclusion (p) = {1,...,p} C R and sending a submanifold

W c (p) X RxR® c RXx R xR to its image under the diffeomorphism

flipxidgeo idg xshift
_ _—

s: RxRxR” R xR xR” R x R% (33)

with flip(x, z) := (z,x) and shift(z, (z1, z2,...)) = (2, 21, 22, . . .). Said differently, the functor (32) is a
composition of functors of Kan-enriched categories

Man$*" — Man® — (Man$)(11,

where Man? has submanifolds W c R x R x R* without boundary as objects and all embeddings
between them as morphisms. The second functor sends W to s(W) on objects and is on morphisms
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induced by conjugating embeddings W < W’ with the diffeomorphisms W = s(W) and W’ = s(W’)
induced by s. The first functor sends an object ((p]), W) to W C () x RxR® c RX R X R* and is
on morphism spaces (31) induced by the inclusion Emb(W, W), ¢ Emb(W, W’) of components.

Step @. From ncABord(d)™ to the pre-Morita category of manifolds
The construction of the morphism E£%° : nc%ord(d)™ — ALG(.# any) goes via the following substeps:

(a) Set up preparatory language.

(b) Replace the undercategorie.s 'Gap'q o)/ —>'Gap })y a simpl?cial thickenir?g Gap (o) — Gap.
(c) Construct a functor of semisimplicial objects in Kan-enriched categories

ncBord(al)nu — FunGap(Gap Mand) (34)
(d) Argue that the resulting functor of semisimplicial co-categories

ncBord(d)™ —s Fungap(Gap.,, A any) (35)

lands in the levelwise full subcategory ALG(.#ang) C Fungap(Gap s/ /%an?).

Substep (a) I: walls and chambers
For a [p]-walled d-manifold (W, ) as in Step @, we define

wall(W, u) c [p] XxR®, ch(W,u) c (B) x RxR®, and tch(W,u) c (p) x RxR",
the submanifolds of walls, chambers and thickened chambers of (W, u), as

Wall(W ,u) = Uie[p ({l} X Wl[,l(i))
Ch(W ﬂ) - UlE ({l} X W|[/l(l D+e,u(i)— e])
tCh(W,ﬂ) = Uze(]ﬁ[) ({l} X Wl(ﬂ(i—1)+§,,u(i)—%))'

There is an inclusion ch(W, u) C tch(W, u) whose complement of the interior we abbreviate as
coll(W, u) = tch(W, p)\int(ch(W, u)) c (p) x Rx R*.

We call this the collars of (W, u). Informally, u prescribes hyperplanes {u (i)} x R* intersecting W in
the walls, the (thickened) chambers are (thickened) regions between the walls, and the collars are collar
neighbourhoods in the thickened chambers; see Figure 3 for an example.

Given in addition a morphism @ € Mapg,,((p), (¢)), we define the submanifold

labo (W, 1) C (G) x RxR*

of pieces labelled by « as the union lab, (W, u) = UieMD{i} X Wl(ﬂ(lﬁl)—E’H(f,-")“)’ where we set
1= ¢ '(a)(i) using the isomorphism (13) and thinking of (§) = {1 < ... < g} as a subset of
[¢] = {0 < ... < g}. Informally, lab, (W, y) is the set (G| labelled by chambers and thickened walls
of W as prescribed by «; see Figure 4 for an example.

Constructing the functor (34) will require us to describe embeddings out of lab, (W, u), for which it
is helpful to decompose this manifold into two parts as follows: the map (@ Xidrxr=): (p) X RXR® —
(g) x R x R* restricts to an embedding

tch(W, )| 14) < lab, (W, ) (36)
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wall(W, u) / coll(W n)
ch(W, i) !
L I 0e[l] I 1e (i) I lell] I R

Figure 3. A [1]-walled 1-manifold. Its walls wall(W, u) are the 0-manifold indicated by the squares, its
chambers ch(W, u) are the thick region, its collars coll(W, u) are the dotted regions, and its thickened
chambers tch(W, u) are the union of the chambers and the collars.

H(3)

1 2 3 R
(3) *—— —
cxl V l
5) + ———— —
L 1 2 3 4 5 R
labo (W, u)|! labo (W, ) labo (W, )
— — 3 1 1
— : | | |
— : | : —
T T T T T
lab, (W, p)|* labo (W, u)°
— — —
T hd 1 T (‘ 1 T (‘ 1

Figure 4. Given the [3]-walled 1-manifold (W, u) of Figure 2 and the indicated morphism «: (3) —

(5)), this shows the resulting lab,(W, ). The following informal description may help: « tells which

‘parts’ of (3)) to put in which ‘box’ of (5), and if a box is not hit by «, it contains a ‘connecting part’.
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wlabo (W, p)|! wlabo (W, p)[? wlab o (W, p)|?
— —— —— | l
= = | | |
— — | = —
I u(vO) I I M(vO) I I ”(']) I I u(vZ) I I u(vZ) I
wlabg (W, p)|* wlabg (W, p)|°
Do T Cae

Figure 5. The submanifold wlab, (W, u) forlaby (W, 1) as in Figure 4.

using which we define a submanifold
wlabg (W, 1) := laba (W, w)\int(ch(W)|* 140y c (4) x R x R™,
of thickened walls labelled by «; see Figure 5 for an example. We have a preferred decomposition
labg (W, 1) = ch(W)|*" (4] U, wlabg (W, 1), (37)

where the gluing uses the identification d(ch(W, ,u)l‘fI (4)) = §(wlaby (W, ) induced by the restric-
tion of (306) to the boundary d(ch(W, u) I"_IMD). The restriction

Clhy ot (W, )7 19D s wlaby (W, 1) (38)

of (36) to coll(W, ,u)l‘fI (4D provides a collar of this boundary.

Substep (a) II: wlab, () as a pullback

Unwrapping the definitions, one sees that wlab, (W, u) c (4G]) x R X R* is a disjoint union of products
of W|, ) for some i with a (open, half-open or closed) interval of length 2 - €. More precisely, for
i € (g), the components wlab, (W, u)| "} of wlab,, (W, u) lying over i are try(rr) (—€, +€) X Wy () for
i ¢ im(«), and they are

(tr,,(t'_gl)(—e, +€] X W|l‘(’{f|)) U (U,ﬂquia (try(j)[—€, €] x W|,,(j))) U (try(,ia) [—€,+€) x W|M(,'_a))
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wlaby (W, p)[? wall(W, i)
iy —— 1 " n |
= 3 L 3
— | = L | L
—e—| —e—| —e—| et
1(0) u(l) n(2) u(0) (1) n(2)

wlab,, (R, 1) (3]

o : : — ) e | 2

Figure 6. The pullback decomposition (39) for one of the part of wlab, (W, u) from Figure 5. Note that
wall(W, u) and [3] are larger than pictured; we only included the parts relevant for this pullback.

for i € im(a@). From this description, we see in particular that there are preferred maps
wlabe (W, ) — [pl,  wlabe (W, u) — wall(W, ), and  wlab, (W, u) — wlab, (R, p),

where we view (R, u) as a [p]-walled 1-manifold. Indeed, the first map is given by sending the
components of wlab, (W, u) whose first factor is an interval around u(¢{*) € Rto ¢ € [p], the second
map is induced by the first map and the projection to R*, and the final map is given by the projection
to (¢) x R. In particular, this exhibits wlab, (W, u) as the pullback

wlab, (W, 1) = wlaby (R, p1) X[, wall(W, ), (39)

which will be useful to construct embeddings out of wlab, (W, u); see Figure 6 for an example.
It will also be useful to observe that wlab, (R, p) is related to wlab, (R, u”) for possibly different
1’2 [p] — Rby a preferred diffeomorphism

wlabe (R, p) = wlab, (R, pt'), (40)
uniquely characterised by requiring it to (i) preserve the order induced by the lexicographical order on
(g) x R and (ii) agree with translation on each component. For convenience, we fix a particular choice
of u —namely, the inclusion [p] = {0, 1, ..., p} € Rin which case we omit u from the notation, so for

instance, we abbreviate wlab, (R) = wlab, (R, inc).

Substep (b): Thickening
As a next step, we replace the undercategory functor

Gap(a),: Gap® — sCat/gap 41)

by a simplicial thickening after precomposition with the inclusion Gapg., — Gap®? of (the opposite of)
the wide subcategory of surjective morphisms. By ‘simplicial thickening’, we mean a functor whose
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values need no longer be discrete categories and which comes with a natural transformation to Gap,),
that is a levelwise Dwyer—Kan equivalence.

We first define a Kan-enriched category Gap » that is Dwyer—Kan equivalent to Gap,,),. Its
objects are the same as those of Gap,,), — that is, morphisms @: (p) — (¢|) in Gap. The space of
morphisms from the object @: (p) — (g) to the object a’: (p) — (q’) is

" —1g 5
Map%dp[)/ (a,a ) = UyEMapGapqu/(a,a’) Emb(WIaba(R)V (q D,Wlaba'(R)))ﬂ

where the subscript y indicates that we restrict to embeddings y that

(i) make the diagrams

wlab, (R)[719') & wlaby, (R)  wlabg (R)[7 140 <2 % wlab, (R)

L ~

o

v '(q’) —r (q’) Con(R)|a“]MD

commute (i.e., they cover y and preserve the collars (38)), and
(ii) are order-preserving with respect to lexicographical order on (§) x R and (q’) % R.

The composition in Gap Iy is induced by the composition in Gap,),, forgetting components, and
composition of embeddings. By construction, there is a forgetful functor Gap Y — Gap ), which
is a Dwyer—Kan equivalence as a result of the contractibility of the space of monotonous embeddings

between connected intervals. Postcomposing this functor with the projection Gap,), — Gap and
varying p, we obtain a functor

Gap,, : Gapgh. — sCat/gap

)
with a natural transformation to (4 1) that consists of the Dwyer—Kan equivalences just discussed.

Substep (c): E2° on the level of Kan-enriched categories
We now turn towards the construction of a functor of semisimplicial Kan-enriched categories

E%fj’: ncBord(d)f,; — Fungap (Gapq.D/,Mang). (42)
The value of E%;(i at (W, u) € (ncBord(d)™);p is the functor
geo . ®
E[p](W,ﬂ)-%qu/HMand (43)

over Gap defined as follows: on objects, it maps (a: (p) — (g¢)) to ((g),laby (W, i)). On a morphism
given by a pair (y,y) of a morphism y: (¢) — (g¢’) under (p) in Gap and an embedding ¥ €
Emb(wlab, (R) |77] (4D wlab,, (R)),, it is given by the embedding

S (W) () laba (W, )] 19— labr (W, 1)
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over y constructed via the following recipe: using the decomposition (37) and @~ (y~'(¢’) = &’ (q’).
the embedding Egcj (W, ) () is of the form

ch(W, @)|*™ 19D Uy wlab (W, )™ (4D e ch(W, )| 19D Uy wlab (W, p).

On ch(W, ,u)|"/_1(]qo'b, we declare it to be the identity, and on the complement, we use the pullback
description (39) and the translations (40) to define it via the commutative diagram

g EP(W.0) (7)
wlab o (W, )7 (4') > wlaby (W, i)
Il [
wlab, (R, )7 19D 5[, wall(W, p) wlab o (R, ) X[,1 wall(W, i)
IR I

wlab, (R)[Y 19 x(,,) wall(W, 1) —— 05 \ilab o (R) ) wall(W, ).

This finishes the construction of the functor Egeo (W, u): Gap Gap, — Man . Note that it commutes
with the functors to Gap by construction.
Having defined E ‘FZ} on objects, defining it on morphisms amounts to specifying maps

Emb((W, u), (W, 1))

{

NatGap(E%;(] (W, /J), E%;O] (W’,,u’)) C quneMapGap(quv(]qD) Emb(laba(W, ,Ll), laba(W’, /,l’)),

where Natgap (—, —) is the hom-functor in the Kan-enriched category Fungap (Gap (o))’ Man ) (i.e., the

space of natural transformations covering the identity on Gap). These maps are induced by the evident
naturality of the lab, (—)-construction in embeddings of [p]-walled d-manifolds.

To finish the construction of (42), we have to argue that the E ?e(}’s assemble to a morphism of
semisimplicial objects in Kan-enriched categories as in (42). But this is merely a case of going through
the definitions; ultimately, it amounts to the identity labg.c(s) (W, t) = labg(W, p1 0 ).

Substep (d): E£¢° on the level of co-categories
Taking coherent nerves, we obtain

?apqu/ = Ncoh(% ) € Fun(Aﬁg Caty),
which comes with an equivalence to Gap,), = A(/)I[).] induced by the equivalence Gapq o= Gap.),
from Substep (b). From E %f;’, we obtain a morphism of semisimplicial objects in Fate,
ncRBord(d)™ — FunGap(?apq.D/, Man%) ~ FunA«»p(A(/)I[’.], Mang) (44)

given by postcomposing the coherent nerve applied to (42) with the canonical map

Neon (FunGap(%q , Man%) = Funpor (A", ManF),

,Man%)) — Fungap(Zap o]

o)/ (*)/°
from Property (v) of Section 2.2.

Lemma 3.5. The image of the functor (44) lies in the levelwise full subcategory ALG(Mang) C
Funpop (A(/’I[’.J, M an%) from Section 2.9.1.
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Proof. In view of Remark 2.2, it suffices to show that for a [p]-walled manifold (W, u), and objects

a: (p) — (q) and ¢’: (p) — (gq’), the functor E%;(}(W,u): Gapqu/ — Man$ of Kan-enriched

categories sends embeddings ¥ € Mapg,,  (a,@’) whose underlying map y: (g) — (g’) is inert
—(prD/

to cocartesian morphisms in Manf with respect to the projection Manfj — Gap. In other words, for

objects (Z, (g”’)) € Man®, we need to check that the square of Kan-complexes

EF (W) (7)"
Mapygans (197D, Laber (W, ), (19”71, 2)) ~2——— Mapyyans (1), laba (W, ), (19”). Z)

Emb (labo (W, )¢~ (4", Z),, L Emb (laba (W, 1)[¥ 1), Z),,
@eMapg,, ((a').(q”)) ¥ eMapg,, ((¢).(q” )
Mapg,,((4'). (4”')) z > Mapg,, (). (4”))

is homotopy cartesian. Taking vertical homotopy fibres, it suffices to show that the maps
—_ =157 ov)-Lig”
Ex°(W.u)(7)": Bmb(labe (W, )|# 1470, Z),, — Emb(laby (W, p)| #7147, 7).,

are weak equivalences. Since ¥ is inert, the restricted map y~'(§’) — (§’) is bijective, so it suffices to
show that the embedding E‘[g;c] (W, 1) ()" : labe (W, )7 14') < lab, (W, u) is an isotopy equivalence
over y. To see this, note that since y ™! (§’) — (¢’ is bijective, the embedding 7 : wlab, (R)|?(4') —

wlab, (R) is an isotopy equivalence over y and under coll(R)l"HWD, from which it follows that
E f;oj (W, ) () is an isotopy equivalence over vy as claimed. m}

By the previous lemma, (44) restricts to a morphism E®°: nc%Bord(d)™ — ALG(Aany) of
semisimplicial co-categories. This completes Step ©.

Step ®. Composite algebras

We now consider the composition
E: ncBord(d)™ L5 ALG(Many) > ALG(PSh(Many)) —— ALG(PSh(Zisca)).  (45)

Here, E£%° is the functor from the previous step, y. is induced by the (monoidal) Yoneda embedding
y: Mang — PSh(Many) (see Section 2.6), and ¢* is the functor induced by the lax monoidal functor
PSh(.#an;) — PSh(Discy) which is itself induced by the inclusion ¢: Discy — #any of the full
subcategory spanned by manifolds diffeomorphic to T x R for finite sets 7 with monoidal structure
inherited from .#an. By the properties of presheaf categories discussed in Section 2.6, the monoidal
category PSh(Qisc,) has good relative tensor products in the sense of Section 2.9.2, so it makes sense
to ask whether (45) lands in the levelwise full subcategory ALG(PSh(Zisc;)) ¢ ALG(PSh(Ziscy))
of Section 2.9.2. This section serves to prove this:

Proposition 3.6. The functor E from (45) factors through ALG(PSh(Qiscy)) ¢ ALG(PSh(Qiscy)).

We will first explain how Proposition 3.6 follows from a seemingly different result and then prove
that other result. The argument involves a simplicial thickening

Gapt,, — Gapg,
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of the right-cone Gap},, of the category Gapy,, (the category obtained by freely adding a terminal object
oo € Gapg,,) in terms of the manifolds

(a)* =Lx[-€,€)U(d) x(—€,e) URX (—€,€] C (a) xR and (o))" :=[—€,€] CR,

where a > 0. The objects of Gapyg,, are the same as those of Gapg,,. The space of morphisms (a|) — (b))

between objects of Gap,, C Gap,, is defined as
MapGapSDur((]aD’ (b)) = LlyeMapGapW(Ga[),QbD) Emb((]a[)*’ (]b[)*)y’

where the subscript (—), indicates we restrict to embeddings ¥ that cover vy, are the identity on
L x [-€,-5) UR X (%, €] and preserve the lexicographic order inherited from (a|) X R and (b)) X R.
Finally, the space of morphisms (a) — (co]) is defined as

Mapggg, (@), (00)) = Emb((a)", (o)),

where the subscript (—)o indicates that we restrict to embeddings y that agree on LX[—€, —5)URX(5, €]
with the projection to the second coordinate and preserve the lexicographical order inherited from (a ) xR
and R. The space of morphisms (oo — (oo)) is the space of self-embeddings of (oo )* = [, €] that
agree with the identity on the complement of [~ %, 5 ]. This category admits an evident functor to Gapg,,
which is an equivalence as a result of the contractibility of the space of order-preserving embeddings
between intervals.

Convention. In what follows, we occasionally omit the choices of embeddings of manifolds into
Euclidean spaces for brevity. For instance, we treat Many; = (Man?)m from Section Step @ as the
Kan-enriched category of abstract smooth d-manifolds and codimension O embeddings.

Given a (possibly noncompact) d-manifold without boundary V equipped with k disjoint codimension
1 submanifolds V; c V that are topologically closed in V as a subspace, equipped with disjoint bicollars
[—€, €] X V; € V, we construct a simplicially enriched functor

V(]_D : Gap:ur — Mang,
which on objects, sends (o) to V(oo)) := V and (a) € Gapg, to

V(a) =V u (X, (d) x (e, €) x V),

where V* is the manifold obtained from V by cutting out Ul’le [-5, 5] X V; and extending the resulting
collars [—€, —5) X V;Li(5, €] XV; to collars [—€, €) XV; Li(—¢, €] xV;. Given a morphismy : (a) — (b)),
there is an embedding V(a)) < V(b)) that is the identity of V* outside the extended collars and agrees
on the remaining part with ¥ x idy,. Finally, for (a]) — (o) or (co]) — (oo]), one defines embeddings
V(a)) — V(o) or V(co]) < V(oo) in the same manner.

Writing Gap,,, € Gap%,, for the full subcategory covering the inclusion Gapy,, € Gapg,,, Proposi-
tion 3.6 will be a consequence of the following proposition involving homotopy colimits in the Kan—
Quillen model structure on S.

Proposition 3.7. For a manifold D diffeomorphic to T x R? for a finite set T, the map

hocolimggap,, Emb(D, V(~)) — hocolimgay: Emb(D, V(~)) = Emb(D, V(o))

induced by the inclusion Gapg,, C Gapg,, is an equivalence.

We postpone the proof to the next subsection and first explain how it implies Proposition 3.6.
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Proof of Proposition 3.6. Consulting the definition of the Morita category, we have to show that the
image of any object (W, u) € nc%’ord(af)nu in ALG(PSh(Qiscy))|p) is compos1te in the sense of
Section 2.9.2. By Corollary 2.25, this is equlvalent to proving that for each @ € A% o)’

EFS (W, p)

(AP AN AjP L™ Man®™ O wany, (46)

becomes a colimit diagram when postcomposed with (¢* o y): #an; — PSh(Disc,). We first make
the composition (46) more explicit. Recall from Step ® (c) that

Egeol (W,u) € ALG(ﬂand) c Funpor (AP /%an?)

/lr)?

was obtained from a functor between simplicially enriched categories

E%;?(W,/J): @QPD/ —> Man§ 47)

by taking coherent nerves and using the equivalence Gap Gap, ./ =~ Gap(p), = A‘;‘Fp] from Step ® (b).
We now give a similar description of the composition (46) as a simplicially enriched functor using a

simplicial functor to the full subcategory Gapza ) C Gap Y covering Gapz(]m[;[) , C Gap(p)/

act

Guapbur — Gapq Y

to the pullback Gapzc; Y of Gap iy along Gap(] ) € Gap,),- The functor r]_" will make

Gapy,, —) Gapac‘

zl l:

G|apsur —> GapdCtD

ph/

commutative where n is the functor from Section 2.9.3. The construction involves the notation of

Construction 2.22 (kg, af, n;, etc.) and the discussion preceding Corollary 2.25. On objects, n¢
is determined by 7%. On morphisms, it sends ¥: (a)* < (b)* to the right-hand embedding in a

commutative square of embeddings (here @ = (a,...,a) and b = (b, ..., b))

Lke(a) xR o Uke(a)* —— wlab_a(R) C (k%) xR
1

o

Ue(b) xR S Lk (b)* < wlab s (R) < (k3) xR.

The ith component of the upper horizontal map is the embedding
la) xR > (a)" = wlab,a(R) € (k) xR

that is the unique inclusion of components that preserves the lexicographic order inherited from (a]) xR
and (k%) x R and covers the map (a) — (k%) given by the sequence af‘(n,-) < a‘f(ni) +1<...<
ala(ni) +a< ala(ni + 1) (note that this is not a morphism in Gap as it does not preserve the endpoints).
The bottom horizontal embedding is defined in the same way, and the right-hand embedding is defined
to agree with y on the components hit by the horizontal embedding and on the complement as the unique
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inclusion of components that covers the map n*(y): (k a a) — le; ) and preserves the lexicographic
order. Similarly, n% sends a morphism in Gapbur given by an embedding y: (a)* — (oo)* to the
right-hand embeddmg in the square

Lke(a) xR o Uke(a)* — wlab,,a (R) C (k%) xR

;i [

Lka (oo)* «—— wlab,(R) < (¢) xR,

where the top horizontal embedding is the same as before, and the bottom embedding includes the ith
copy of (o )* = [—¢, €] as the unique [—e¢, €]-component in wlab, (R) that maps to a(n;) € (¢) under
the projection (using the notation from Construction 2.22) and to n; € (p z 1)=A{1,...,p—1} c [p]
under the map wlab, (R) — [p] from Step ® (a) II. The right vertical embedding is defined via the left
vertical one on the components hit by the horizontal map and as the unique inclusion of components
that cover the map yz: (k%) — (g¢) and preserve the lexicographic order on (k%) x R and (g x R.
By construction, the composition (46) is equivalent to the coherent nerve of the composition
@ g0

Gapy,, e %T;D m Man
where (—), is the simplicial ‘disjoint unions’-functor of (32). Tracing through the definitions, one checks
that this functor agrees up to equivalence with the functor V(—) for the manifold V = lab, (W, u),
with the k,, different bicollared submanifolds [~€, €] X W (jy = W{u(j)-e.u(j)+e] € labe (W, ) for
je(p= 1) with a(j) € (¢) and @(j) = @(j + 1). Using that a diagram A: K® — & is a colimit
diagram if and only if the natural map colimg A — colimg=A is an equivalence, this implies that it
suffices to show that the colimit

®,act
d

o Mang, (48)

Ncoh(V(]_[))
e 4

, y * ,
colimy,_, (Gap®,) (Ncoh(GapSDur)) Neon(Mang) = PSh(.#any) 4 PSh(@lscd))

is unaffected by precomposing the diagram with the functor Neon(Gapg,,) — Ncon(Gapy,) induced
by inclusion. Using that (i) equivalences in functor categories are detected objectwise, (ii) colimits in
functor categories commute with evaluation at a fixed object D € Discy [Lur09a, 5.1.2.3], and (iii) the
compatibility of the simplicial and co-categorical Yoneda embedding (see Remark 2.8), we see that it is
enough to show that the colimit

Neon(evpoysoV (-))

colimy,, (Gag?,) (Ncoh (Gapg,,) Ncoh(Kan))

is unaffected by precomposing the diagram with Neon(Gapg,) — Neon(Gaps,) for each object
D € Qiscy where y;: Man; — Fun(Many, Kan) is the simplicial Yoneda embedding of the Kan-
enriched category Man,. Using that model category-theoretic homotopy colimits are compatible with
oo-categorical colimits [Lur09a, 4.2.4.1], the claim reduces to showing that the natural map between
homotopy colimits in the Kan—Quillen model structure

oysoV (- oysoV (-
hOCOHmGaPsur(Gapsm M) S) —> hocolimg,, Gapt,, (Gapgur M, S)
is an equivalence. This is Proposition 3.7. O

Proof of Proposition 3.7. This proof will eventually rely on a microfibration argument, which is why we
phrase the argument in the category of topological spaces Top as opposed to simplicial sets S. Relying
on the usual Quillen equivalence between the category of simplicial sets S and that of topological spaces
Top, the claim has an evident reformulation in terms of homotopy colimits of Top-enriched Top-valued
functors, and it is this reformulation that we shall prove.

https://doi.org/10.1017/fmp.2024.25 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2024.25

Forum of Mathematics, Pi 39

To begin with, we note that it suffices to show the claim for D = n x R? for n > 0. Next, we simplify
the functor Emb(n x R¢, —): Man; — Top in terms of the functor Cf': Man,; — Top given by taking
framed configurations (i.e., the pullback of functors

Clr(-) — Map(n, Fr(-))

! 1

Emb(ﬂ’ _) —C> Map(ﬂ’ _)

whose right vertical map is induced by the projection Fr(W) — W of the frame bundle of manifolds
W € Many). Taking derivatives at the centres n X {0} C n x R? gives a natural transformation
Emb(n xR, -) — C,Er(—) which is a componentwise weak equivalence, so we conclude that in order to
prove Proposition 3.7, it suffices to show that the map

hocolimgap,,, (Ci (V(=))) — hocolimgays (CH(V(-)))

is a weak equivalence. This is a map between homotopy colimits in spaces, which we model
by a bar construction. In general, given a Top-enriched category C and Top-enriched functors
F: C — Topand G: C° — Top, the bar-construction B.(F,C,G): A°P — Top is the simplicial space
..... o) F(cp) X C(cp,c1) X -+ X C(cp-1,¢r) X G(cy) where (co, ..., c,) runs through or-
dered sequences of (r + 1) objects in C. If G has weakly contractible values, the thick geometric re-
alisation B(F,C,G) = ||B.(F,C, G)|| is a model for hocolimc F (see, for example, [Riel4, Corollary
9.2.7]; since we take thick geometric realisations, we do not need to worry about cofibrancy issues).
Choosing C = Gapg,r and G = Mapg,: (=, (o)), it therefore suffices to show that

B, (Crftr(v(] - D)v Gapgyr, N[apGap;fur (- (]oo D)) — B. (C;ir(v(] - D)’ Gapl:uw lv[apGnap;fur (- (]oo D)) (49)
induced by Gap,,, ¢ Gapg,, is a weak equivalence on thick realisations. There is an augmentation
B, (Crflr(v(] - D)’ Gapsur? N[apGuapfur (= (]oo D)) - Crflr(v) (50)

induced by composition of embeddings and evaluation of C,flr(—). This admits an extra degeneracy, so
it induces an equivalence on (thick) realisation (see, for example, [Rie 14, Example 4.5.7]). This leaves
us with showing that the composition of (49) and (50)

B (C(V(=)). Gapaur. Mapggp; (= (o)) — €y (V) (51)

is an equivalence on thick realisations. To prove this, we consider a semisimplicial space wall, whose
space of p-simplices is the space of order-preserving functions 7: [p] — (—¢,€) with simplicial
structure by precomposition, and we define an augmented semisimplicial space

MapGapSur((]aD’ OOOD)I — MapGap;'ur((]aD7(]OOD) (52)
for a > 0 whose space of p-simplices

Map%((]al), (oo))p C Map%(Qal), (oo])) x wall,, (53)
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, €]

7(0) (1) 7(2) 7(0) (1) 7(2)

Figure 7. An example of an element of Wall;/ . We suppressed the framings at the points in the configu-
ration indicated by the black points.

is the subspace of pairs of a function 7: [p] — (e, €) and an embedding (a)* < (oo)* that is disjoint
from the image of 7. Varying a, this defines a functor (Gap,,)°P X Aﬁg — Top that is compatible with
(52), so we obtain an augmentation of semisimplicial spaces

B(Ciflr(v(] - D)’ Gapsur’ MapGapEm. (_’ qOO D)') - B(Crflr’ Gapsur’ N[apGapfur (_’ (]OO D)) > (54)

where we have geometrically realised the semisimplicial direction of the bar-construction. In Lemma 3.8
below, we will show that (52) realises to a weak equivalence. Together with the fact that, up to weak
equivalence, it does not matter in which direction one realises a bisemisimplicial space first (so we may
realise the m-direction before the bar-direction) and that the geometric realisation of a levelwise weak
equivalence is a weak equivalence, this implies that the map in (54) realises to a weak equivalence.
It thus remains to show that the augmented semisimplicial space

B(C,f;r(V(]—l)),%,Map%(_,(]OOD)_) s Cr(Y)

obtained by combining (54) and (51) realises to a weak equivalence. To prove this remaining claim,
we consider the sub-simplicial space wallY ¢ walla x C'T(V') consisting of pairs of an order-preserving
function 7: [p] — (—¢, €) and a framed configurations X € C, (V) that is disjoint from the submanifolds
{r(j)} xV; cVforall j=0,...,pandi =1,...,k (here, we used the collars [—¢, €] X V; C V; see
Figure 7 for an example). The projection to wall,, in (53) and the augmentation to C fr(V) assemble to a
semisimplicial map over CI(V)

B(C}(V(~)). Gapyur. Mapggpy, (= (0))s) — wall)’, (55)

which we show to be a levelwise weak equivalence in Lemma 3.8 3.8 (levelwise with respect to
the m-direction, in which we did not realise yet). This leaves us with showing that the augmentation
wally — CI(V) realises to a weak equivalence. This is Lemma 3.8 3.8.

O

We now supply the postponed ingredients to the proof of Proposition 3.7. This finishes the proof of
that proposition and thus also that of Proposition 3.6.

Lemma 3.8.

(i) The thick realisation of the map (52) is a weak equivalence.
(ii) The map (55) is a levelwise weak equivalence.
(iii) The augmentation &: wallY — C(V) realises to a weak equivalence.
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Proof. We begin with a general observation. Let X be a nonempty totally ordered topological poset
(by which we mean topological space X with a total order on its underlying set). If the function
max(xg, —): X — X is continuous for some xg € X, then the nerve of X is weakly contractible, since
the sequence of inequalities x < max(xg,x) > xo induces a zig-zag of natural transformations from the
identity on X to the constant functor with values x, so we obtain a homotopy between the identity map
of the nerve of X and the constant map.

Replacing the (half-)open intervals in the definition of (a)* with closed intervals, we get a weakly
equivalent semisimplicial space. Doing so, it follows from a version of the parametrised isotopy extension
theorem on restricting embeddings to compact submanifolds (c.f. [Pal60]) that the augmentation (52)
is a levelwise fibration. Hence, to prove 3.8, it suffices to show that the semisimplicial space given by
the fibres over an embedding e: (a)* < (oo)* = [—¢, €] realises to a weakly contractible space. This
agrees with the nerve of the nonempty totally ordered poset of real numbers ¢ € (—¢, €) disjoint from
the image of e, so the claim follows from the observation.

To show part 3.8, we choose for all p > 0 an order-preserving function 7: [p] — (€, €) and an
embedding e € Mapg,> ((p), (o)) such that 7 hits every component of the complement of e. This
induces an equivalence

(€ (=), 7): Mapggp, (= (P)) — Mapgy, (= ())p,

which in turn induces the left vertical equivalence in the commutative diagram

B(CR(V(=)). Gapyyr. Mapgap , (= () —— G (V(p))

L |

B(C’f;r(V(]—D)’ Gapsur»MapGapfm(_a (]OOD)p) —_— WaHX

whose top horizontal map is induced by composition and evaluation. The latter is a weak equivalence
for the same reason as (50). The right vertical map is induced by the function 7: [p] — (—¢, €) and the
embedding e, and is easily seen to be an equivalence as well: use that it lands in the deformation retract
of wallg C wall, x C(V) given by those pairs whose first coordinate agrees with 7 (i.e., the space of
framed configurations in the complement V\ U; ; 7(j) x V;) and that the vertical map is induced by the
embedding V(p|) < V\ U;; 7(j) X V; obtained from e which is an isotopy equivalence, so induces an
equivalence on framed configuration spaces. It follows that the bottom horizontal map is an equivalence.

To show that ||¢]| is a weak equivalence, note that its fibre at a framed configuration ¥ € Ci(X) is the
realisation of the nerve of the nonempty totally ordered topological poset of real numbers ¢ € (€, €) such
that {r} xV; c Visdisjoint from X foralli = 1, ... k, so it is weakly contractible by the above observation.
We now show that ||&]| is a microfibration, which will finish the proof because any microfibration with
weakly contractible fibres is a weak equivalence by [Wei05, Lemma 2]. The remaining task is thus to
show that given commutative solid arrows as in

Di x {0} -1 fwallY || c [lwall.]| x CT(V)
e
J,,l/’/ lnen
L
D' x [0,6] ¢ D'x[0,1] e ciw),
there is an 0 < ¢ < 1 for which a dashed lift as indicated exists. For this, we note that the necessary
data to lift a framed configuration ¥ € CT(V) to ||wallY || ¢ ||walla|| x C(V) is a point z € int(AP) for

some number p > 0, a function 7: [p] — (—¢, €) such that X is disjoint from {7 (i)} x V; c V for all
i and j. For any X’ close enough to X, the same data works, so for each x € D', we get lifts y (x, t) for
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t € [0,0,] for some 0 < &, < 1, uses that the subspaces V; C V are closed. By compactness, we can
find a uniform choice of &, for x € D'. This gives the lift. O

Step ®. Unitality

The goal of this step is to prove the following proposition, which uses the terminology of Section 2.5.5
and its variation from Remark 2.7 (i).

Proposition 3.9. The non-unital bordism category ncdBord(d)™ € Caty, (G ats) is quasi-unital and the
following morphism of semisimplicial objects in € at is quasi-unital

E&°: ncBord(d)™ — Funpor (A(/T-J’ Man%).

By the equivalence (18), the non-unital double co-category ncABord(d)™ thus extends to a (unital)
double co-category ncBord(d) € Cat(Fats). The second part of the proposition together with Re-
mark 2.7 (ii) and Lemma 3.5 implies that the composition (45) is quasi-unital in the sense of Remark 2.7
(i), so using the second part of this remark once more, together with Proposition 3.6, we conclude
that the functor of double co-categories nc%ord(d)™ — ALG(PSh(Ziscy)) is quasi-unital and thus
extends by the equivalence (18) essentially uniquely to a functor of double co-categories

E: ncABord(d) — ALG(PSh(Discy)).

Proof of Proposition 3.9. Thisis tedious but straightforward, so do not spell out all details. Recalling that
ncABord(d)™ is the levelwise coherent nerve of a semisimplicial Kan-enriched category ncBord(d)™, the
quasi-unit is given by the coherent nerve of the simplicial functor u : ncBord(d)F(‘)‘] — ncBord(d)™)(1)
which sends a [0]-walled d-manifold (W, u) to (RxW/|, 0y, #") with ’(0) = p(0) and p'(1) = p(0)+1.
On morphisms, it is induced by sending ¢: W/|[,(0)-e,u)+e] = W'l[w (0)=e 1 (0)+e] 10 idR X @q.

To prove that the functor E£°°: ncABord(d)™ — Funpor (AP (4, M ang’) is quasi-unital, recall that
it was constructed as the coherent nerve of the zig-zag

ncBord(d)'[’.“] LN FunGap(Gapq. ,Man?) — FunGap(Gap(],D/,Man?) =~ Funpo (AP ,Man?)

D/ /o]

of semisimplicial objects in Kan-enriched categories. We first construct the top horizontal functor in a

commutative diagram of Kan-enriched categories

%qw/ ? %qop/

zl lz (56)

Gap1), —— Gap(o),,

where ¢: (0) — (1) is the unique morphism. On objects, the top arrow agrees with the bottom one. On
morphisms, the top arrow is given by sending an embedding 7y : wlabQ(R)|7_l (4D s wlaby (R) to the
unique dashed embedding that makes the diagram

Yy (§') XR > wlabg(R)[*(4) — 3 wlabe, (R)[714) = y71(4") x (=€, €)

[ i

(¢) xR >  wlaby (R) ———% wlabgro, (R)

(]anD X (_E’ 6)
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commute where the bottom surjection is the identity if @’(1) € {L, R} and otherwise the union of the
identity over (g’)\a’(1) with the map

r_eUtr_(j-¢)

’ 1 4 ’
wlabe (R)| D = (=, €] U [1 - €1 +€) 9 (~2€,2¢) 22 (=€, €) = wlabyro, (R)] ()

over a’(1); the top arrow is defined in the same way by replacing o’ by a. Applying Fungap (-, Man?)
to (56) results in a commutative diagram of Kan-enriched categories
Fungap(Gap

® ®
Gap ), Manj) — FunGap(GapqlD/ Man7)

:l l:

Fungap(Gapg),»Man$) ——> Fungap(Gap;),,Mang),

80 Ncon(—) applied to the top arrow models the Oth degeneracy map of Funpoep (A(/)‘[).], A an;). Using this
model for the degeneracy and the above quasi-unit for ncBord(d)™ = Neon (ncBord(d)™), it is tedious
but straightforward to check that Neon (EE®®), and thus, E° is quasi-unital. m]

Step ©®. Symmetric monoidal structure

In this step, we promote the functor of double co-categories E : ncABord(d) — ALG(PSh(Discy)) to
a functor of symmetric monoidal double co-categories (modelled as commutative monoid objects in
Cat(@at,); see Section 2.5.3). This is not difficult and essentially amounts to adding an index by a finite
pointed set (s) € Fin, to the previous steps. To avoid being too repetitive, we will not spell out all details.

Convention. Given a space X, a map 4: X — (s) to (s), and a subset A C (s), we denote the
preimage of A by 4|X := A7!(A) in order to distinguish it from the notation X|4 and X|* introduced in
Convention 3.2 and Step @.

Step @’: the bordism category

We start by extending nc%Bord(d) € Cat(Fat,) to a symmetric monoidal non-unital double
oo-category ncHBord(d)™ € CMon(Caty,(Fats,)) as follows: first, we extend the semisimplicial
object ncBord(d)™ € Fun(AmJ sCat) in Kan-enriched categories to an object ncBord(d)™

Fun(Fm*,Fun(AfKS sCat)) = Fun(Fin, x A" sCat); evaluation at (1) € Fin, recovers the previous
construction. The value of ncBord(d)™ at ([p], (s)) for (s) € Fin, is the Kan-enriched category
ncBord(d)™ ], (sy Whose objects are [p]-walled d-manifolds (W, u) together with a map 1: W — (§),
which we thlnk of as a way to decompose W into disjoint summands indexed by (s5). Morphisms from
(W, i, A) to (W', u’, A’) are embeddings of [ p]-walled manifolds that are additionally assumed to com-
mute with the maps to (§). The functoriality of ncBord(d)™ |, (s) inp is deﬁned as for ncBord(d)™ [,
and that in (s) is for ¢ € Fin.({s), (s’)) on objects given by (W w,A) — (¥ <S>|W U, o) and on
morphisms by restricting embeddings. A mild extension of the proof of Lemma 3.3 then shows that
taking coherent nerves yields a commutative monoid object in double co-categories, as wished.

Step @’: the manifold category

Next, we extend the monoidal co-category .#an, (thought of as a cocartesian fibration .Z ang’ — Gap)
to an symmetric monoidal co-category. It will be convenient to view it as a commutative monoid object in
monoidal co-categories .#any € CMon(Mon(‘igatw)) c Fun(Fin,, Fun(Gap, ¥at)). To this end, we
extend the construction of the functor Man — Gap of Kan-enriched categories to yield Kan-enriched
functors Mang™>¢*) — Gap, one for each pomted set (s) € Fin,.. Objects of Man? ) are now triples
(W, (p),A) of (p) € Gap, a smooth submanifold W c () x Rx R® and amap 1: W — (§). The
space of morphisms is defined as before, with the additional requirement that the embeddings have
to commute with the reference maps to (§). Given a map ¢: (s) — (s’) in Fin,, there is a functor
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Man,"> > — Man;"%") over Gap which on objects is given by (W, (p), 1) — (7w, (p),pod)

and on morphisms is induced by restriction. This yields a functor from Fin, to cocartesian fibrations
over Gap. Using straightening and taking coherent nerves then gives the desired commutative monoid
object in monoidal co-categories.

Step @’: from the bordism category to the pre-Morita category of manifolds

By the discussion in Section 2.9.4, taking pre-Morita categories of .#an; € CMon(Mon(%ats))
yields a commutative monoid object ALG(.#an,) € CMon(Fun(A°P, at,)), and our next task is
to upgrade the morphism E£°: ncRBord(d)™ — ALG(.#ang) in Fun(A:®, Fat,,) from Step @ to

a morphism in CMon(Fun(A?rf},%atoo)). To do this, we first define for each (s) € Fin, a variant
Effi@): (ncBord(d)™ e}, (s) — Fungap(Gap , Man?’m) in Fun(A?If’j, sCat) of (42). For this, note
that in the notation of Substep (a) I, projection on R X R*® gives a map lab, (W, u) — W for any [p]-
walled manifold, so if W comes with a map to (s), then so does lab, (W, u). Based on this observation,
the construction of £ gfo from (42) directly generalises to a functor E%f;’ (s) 3 desired by incorporat-
ing the maps to (s). Varying s, the maps E%f(]) ) define a morphism in {:un(Fin*,Fun(A?rg., sCat)).
Taking coherent nerves gives desired extension of E£%° to a morphism in the full subcategory

CMon(Fun(A®, €at,)) < Fun(Fin,, Fun(A, ®at..)),

inj’ inj’

E®°: ncBord(d)™ — ALG(Aany). (57)

Step @’: composite algebras
We claim that the two functors

Mang —> PSh(Man,;) — PSh(Discy) (58)

extend to morphisms in CMon(%at.,) ~ CMon(Mon(%at.)) (see Remark 2.4). For the first map, we
discussed this in Section 2.6. A restriction map on presheaves such as the second map in (58) is only
lax symmetric monoidal in general, but turns out to be actually monoidal in our case:

Lemma 3.10. The lax symmetric monoidal functor PSh(# an;) — PSh(Discy) induced by restriction
along the inclusion " : Discy — Many is strong monoidal.

Proof. By the formula for Day convolution, it suffices to verify that for finite sets S, the inclusion
(Disca X Disca)grpa, C (Mang X Mang) o, is cofinal (recall the convention to take slices before
opposition). By [Lur(9a, 4.1.3.1], it suffices to prove that ((Discy X QZiscd);iRd/)/u has a terminal
object for all triples (M, M’,u) of M,M’ € Mang and u: S X RY «— M U M’. Such a terminal object
is given by the factorisation S x RY = T x R? LT’ x R? 2, M where the decomposition S =T U T is
sothat 7 xR? =y~ (M) and T’ x R% = u='(M"). O

After applying ALG(-) to (58), this gives a composition of morphisms in CMon(Fun(A?IE, Cat))
(see Section 2.9.4) which we may precompose with (57) to arrive at an enhancement of (45) to

E: ncBord(d)™ 5 ALG(Mang) 25 ALG(PSh(.#any)) ~— ALG(PSh(Discy))  (59)

in CMon(Fun(Afrg.,%atm)) c Fun(Fin, x Afg,%atm)). To show that this composition lands in the
levelwise full subcategory ALG(PSh(Discy)) € ALG(PSh(Discy)) (which lies in the full subcategory
CMon(Cat(¥atw)) C CMon(Fun(A?rg, Fat)); see Section 2.9.4), by the Segal property it suffices to
show this after evaluation at (1) € Fin, where it agrees with the previously variant without symmetric
monoidal structures for which we have already checked this property in Step @, so we obtain a
map ncHord(d)™ — ALG(PSh(Discy)) in CMon(Cat,,(Fats)). Finally, a minor extension of the
arguments of Step ® to incorporate indexing maps to finite sets enhances this to a functor of symmetric

monoidal double co-categories E : ncBord(d) — ALG(PSh(Jiscy)).
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Step @. Variants

We now define several variants of nc%ord(d), related by a diagram

Bord(d) —— Bord(d)? —— PBord(d - 1)
. + . (©0)
ncBord(d) — ncRBord(d)® —— ncRBord(d — 1)

of symmetric monoidal double oo-categories. Informally speaking, JBord(d) is obtained from
ncPord(d) by restricting to compact bordisms between closed manifolds and diffeomorphisms be-
tween them; the versions with a (—)?-subscript allow manifolds to have boundary, all vertical maps and
the left horizontal maps are induced by inclusion, and the right horizontal maps are induced by taking
boundaries.

Step @.1. Compact variant

To define the compact variant Bord(d), we say that a [ p]-walled d-manifold (W, u) is of of compact type
if the subspace W|[,(0)-e,u(p)+e] S W is compact. Restricting to [p]-walled d-manifolds of compact
type in the construction of nc%ord(d) and to spaces of diffeomorphisms instead of embeddings defines
the symmetric monoidal double co-category JBord(d). By construction, it comes with a levelwise
subcategory inclusion into nc%ord(d). This is the leftmost vertical map in (60).

Step @.2. Variants with boundary

To define the variant nc%ord(d)? of ncBord(d) involving manifolds with boundary, we replace [p]-
walled d-manifolds (W, u), where W c R x R* is required to have no boundary, by [p]-walled
d-manifolds with boundary: these are pairs (W, u) of a smooth submanifold W c R x [0, o0) X R®,
possibly with boundary, together with an order-perserving function u: [p] — R such that

(1) (W, u) satisfies the conditions in the definition of [p]-walled d-manifolds (see Step @),
(i) oW =W N (Rx {0} x R®) such that W N (R x [0, €] Xx R®) = dW X [0, €] under the appropriate
identifications.

The space Emb((W, ), (W’, u’)) of embeddings of [ p]-walled d-manifolds with boundary is defined
in the same way as in the case without boundary, except that we demand in addition that the embedding
@1 Wlin-e.u(prrel = Wi ©0)-e.u(p)+e) also satisfies

(i) ‘P_I(R X [0’ 6] X Roo) = (Wl[,u(O)—e,,u(p)+e]) N (R X [0, E] X Roo)7
(i) under the appropriate identifications, ¢ restricts to an embedding of the form

(0¢ xido,e]): OWl[u(0)-e.u(pr+el X [0, €] = OW'l [ (0)-e w(p)+e) X [0, €]
for some embedding d¢: OW| [, (0)-e,u(p)+e] = OW’|[u(0)=e,u(p)+e]-

Replacing the [p]-walled d-manifolds in the construction of ncZBord(d) by [p]-walled d-manifolds
with boundaries in the sense just described gives rise to a symmetric monoidal double co-category
ncBord(d)? which receives a levelwise full subcategory inclusion from nc%ord(d), induced by the
inclusion RXR® = Rx {1} XxR® c Rx [0, o) X R®. This inclusion restricts to a functor Bord(d) —
Bord(d)? where Bord(d)? is the symmetric monoidal double co-category given as the levelwise
subcategory of nc%Bord(d)? obtained by restricting to [ p]-walled d-manifolds with boundary of compact
type, defined by the same condition as for the variant without boundary, and to diffeomorphisms between
them instead of embeddings. This explains (60), except for the horizontal functor of the right square
which is induced by sending a [p]-walled d-manifold with boundary W c R X [0, c0) X R® to its
boundary W = W N (R x {0} x R®), with the same walls, and restricting embeddings to the boundary.
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Step @.3. Tangential structures without boundary
Associating to a smooth manifold M its frame bundle Fr(M) with its canonical right GL,4(R)-action
induces a functor of Kan-enriched categories

(Man$)(1; — Fun(GLY, S)°, (61)
where Man? is the symmetric monoidal co-category from Step @ and Step ©, and GLj; is the (singular
simplicial set of) the topological group GL4(R) viewed as a Kan-enriched groupoid with one object.
The superscript (—)° indicates that we pass to the full subcategory on the fibrant-cofibrant objects in the
projective model structure on Fun(GL(}, S), as in [Lurl7, A.3.3.2]. Let us explain why functor Fr(-)
takes values in this subcategory. First, Fr(M) is fibrant: in the projective model structure, an object is
fibrant if its underlying simplicial set is a Kan complex, and this is the case for Fr(M) as a singular
simplicial set of a topological space. Second, Fr(M) is cofibrant: because the map Fun(GLZp ,8) —> S
that forgets the action is the right adjoint in a Quillen adjunction, each map GL4(R) XS — GL4(R) xS’
with canonical right GL;(R)-action and § — S’ a monomorphism is a cofibration, and Fr(M) — being
locally trivial — is isomorphic to a (possibly transfinite) composition of pushouts against such maps.

Applying coherent nerves to the map (61) and viewing GL, as an co-category via the coherent nerve
gives a functor of co-categories

(Man$)(1) = Neon((Man$)(1)) — Neon(Fun(GL(;, 8)°) = Fun(Neon(GLY), 8) = PSh(GLy),

where the second equivalence is an instance of [Lur(9a, 4.2.4.4]. Since the unit @ € (A an?)“] is initial
and so ./ an} is unital as an co-operad [LLur17, 2.3.1.1], this functor extends uniquely to a lax symmetric
monoidal functor Fr(-): .#an® — PSh(GL,)", where PSh(GL,) carries the cocartesian symmetric
monoidal structure [Lurl7, 2.4.3.9]. Note that Fr(M) U Fr(N) — Fr(M U N) is an equivalence for
manifolds M and N, so this is actually (strong) symmetric monoidal.

By an easier version of the argument in Step @, the composition

ALG(Fr(-))
—_—

ncBord(d) 5 ALG(Many) ALG(PSh(GLy))

lands in the Morita double co-category ALG(PSh(GLy)) ¢ ALG(PSh(GLy)), which is equivalent to
COSPAN*(PSh(GL,)) (see Section 2.10.2). We thus arrive at a functor of symmetric monoidal double
oo-categories Fr(—): ncABord(d) — COSPAN'(PSh(GL,)). Informally, this is given by sending a
bordism W: P ~» Q to the cospan Fr(c(P)) — Fr(W) « Fr(c(Q)), where c(P), c(Q) c W are collar
neighbourhoods of the boundary components.

Definition 3.11. Given a rangential structure 8 € PSh(GLy), we define ncBord? (d) and Bord? (d) by

the following pullbacks in symmetric monoidal double co-categories:

Bord? (d) — ncBord?(d) ——> COSPAN*(PSh(GL,)/¢)

! l |

Bord(d) — ncBord(d) ——"Ly COSPAN*(PSh(GLy));

here, the rightmost vertical map is induced by the forgetful functor PSh(GL4);¢ — PSh(GL,) which
preserves colimits [Lurl7, 1.2.13.8] and thus induces a functor on cospan categories.

Varying 6 induces functors nc%ord ™ (d), Bord?) (d): PSh(GLy;) — CMon(Cat(®Fats)). In par-
ticular, for a map § — 6’ in PSh(GL,), we have functors

Bord? (d) — Bord? (d) and ncRBord? (d) — ncBord? (d). (62)
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Step @.4. Tangential structures with boundary
To define the version nc%ord(d)? that includes tangential structure, one uses a variant

E&°: nc%’ord(d)a — ALG(%anZ) (63)

of the map E£°: ncBord(d) — ALG (A any) between commutative monoid objects in simplicial co-
categories. The symmetric monoidal co-category . ang is defined in the same way as .# an, except that
we use submanifolds W C (| g]) x Rx [0, co) X R® that may have boundary, but have to satisfy the evident
analogue of (ii) in the definition of a [ p]-walled d-manifold with boundary. With this modification, the
construction in Step @ and its extensions in Step ® and Step ©® extend almost verbatim to give the map
(63) in CMon(Fun(A°P, Fats,)).

Assigning to a manifold W € (/%ang’@’)[l] the map Fr(dW x [0, €]) — Fr(W) induced by the
inclusion, induces an extension of the functor (. anj)[ 1] — PSh(GL,) to a functor of co-categories

(Man%®)1] —> Fun([1] X Neon(GLS), &) =: PSh([1] x GLy)

which, by the same argument as in the case without boundary, extends to a symmetric monoidal functor
Fr(-): #« an2’® — PSh([1] x GL4)", where the target is equipped with the cocartesian symmetric
monoidal structure. This functor allows us to extend Definition 3.11 to define symmetric monoidal
double co-categories

ncRBord?(d)? and ncHBord? (d)?

for any tangential structure 6 with boundary by which mean a map 6 = (6°—6°) € PSh([1] x GLy).

Step @.5. Taking boundaries with tangential structures
Next, we extend the ‘taking-boundaries functors’ nc%ord(d)® — nc%Bord(d — 1) and Bord(d)? —
HBord(d — 1) from (60) to include tangential structures. This involves the commutative diagram

(Man®);;; — PSh([1] x GLg) PSh([1] x GLy)

l lres (64)

(Man_,);; — PSh(GLy_1) ——=— PSh(GL,)

of co-categories where the leftmost vertical map is induced by sending a submanifold W c () x R x
[0, o0) x R™ to its boundary (i.e., the intersection with () X R x {0} x R®). The arrow labelled res is
induced by precomposition with the inclusion {1} x GL; C [1] X GL4, and the arrow labelled indg_l is
the left adjoint to the functor resg_l : PSh(GLy4) — PSh(GL,-;) induced by precomposition with the
inclusion GL4_1 (R) € GL4(R) using the first (d—1)-coordinates. One way to provide the commutativity
of (64) is to recognise this diagram as the coherent nerve of a diagram of Kan-enriched categories (using
[Lur09a, 5.2.4.6] for indg_l) and then use the fact that the extension indz_1 (Fr(oW)) — Fr(0Wx|0, €])
of the GL;_ (R)-equivariant map Fr(dW) — Fr(dW X [0, €]) induced by the inclusion W x {0} C
OW x [0, €] and the canonical non-zero vector field on [0, €] is a natural equivalence of GL;(R)-spaces.

Equipping all categories of presheaves with the cocartesian symmetric monoidal structure and
using the universality property as in Step @.3, we can extend (64) to a commutative diagram of
symmetric monoidal co-categories. Applying ALG(—), using the E€°-functors, and the equivalence
ALG(®) ~ COSPAN* (%) for cocartesian &, this leads to a commutative diagram of symmetric
monoidal double co-categories
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Bord(d)? —— ncPBord(d)? — COSPAN*(PSh([1] x GL,)) = COSPAN*(PSh([1] x GLy))

J/ \L ) (res).

ind?_ ),
SBord(d — 1)? < ncBord(d — 1) —> COSPAN*(PSh(GLy_1)) M} COSPAN™*(PSh(GLy))
For a tangential structure with boundary 6 = (6%—6°) € PSh([1] x GL), this induces extensions
Bord? (d)° — Bord™i-19)(d-1) and ncBord?(d)® — ncBord™i-1") (d - 1)

of the ‘taking boundaries’ functors from (60).

Example 3.12. The tangential structure with boundary encoding framings is fr := (id: GL4(R) —
GL4(R)), so the above in particular gives a functor of symmetric monoidal double co-categories
95’0rdfr(d)a - ,%ordl_fr(d — 1)? from the compact framed d-dimensional bordism category with
boundary to the d-dimensional bordism category with boundary, and the tangential structure 1—fr :=
resz_1 (GL4(R)) encodes framings of the once-stablised tangent bundle.

Step ®. Product functors

Given a smooth p-manifold P, possibly with boundary, we now explain the construction of a ‘taking
products’ functor of symmetric monoidal double co-categories

(P x -): ncBord(d)? — ncRBord(d + p)?, (65)
which restricts to product functors of the form
nc%ord(d) — ncBord(d + p), RBord(d)? — Bord(d + p)?, and Bord(d) — Bord(d + p)

if P has no boundary, is compact or is closed, respectively. This will involve smoothing corners.

We fix an embedding P c [0, ) x RY for some N > 0 which satisfies the condition (ii) in the
definition of a [ p]-walled d-manifolds with boundary (ignoring the first R-factor). Furthermore, we fix
once and for all a homeomorphism ¢ : [0, o) X [0, c0) — [0, c0) X R such that

(i) y agrees with the identity on [0, o0) X {0} and with the clockwise rotation by /2 on {0} X [0, c0).
In particular, it fixes the origin.
(ii) y is a diffeomorphism away from the origin.
(i) ¥~'([0,€] xR) C ([0, €] x [0,00) U [0, c0) x [0, €]),
@iv) ¥ ([0, 6] X [0,00) U [0, ) X [0,5]) C [0, €] X R for some fixed0 < § < €
(v) ¢ fixes the point (1, 1).

Using ¢ and its properties (i)—(iii), given a [ p]-walled d-manifold with boundary (W, u), we obtain a
[p]-walled (d + p)-manifold with boundary (W(P x W), u) with ¥ (P x W) the image of P X W under

N 0o SWap N o
[0,00) X RY X RX [0,00) X R® — R X [0, 0) X [0, 0) X R" X R

idRleXidRN SR® ide[oqw) xshift
_

Rx[0,00) x RXRY xR® ——— 5 R x [0, ) Xx R®,

where the first map swaps the right [0, co) x RN -factor with the middle R x [0, co)-factor. For instance,
condition (iii) is used to ensure the condition ¥(P x W) N (R X [0, €] X R®) = d(¥P(P x W)) x [0, €]
in the definition of a [p]-walled manifold with boundary. Note that W (P x W) comes with a preferred
homeomorphism P x W = W(P x W) which is a diffeomorphism away from 9P x W as a consequence
of condition (ii). Taking products with P and conjugating with ¢ induces a map

Emb((W, ), (W', ")) — Emb((¥(P x W), u), (¥ (P xW'), ")),
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which is well-defined due to the collaring condition (ii) on embeddings between [ p]-walled d-manifolds
with boundaries. Going through the construction of nc%ord(d)?, one checks that the assignment
(W, u) — (P(P x W), u) together with the maps between embedding spaces just discussed leads to
functors as desired.

These product functors can be extended to include tangential structures. To this end, one notes that
there is a functor of symmetric monoidal categories (P X —): ./ anz - M an?} +q defined as for (65).
On underlying co-categories, this participates in a diagram of co-categories

(Mtan’®);;) ——— PSh([1] x GLy)

4
PSh([1] x GL, x GLy) (66)

. ap+d
\Lmdp.d

(Man®2) 1) ——— PSh([1] X GLsa)

(Px-)

where the upper right vertical arrow is the functor that sends a map X — Y of GL;(R)-spaces to
(Fr(P) X X) Urrapxo,enxx (Fr(dP x [0,€]) XY) — Fr(P) xY

viewed as a map of (GL,(R) x GL4(R))-spaces, and the functor 1ndp is the left adjoint to the
restriction along the inclusion GL, (R) x GL;(R) € GL,,+4(R). (66) can be extended to a commutative
square of co-categories in a way 31mllar to what we did for (64): recognise it as the coherent nerve of a
diagram of Kan-enriched categories and then use that the two compositions are related by a zig-zag of
natural equivalences. In this case, the zig-zag is provided by the commutative diagram

resijFr((')‘I‘(P x W) x [0, €]) S resgijr(\P(P X W))
+ +
(Fr(int(P)) X Fr(c(W)))) Ukc(c(p))xEr(c(w)) (Fr(c(P)) X Fr(int(W)) —> Fr(int(P)) X Fr(int(W))
v +

(Fr(P) X Fr(0W x [0, €])) Urr(apx[0,e]))xEr(Wx[0,e]) Fr(OP x [0, €]) X Fr(W) —> Fr(P) x Fr(W)

of (GL, (R) x GL4(R))-spaces which is natural in W and consists of vertical equivalences when taking
adjoints with respect to the (ind” +dd,res§ +d) -adjunction. Here, ¢(P) := P X (0,6) C int(P) and
c(W) = 90W x (0,8) c int(P), the lower vertlcal arrows are induced by the inclusions int(P) C P and
int(W) c W, and the upper vertical arrows by the preferred embedding int(P) X int(W) — ¥(P x W)
induced by y; this uses property (iv) of . Similarly to the final paragraph of Step @.5, (66) yields a

commutative diagram of symmetric monoidal double co-categories

ncRBord(d)® ———3 COSPAN*(PSh([1] x GL,))

px(_)l l (67)

ncHord(p +d)? —— COSPAN*(PSh([1] X GL14)).

Now given a tangential structure with boundary A = (19 — 1°) € PSh([1] xGL p), and a A-structure on
P in the form of a map £p : (Fr(P), Fr(dP x [0, €])) — (2°,19) in PSh([1] x GL,), then (67) induces
a functor of symmetric monoidal double co-categories

((P, tp) x (=)): ncBord? (d)? — ncRBord#*(@V (p + d)?,
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where glue(d, 1) = 1nd”+d (2° X 02 U 0,90 19 x 8° — 2°x 6°) € PSh([1] X GL +4).This also extends
the variants of the product functors mentioned below (65), where property (v) of i is used for the
variants without boundary.

Example 3.13. In the case of framings fr, = 4 = (id: GL,(R) — GL,(R)) and fr; = 6 =
(id: GLg(R) — GL4(R)), we have glue(fr,,fry) = frg.p,, so omitting the subscripts, we have
a product functor of symmetric monoidal double co-categories ((P,£p) X (-)): ncBord™(d)? —
ncBord™ (p + d)? for framed p-manifolds P, and similarly for the compact variants.

4. Properties of E, embedding calculus and Disc-structure spaces

The main outcome of the previous section is the construction of a functor
E: ncABord(d) — M od(d) := ALG(PSh(Discy))

of symmetric monoidal double co-categories, in the sense of Section 2.5.3, from a bordism category of
(possible noncompact) (d—1)-manifolds to a Morita category on the category PSh(Qisc,) of presheaves
on a category Discy of finite disjoint unions of d-dimensional Euclidean spaces and codimension
0 embeddings between them. We also constructed variants %Bord(d), PBord(d)? and ncBord(d)?
of ncPord(d), related by a diagram of symmetric monoidal double co-categories (60), as well as
enhancements with tangential structures of all of these bordism categories.

This section has several purposes: first, in Section 4.1, we give more practical descriptions of these
double co-categories by describing their objects and mapping co-categories in a model-independent and
more intuitive manner, and we explain the functor E in these terms. For most of the arguments in the
later sections, this discussion is sufficient, and there is no need to know the specifics of the construction
in Section 3. Second, we establish three properties of the functor E:

e a descent property in Section 4.2,
e a close relationship to Goodwillie-Weiss’ embedding calculus in Section 4.3, and
e an isotopy extension property in Section 4.4.

Finally, in Section 4.5, we give the precise definition of the Disc-structure spaces.

4.1. Mapping oo-categories

Recall from Section 2.5.4 that a double co-category € has mapping co-categories €4 p for objects
A, B € 6o}, and these feature in composition functors €4 g X €p,c — Fa,c. We now spell these out
for some of the double co-categories of the previous section.

4.1.1. ncABord(d)

In short: objects of nc%Bord(d) are (possibly noncompact) (d — 1)-manifolds P without boundary,
and given two such manifolds P and Q, the objects of the mapping co-category nc%ord(d)p o are
bordisms W: P ~» Q and the mapping spaces in nc%ord(d)p, o are given by embedding spaces relative
to the boundary. The composition in these mapping co-categories is by composing embeddings, the
composition functor ncBord(d)p,o X ncBord(d)g r — ncHBord(d)p g by gluing bordisms, and the
symmetric monoidal structure by disjoint union.

More precisely, given a (d — 1)-manifold P, we may use the weak Whitney embedding theorem to
choose an embedding P ¢ R* and can thus view P as a [0]-walled manifold (R x P, ) in the sense
of Step @ of Section 3 (and hence as an object in nc%ord(d)o]) by setting p(0) = 0. Moreover, it is
easy to see that each object in nc%ord(d)o; is equivalent to one of this form, so we will no longer
distinguish between abstract (d — 1)-manifolds and objects in nc%ord(d)|o;. Similarly, given a bordism
W = P ~ Q between (d — 1)-manifolds, we may embed it suitably collared in [0, 1] X R* so that
((00,0] x PUW U [1,00) X Q, u) with u(i) =i fori =0, 1is a [1]-walled manifold and thus an object
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in the mapping co-category ncord(d)p,o. Again, any object is equivalent to one of this form, so we
will also no longer distinguish between abstract bordisms P ~» Q and objects in ncABord(d)p, o. The
identification of the mapping spaces in ncBord(d)p,¢ is justified by the following:

Lemma 4.1. Given possibly noncompact bordisms W,W’: P ~» Q between (d — 1)-manifolds P, Q
without boundary, there is a natural equivalence Map,. go.4(a), o (W,W’) ~ Embg(W,W’) in §.

Proof. Using that mapping spaces in a pullback of co-categories are pullbacks of the mapping
spaces, and that coherent nerves of Kan-enriched categories preserve mapping spaces, we see
Map,cgorda(a)p., (W- W) is the fibre (i.e., pullback along the indicated inclusion of a point) in &

res

Mapnc%’ord(d)p,Q (W, W/) = ﬁbid (Emb(W, W/)w — Emb(P, P) X Emb(Q, Q)),

where the subscript (—),, indicates that we restrict to the subspace of embeddings e that in some fixed
collars, P x [0, 1] < W and Q x [-1,0] < W have the form id X ep and id X eg for self-embeddings
ep and eg of P and Q, respectively. The map res is induced by restriction to e p and eg. It is not hard to
see that this is a Kan fibration, so the fibre in & agrees with the point-set fibre over (id, id). The latter is
Emby (W, W’), so we obtain an equivalence as claimed. O

4.1.2. SBord(d)

Under the identification of the objects in nc%ord(d)|o) as (d—1)-manifolds P without boundary, those in
the subcategory Jord(d)[o) correspond to (d — 1)-manifolds P without boundary that are also compact.
Similarly, the objects in the mapping co-categories of the levelwise subcategory Bord(d) ¢ ncABord(d)
correspond to compact bordisms between closed manifolds. The morphism spaces in the mapping co-
categories are given by spaces of diffeomorphisms fixing the boundary. Hence, unlike for nc%ord(d),
all mapping co-categories of Bord(d) are co-groupoids and can be regarded as spaces. Thus, by the
discussion of Section 2.5.6, not much is lost by applying (=)(*-!) and considering the symmetric
monoidal co-category JBord(d) (") with objects closed (d — 1)-manifolds and mapping spaces

%Ord(d)p’Q = Mapﬁord<w,1)(d) (P, Q) = |_|[W] BDiff,’)(W),

where [W] ranges over compact bordisms W: P ~» Q up to diffeomorphism relative to the ends.
Composition is by gluing bordisms and the symmetric monoidal structure by disjoint union.

4.1.3. ncBord’ (d)
In short: given a tangential structure 6 in the form of a GL4(R)-space 6, the objects of nc%Bord? (d)
are (possibly noncompact) (d — 1)-manifolds P with a @-structure on their once-stabilised tangent
bundle (i.e., a GL4(R)-equivariant map 6p: Fr(I X N) — 6 where Fr(—) denotes the frame bundle
and I = [0, 1]). The objects of the mapping category nc%orde(d)( P.6p).(Q.6) are bordisms with -
structures and the morphisms are §-embeddings, fixed on the boundary. The composition and monoidal
structure is as in nc%ord(d), but with the addition of §-structures.

To justify this, recall from Section Step @.3 that the noncompact bordism category with 6-structures
is defined as the pullback of symmetric monoidal double co-categories

nc%ordo(d) = n&%’ord(d) XCOSPAN*(PSh(GLd)) COSPAN+(PSh(GLd)/g),

so the claimed description of the objects follows by using that forgetting symmetric monoidal structures
preserves pullbacks and that pullbacks of double co-categories are computed levelwise. This also shows
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that the mapping co-categories are given by pullbacks of co-categories

ncRBord? (d)(p’gp),(Q’gQ) —_— COSPANJ“(PSh(GLd)/g)HP,gQ

! l

ncRBord(d)p,o —— COSPANT(PSh(GLy))rr(1xP).Fr(1x0)>

which justifies the description of the objects in nc%ordg(d)( P.6p).(0.60) When combined with the
equivalence COSPAN* (%), =~ @ aup, mentioned in Section 2.10. Combining this discussion with
the fact that mapping spaces in a pullback of co-categories agree with the pullback of the mapping
spaces, we arrive at the following precise version of the description of the mapping spaces in the
mapping co-category nc%orde(d)(p,gp),(QﬁQ).

Lemma 4.2. Given (d — 1)-manifolds (P, 0p), (Q, 8¢) without boundary together with 0-structures on
their once-stabilised tangent bundle, and 0-bordisms (W, 0w ), (W’,0w-): (P,0p) ~ (Q,00), there
is a natural pullback diagram in §.

Mapnc@orde(d)(pngHQ’gQ) ((W» HW)» (W,’ GW’)) > Map(PSh(GLd)/H)HPuHQ/ (6W9 GW’)

! 1

Emba(W, W/) ) MapPSh(GLd)Fr(IXP)uFr(IXQ)/ (FI‘(W), FI‘(W’))) .

4.1.4. RBord®(d)

The previous discussion of nc%Bord? (d) applies also to the levelwise subcategory ZBord?(d) when
restricting to compact manifolds throughout. By a minor enhancement of the argument in Section 4.1.2,
the mapping co-categories JBord? (d) are co-groupoids, so as for Bord(d), not much is lost by applying
(=) and considering the symmetric monoidal co-category ZBord? (d)(®! with closed (d — 1)-
manifolds with 6-structure on their once-stabilised tangent bundle as objects and as mapping spaces

Bord? (d)(p,op).(0,00) = Map go,4¢ () . (P, Op), (Q,00)) = Lw) BDiff§(W,0p LU fgp), (68)

where [W] ranges over compact bordisms W: P ~» Q up to diffeomorphism relative to the ends and
BDiffz(W, 0p L Bp) is the quotient MapPSh(GLd)Fr(le)uFr(luQ)/ (Fr(W), 0) /Diff 53(W) where the action is
induced by precomposition (by standard bundle theory, this agrees with other definitions of BDiffg (=)
in the literature such as that in [GRW 14, Definition 1.5]). Composition is given by gluing 6-bordisms
and the symmetric monoidal structure by disjoint union.

4.1.5. Variants with boundary

The discussion for the variants nc%ord(d)? and %Bord(d)? with boundary and their enhancements with
tangential structures ncBord? (d)? and Bord? (d)? is the same as that for the version without boundary,
except that we allow the (d — 1)-manifolds that appear as objects to have boundary and the bordisms
W: P ~ Q to be bordisms of manifolds with boundary. The bordisms thus come with a decomposition
AW = W U "W U 6;W into codimension 0 submanifolds where the ends 9;Ws are disjoint and
come with identifications P = 9gyW and Q = 9;W, and the horizontal boundary O"W meets the ends
in a corner. Embeddings between such manifolds are required to preserve this decomposition, map the
interior to the interior, and be the identity near the ends, but they are allowed to move the horizontal
boundary. The discussion for the variants nc%ord? (d)? and Bord? (d)? with tangential structures is
similar; on the ends, the tangential structures are fixed, but not on the horizontal boundary.
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4.1.6. Discy and A od(d)

The objects of the symmetric monoidal co-category Piscy can be identified with d-manifolds without
boundary that are diffeomorphic to a finite disjoint union of R%’s. The mapping spaces are given by
codimension 0 embeddings and the symmetric monoidal structure by disjoint union. Day convolution
equips the co-category PSh(Zisc,) of §-valued presheaves with a symmetric monoidal structure, and the
objects of #od(d) = ALG(PSh(Zisc,)) are associative algebras in PSh(Qiscy) (see Section 2.9). The
mapping co-category between two associative algebras A, B € #od(d) is the co-category A od(d)a.p
of (A, B)-bimodules and bimodule maps between these (see Section 2.8 where this category is denoted
BMod 4, g (PSh(Qiscy))). The composition functors .#Zod(d)a g X M od(d)g.c — Mod(d)a,c are
given taking tensor products over B, which we denote by (=) Up (—) to emphasise the similarity with
the bordism category. The symmetric monoidal structure is given by external tensor product.

4.1.7. The functor E
In terms of the identifications of the objects and mapping categories of source and target explained in
Sections 4.1.1 and 4.1.6, the functor E: nc%Bord(d) — M od(d) of symmetric monoidal double co-
categories is on objects given by sending a (d — 1)-manifold P to the presheaf Epy; = Emb(—, P X I)
where I = [0, 1] is equipped with the algebra structure induced by ‘stacking’. On mapping co-categories,
it is given by the functor ncBord(d)p,o — M od(d)kp,, Ep,, Which sends a bordism W: M ~ N
to the presheaf Ew = Emb(—, W) with its (Epxs, Egxr)-bimodule structure by ‘stacking’, using fixed
collars P X I — W and Q x I — W of both ends, where the convention is that the canonical vector
field on P x [ is inwards pointing and that of Q X I is outwards pointing. On morphisms, it sends an
embedding W < W’ that is fixed on the boundary to the map Ew — Eyw- induced by postcomposition.
That E is a functor of double co-categories in particular says that, given bordisms W: P ~» Q and
W’: Q ~ R, we have a preferred equivalence Ewu,w = Ew UEg,,, Ew’ of (Epxr, Erxr)-bimodules.
We will often restrict the functor E to the levelwise subcategory Bord(d) of ncABord(d) and pass
to underlying symmetric monoidal co-categories (i.e., apply the functor ()" from Section 2.5.6,
which has little effect on JBord(d); see Section 4.1.2) to obtain a functor of symmetric monoidal co-
categories E: Bord(d) " — Mod(d)=V. Recall from Section 2.5.6 that the mapping spaces of
Aod(d) ™" are given as Map o4(q) 1 (A, B) = ﬂod(a’);g.

4.2. Descent with respect to Weiss co-covers

We now prove a descent property for the mapping spaces in #0d(d)gp,; . Eo,, for (possibly noncompact)
(d — 1)-manifolds P and Q without boundary. To state it, given a bordism W: P ~» Q, we write O(W)
for the poset of open subsets of W containing a neighbourhood of the boundary, ordered by inclusion.
A subposet % C O(M) is a Weiss co-cover of M if any finite subset of M is contained in some O € %.
Such a cover is complete if it contains a Weiss co-cover for (peq- O for any finite subset ' ¢ %. A
functor F': O(W)°P — € to an co-category € satisfies descent for Weiss co-covers if for every nonempty
O € O(W) and every complete Weiss co-cover % C O(0), the diagram F(O) — {F(U)}y ey is a limit.

Proposition 4.3. For a nonempty bordism W € ncBord(d)p o and a bimodule X € M od(d)Ep,; Egy,»
the functor Map ;o4 DEprr Egr (E),X): O(W)®? — & satisfies descent for Weiss co-covers.

Proof. Tt suffices to show that for a given complete Weiss co-cover % C O(O) of nonempty open
subset O € O(W), the diagram {Ey}yey — Eo is a colimit diagram in #od(d)ep,, Ep,; =
BModg,,; Eg,, (PSh(Discy)). Since % is cofiltered, its nerve is weakly contractible, so by Lemma 2.17
(i), it suffices to show that the diagram is a colimit diagram after applying the forgetful functor
to PSh(Discy). The result is is the diagram {Emb(—,U)}yecy — Emb(—, O) in PSh(Qiscy), so
as colimits in functor categories are computed objectwise [Lur09a, 5.1.2.3], it suffices to show that
{Emb(T x R?,U)}y ey — Emb(T x R4, 0) is a colimit diagram in & for all finite sets T, or equiva-
lently, that it is a homotopy colimit diagram in the Kan—Quillen model structure on simplicial sets. This
holds by a well-known argument; see the proof of [KK24a, Lemma 6.4]. O
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Remark 4.4. The assumption that W is nonempty is necessary: for W = @, the empty cover % = @ is a
cover of W, but Ey is not the colimit of the empty diagram as Ey (@) = *.

4.3. Relationship to embedding calculus

Using Proposition 4.3, we now relate the functor nc%Bordp, g — #0d(d)pxi,oxr induced by E on
mapping oco-categories to the map Embg (W, W’) — T .Embg(W, W’) provided by embedding calculus
as introduced in [Wei99, Weil 1].

Theorem 4.5. Given bordisms W, W' € nc%Bord(d)p o, the map
Mapnc(%’ord(d)p,Q (W, W’) — Map/%Od(d)ElevEQxl (Ew, Ewr) (69)

agrees up to equivalence with the map Embg(W,W’) — ToEmbg (W, W’) from [Wei99].

Proof. We consider the poset % of open subsets U C W that are unions U = ¢(P) U D U ¢(Q) of three
disjoint open subsets of W where c¢(P) and c¢(Q) are open collars of the boundary components P and Q
and D is diffeomorphic to 7 x R¢ for some finite set T, ordered by inclusion. Considering U € % as an
object in ncABord(d)p,p, we obtain a commutative square in &

Mapuegora(ayp o (W: W) —————— MO yod(ae,,, £y, (EWEw’))

@] e

. O
limy e (Mapyeggord(ayp o (Us W) — limyen (Mapﬂod(d)prl’EQM (Eu,Ew")),

whose vertical arrows are induced by restriction. By Lemma 4.1, the map (1) agrees with the restriction
map Embg(W,W’) — limycy Embg(U, W’) which in turn agrees with the map Emby (W, W’) —
TEmbyg(W,W’) by the discussion in [Wei99, Sections 5, 10], so the claim follows once we show that
@ and @) are equivalences. As % c G(W) is a complete Weiss co-cover, the map 3) is an equivalence by
Proposition 4.3. To prove that the map ) is an equivalence, we show that for all U € %, the individual
maps

E: Emby(U,W’) ~ Mapnc‘%ord(d)P’Q(U, W) — Map'%Od(LDElevEQxI (Ey,Ew-) (70)

before taking limits are equivalences. To give a convincing proof of this, we rely on the specific
construction of E from Section 3 and refer to that section for the notation. Recall that the functor E arose
from restricting the codomain of the composition of simplicial objects in co-categories

neBord(d) 2o ALG(Manyg) ~—2 ALG(PSh(Discy)), 1)

where (¢* o y): Many; — PSh(Discy) is the Yoneda embedding followed by restriction along the
inclusion ¢: Discy < M an,. This factorisation induces a commutative diagram

o ( *o )*
nc(%’ord(d)p,Q L} BMOdEgeO(P)’EgeO(Q) (ﬂand) L} ‘%Od(d)EPx[,EQxl

\Linc lUEge"(P),EgeO(Q) \LUEP’EQ

ncHord(d)| > Mang o > PSh(Qiscy),

where the top composition is obtained from (71) by evaluation at [1] and taking fibres of the face
maps (dy, d;), the middle and rightmost vertical map are the forgetful maps from Lemma 2.17 and
the bottom left horizontal map is the coherent nerve of the functor ncBord(d)[;; — Many of Kan-
enriched categories that sends a [1]-walled manifold (W, i) to W|(,(0)-e,u(1)+e)- In particular, for
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U =c(P)UDUc(Q) € % considered as an object in ncABord(d)p ¢, the inclusion D C U viewed as
a morphism in .#Zany gives a morphism D — Ugwo(p) gro(0) (E®°(U)) in M any, so by adjunction,
a morphism Fgeeo(p) geeo(g) (D) — E®°(U) in BModEgeeo(p), geeo (@) (M ang) which we claim to be an
equivalence. By Lemma 2.17 (ii), it suffices to show that the image

UEgco(P>,Egco(Q)(FEgco(P)’Egco(Q) (D)) —> UEgco(p)’Egco(Q) (Egeo(U)) =U-= C(P) ubDuU C(Q)

under Ugeeo(pr), 20 () is an equivalence. This is a consequence of the second part of Lemma 2.17 (iii).
Applying (¢* o y) and using Lemma 2.17 (iv), it follows that the natural map Fg,., ko, (Ep) — Ey in
Mod(d)Ep,; Eg,, is an equivalence. As Fg,.,, Eq,, is left-adjoint to the forgetful functor Uk, Eq.,»
the map (70) thus has the form

Embg(c(M) U D U ¢(N), W’) = Emby(U, W) — Mappgy(ise,) (Ep» Ew?)

and is given by the restriction map Embg(c(M) U D U ¢(N),W’) — Emby(D, W’) followed by the
map induced by the Yoneda embedding. The former is an equivalence by the contractibility of the space
of collars, and the latter is an equivalence by the Yoneda lemma since D lies in the full subcategory
Discqg C Mang, so the composition is an equivalence. O

Remark 4.6. The first part of the previous proof in particular shows that for bordisms W € nc%ordp o
that are diffeomorphic, relative to the ends, to [0, 1) x PLUT X R (=1, 0] x Q for some finite set T, the
map (69) is an equivalence for all bordisms W’ € nc%Bordp . In particular, for T = @, we see from the
contractibility of the space of collars that both the source and target of this map are both contractible.

Combining Theorem 4.5 with the convergence of embedding calculus in handle codimension > 3
due to Goodwillie, Klein and Weiss (see [GW99, Fact 5.1] and [GK 15]), we conclude the following:

Corollary 4.7. Fix bordisms W,W’ € nc%Bord(d)p,o. If W can be obtained from a closed collar of
P U Q = 0W by attaching handles of index < d — 3, then the map

Emba(W, W’) ~ Mapnct%’ord(d)p,Q (W, W/) — Map‘%Od(d)EPxIsEQXI (EW, EW/) o~ TmEmba(W, W/)
induced by E is an equivalence.

4.3.1. Comparison with the model of Boavida de Brito—Weiss

Theorem 4.5 shows that the map (69) is a model for embedding calculus, so agrees up to weak
equivalence with any other model. Among the previously established models, that of Boavida de
Brito—Weiss [BABW 3] is closest to ours. Like ours, their model enhances the embedding calculus
approximation Embg(W, W’) — ToEmbgs(W, W’) to a functor on nc%Bord(d)p, o. This section serves
to extend Theorem 4.5 to a comparison of the functors as opposed to just the individual maps on
mapping spaces. This will in particular show that the monoid structures on 7o.Embg (W, W) induced by
composition in our and their model agree, which we will use in Section 8.1.

For this, we write (Discg)p,0 C nc%Bord(d)p,o for the full subcategory of those bordisms that
are diffeomorphic relative to the boundary to P x [0,1) LT x R? 1 (—1,0] x Q for some finite set 7.
When translated from Kan-enriched categories to co-categories, Boavida de Brito—Weiss’s model for the
embedding calculus approximation Embg(W, W’) — T Embg(W, W’) is the map on mapping spaces
between W and W’ induced by the composition

ncHord(d)p,o 2 PSh(nc%Bord(d)p.o) LN PSh((Disca)p.0)
of the Yoneda embedding with the inclusion ¢: (Discy)p,o < ncHord(d)p, o (cf. Section 9 loc.cit.).
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Proposition 4.8. There is an equivalence of co-categories
@1 Mod(d)Ep,, Egy — PSh((Disca)p,o)
which fits into a commutative diagram of co-categories

nc%ord(d)p,o

*

Loy

— — . :
Mod(d)Epy; Egy - > PSh((Zisca)p.0)

Proof. The functor ¢ is defined as the composition

Mod(d)Ep,; Egy — PSN(M0d(d)Eyp,, o) L., PSh(neBord(d)p.p) ~— PSh((Disca)p.o).

With this choice, the canonical natural transformation y — E* o y o E induces a natural transformation
from the right-hand diagonal functor (¢* o y) in the claimed triangle to (¢ o E), and we will first show
that this is an equivalence to obtain commutativity of the triangle. On a bordism W € ncZ%ord(d)p ¢,
this natural transformation is the map in PSh((Qisc4)p,¢) induced by E

Embo (= W) = Mapucggora(ayp.o (= W) — MO pod(ayy,, e, (B EW),

which is an equivalence by Remark 4.6. Note that this in particular shows that E o ¢ is fully faithful.

It remains to show that ¢ is an equivalence. We will use that for U € (Qiscq)p,p, wWe have
Ey = Fgp.Egq(Er xra) € Mod(d)Ep,, as a result of the final part of the proof of Theo-
rem 4.5; here, Ty is the finite set such that U = P x [0,1) U Ty x R¢ U (=1,0] x Q. This
property in particular implies that ¢ is conservative, using that Ug,,, Ey,, is conservative by
Lemma 2.17 (ii), and that a map of presheaves is an equivalence if it is one objectwise. To show
that ¢ is an equivalence, it thus suffices to prove that it has a fully faithful left adjoint. This left
adjoint is given by the colimit preserving extension E o(: PSh(Discy)p.g) — MoA(d)Ep,; Ep
along the Yoneda embedding of the fully faithful functor E o ¢, using that #od(d)gp,; Eg., =
BModg,,, . Eq,, (PSh(Discy)) has colimits as a result of Lemma 2.17. By [Lur09a, 5.1.6.10],

this left adjoint Eo¢ is fully faithful if Ey € #od(d)gp,, Ep, is completely compact
for all U € (Discy)p,p, ie. if Map/%od(d)EPX,,EQX, (Eu,=): Mod(d)Ep,, Epy — S preserves
small colimits. Since Ey = Fgg,,; Ep (Er,xra), this condition is by adjunction equivalent to
Mappgy(gisc,) (ETy xRes UEp, . Egyx (—)) preserving small colimits which indeed holds, by the Yoneda
lemma and the fact that Ug,,, E,,, preserves colimits by Lemma 2.17 (i). m]

Remark 4.9. Considering bordisms W: P ~» Q as bordisms @ ~ PLUQ or PUQ ~ @
leads to equivalences between nc8ord(d)p, g, ncBord(d)g, pug, and ncRBord(d)pup,0, and simi-
larly for (Discg)pup — compatible with the functor (¢* o y). It thus follows from Proposition 4.8 that
E: ncRBord(d)p,g — Mod(d)Ep,; Ep,, agrees up to equivalences with the analogous functors involv-
ing M od(d)E,,Epxinox OF H0A(d)Ep, ;0. .k, That the latter two categories are equivalent can also
be deduced from Remark 2.16 and [Lurl7, 4.6.3.11] (no (—)"" appears since we implicitly used the
anti-homomorphism of Epy; or Egx; by reflection in ).

4.4. Isotopy extension for E

A key input in the proof of Theorem A in Section 5.3 will be a version of the isotopy extension
theorem for the mapping spaces in .#od(d)p,p. In view of Theorem 4.5, this amounts to an isotopy
extension theorem for embedding calculus. Such a theorem has been proved by Knudsen—Kupers
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[KK24a, Theorem 6.1], but instead of reducing the version we need from theirs, it is more convenient
to give a direct proof based on their strategy.

The setting is as follows. We fix two compact bordisms W: P ~ Q, W': R ~» §, two possibly
noncompact bordisms M, N: Q ~» R, and an open collar neighbourhood ¢(M) c M viewed as a
bordism Q ~» R. Writing c for the inclusion c(M) ¢ M viewed as a morphism in nc%Bord(d)g r, we
have a commutative diagram

WUQ (-)UrW’

Mapncgp?ord(d)Q,R (M’ N) Mapncg%’ord(d)p,g (W Uo M UR W', W Uo N Ur WI)

J/(—)oc @ \L(*)O(WUQCURW’)
Map,cgora(d)o (€ (M), N) WogOuew? MaPucgoa(arp s (WUg (M) Ur W', W Ug N Ug W)
R

k

which maps via the functor E : nc%Bord(d) — .#od(d) to the corresponding square for .Zod(d)

EwVEq, (9)VER. Ew’

Map wod(d)e g, 2 (Epm-En) > MaP yod(d)ep,, g, (EwuoMUpw’s Ewug NUgw”)

l(')°E" G l(—)oEwUQ(.URW/

Mapﬂlod(d)EQX,’ERx, (Ecm).EN)
1

x

—— > Ma E . WE /).
EwUrgy ()Vegy Ewr p/[od(d)prl'Ele ( WUgc(M)URW’s EW UG NURW )

Note that the bottom left corners in both squares are contractible by Remark 4.6. Moreover, in view of
Lemma 4.1, the square (D has up to equivalence the form

Emby(M, N) — 220 o Bk (W Up M Ug W, W Ug N Ug W)

J/(—)oc l(_)O(WUQCURWl)

Emby(c(M), N) Wog U Emby (W Ug ¢(M) Ugr W/, W Ug N Ug W’).
R

k

As the restriction map Embg(WUg c(M) Ug W/, WU NURW’) — Embp,s(WUW', WUg NUg W)
is an equivalence and W LI W’ is compact, it follows from the parametrised isotopy extension theorem
that this square is cartesian, so the same holds for the square .

The isotopy extension result we will prove says that the same holds for 2) under a certain condition
on the convergence of embedding calculus — namely, that the map from the bottom right of (1) to the
bottom right corner of () is an equivalence if M is replaced by Cy = ¢(M) Uk x R? € ncBord(d)o g
for k = {1,2,...,k} and all kK > 0. We denote by @) the square obtained from @) by replacing the
categories M 0d(d)Eg,; Eg,y and M 0d(d)Ep,, Es,, in the top row by their cores.

Theorem 4.10. If the map induced by E

Map,.zord(a)p. s (WuUg Cr Ug W, W Ug N Ug W)
- Map/ﬂod(d)EPXI’ESX[ (EWuQckuRW',EWuQNuRW')
is an equivalence for all k > 0, then the square ) is cartesian. If this assumption in addition holds for
M in place of N, then the square 2)" is also cartesian.

Proof. We first show the claim for ). We write % for the poset of open subsets of M that are unions
U =D Uc’(M) such that c(M) C M is an open collar of the boundary that contains the chosen collar
c¢(M) c M and D ¢ M is diffeomorphic to T x R¢ for some finite set 7. Considering U as an object in

https://doi.org/10.1017/fmp.2024.25 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2024.25

58 M. Krannich and A. Kupers

ncAord(d)p, r, we have a functor  — ncPBord(d)p r. Since the square (@ is natural in M, it maps to
the limit of the same squares for M replaced by U € %

lim Map yod(d)e g,y o (Ev.EN) — lim Map yod(ayg,,,, o (Ewuouurw’s EwuoNURw”)

¢ ¢

%]irEIClZ[Map/%Od(d)EQxl,Rxl (EC(M) ’ EN ) g]ilgch[Map/KOd(d)Ele’sﬂ (EWUQC(M)URW’, EW Uo NUR W’) .

We claim that it suffices to show this square of limits is cartesian. To justify this, we show that the maps
from (@) to the square of limits are all equivalences. For the maps between the bottom left corners and
between the bottom right corners, this follows from the fact that the diagram is constant and the category
% is weakly contractible since it is cofiltered. For the top-right corner and top-left corner, it follows
from Proposition 4.3 since the posets % and {W Ugp U Ur W’ |U € %} are complete Weiss co-covers
of Mand W Ugp M Ug W'.

To show that the previous square of limits is cartesian, note that it receives a map from the analogous
square using nc%ord(d) instead of .#od(d), and this map of squares consists of equivalences: for the
top right and bottom right corner, it holds by assumption, and for the top left and bottom left corner, it
holds by Remark 4.6. The square using nc%ord(d) is a limit of squares of the form (), with M replaced
by U € %, so it is cartesian since we have already explained that (D is cartesian and limits of cartesian
squares remain cartesian.

To show the claim for @), we first assume M = N, in which case, the claim follows from the
following fact: given a monoid A in & acting on a space X and x € X, consider the fibre sequence

hofib, (A 5 x) — 4 25 x

whose fibre inherits the structure of a monoid in & from that of A and the A-action on X. Then one
checks that the sequence obtained by passing to group-like components in fibre and total space remains
a fibre sequence.

To deduce the general case of @~ from that of (), it suffices to prove that if ¢: Ey; — Ex has the
property that ¢’ := idgy, Ug,,; ¢ UEg,, idE,,, is an equivalence, then ¢ is also an equivalence. To prove
this, we pick an inverse ¢': Ewugonupw’ — Ewugmugw- 10 ¢” and claim that the image of ¢ under
the right-vertical map in the square 2) with the role of M and N reversed lies in the component of the
bottom horizontal map. To see this, we extend this square to the bottom by

Map‘%Od(d)EQxI’ERxl (EC(M)’ EN) % Map,%od(d)gpxlygsxl (EWUQC(M)URW” EWUQNURW')

:l“"’(’) =l¢'o—

MaP fod(dhryy, ey (Eei)s EM) ——> MaP god(arg,,, g, (EWUoe)upw’s Ewugmugw?),

where the left vertical map is an equivalence as both source and target are contractible, and the right
vertical map is an equivalence because ¢’ is one by assumption. To see whether the image of i in the
upper right corner is in the component hit by the upper horizontal map, it thus suffices to show that the
image of ¢ in the bottom horizontal corner is in the component hit by the bottom horizontal map. But
this follows from the relation [¢’ oyy’] = [id] in the set of components, which holds by the choice of y’.
Using that the square @ with the role of M and N reverse is a pullback (this is where we use the additional
hypothesis for M), we conclude that there exists y : Ey — Ejs such that [y'] = [W Ug ¢ Ug W’]. To
finish the proof, it suffices to show that ¢ o s and ¥ o ¢ are both equivalences, since then ¢ has to be an
equivalence. But this follows from the case M = N treated above, using that both compositions become
equivalences after applying W Ug (—) Ugr W’ since this even holds for ¢ and ¢ individually. O
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Remark 4.11. The proof of Theorem 4.10 in particular shows that if the assumption in the statement
holds for M and N, then the following map detects equivalences:

EwVEg, (DVERy Ew
Map%od(d)EQxlyERxl (Em.EN Map yod(d)g,,, kg, (EwuoMurw’s EwugNUgw”)-

4.5. Disc-structure spaces

We conclude this section with the definition of the Pisc-structure spaces and a discussion some of their
functoriality. Given objects P € Bord(d) and A € #od(d) (i.e., a closed (d — 1)-manifold P and
an associative algebra A in PSh(@isc,;)), we abbreviate the co-category of nullbordisms of P and the
analogue for right A-modules by

RBord(d)p = Bord(d)y,p and Mod(d)a = Mod(d)E, A (72)

Remark 4.12. Note that E is the monoidal unit in PSh(Qiscy), so #od(d)g,, 4 may be viewed as an
oco-category of right-A-modules. Using Remark 2.16 and [Lurl7, 4.3.2.8], one sees that this agrees with
Lurie’s model of the co-category of right-A-modules, but we will not use this.

4.5.1. Disc-structure spaces of modules

For A = Epy; foraclosed (d—1)-manifold P, the functor E induces a functor Bord(d)p — A od(d)px;.
As the source is an co-groupoid by the discussion Section 4.1.2, it lands in the core .#od(d)p,, C
A od(d)pxy. The Disc-structure spaces are the fibres of this functor of co-groupoids:

Definition 4.13. The Qisc-structure space of a right-E pyy-module X € #od(d)g,,, is the fibre
SP(X) = fibx (Bord(d)p — Mod(d);, )€ S.

From the description of the object and mapping spaces of Bord(d) and .#od(d) in Section 2.5.4,
we see that the path components of S%iSC(X ) are given by

pairs (M, ¢) of a compact smooth d-manifold M with identified boundary oM = P
and an equivalence of right Epy;-modules ¢: Epy — X

mo SE(X) =

(M, ) ~(M’',¢") & there exists a diffeomorphism a: M — M’
relative to P with [¢’ 0 E,] = [¢] € 7y Map_yo4(a)= (Em, X)
PxI

and that the component of a pair (M, ¢) agrees with the identity component
St (X)(01.0) = (AUt rod(a)pny (Ent) [Diffa (M) 4

of the fibre AUt/%od(d)p (Epr)/Diff5(M) of the map BDiffg(M) — BAUt/%od(d)P (Eps) induced by E.
This can also be rephrased in the form of an equivalence

ST(X) = Lipr) AUt zod(d)pg (Enr) [Diffa (M), (73)

where [M] runs through diffeomorphism classes of compact manifolds M with identified boundary
OM = P for which there exists an equivalence Ey; — X of right E py;-modules.

4.5.2. Disc-structure spaces of manifolds

Given a compact d-manifold W with identified boundary W = P, considered as an object in Bord(d)p,
we abbreviate

STE(W) = SP(Ew).
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This is natural in W € %ord(d)éT’l) in that it gives a functor S?isc(—): %ord(d)é‘;o’l) — & from the
oo-category of nullbordisms to the co-category of spaces. In particular, for bordisms W: @ ~»> P and
W’ € Bord(d)p,g. we have a gluing map (- Up W): S315(W) — STS(W up W’).

5. Theorem A: 2-type invariance

The goal of this section is to prove Theorem A, which says that the Disc-structure space of a compact
d-manifold depends for d > 5 only on the tangential 2-type, a notion that we recall in Section 5.1. As
outlined in Section 1.2.3, this will be an application of a general tangential k-type invariance result,
proved in Section 5.2, about the values of certain functors on a category of compact null bordisms. That
S?isc(—) satisfies its hypotheses is verified in Section 5.3.

Convention.

(i) In contrast to the previous sections, all manifolds — which were already assumed to be smooth — are
now also assumed to be compact. Nonempty boundaries are allowed.

(ii) In this section, we adopt the point of view on 8-structures in terms of bundle maps (always required
to be fibrewise injective), which is different but by basic bundle theory equivalent to that in terms
of GL;(R)-spaces from Section 4.1.3. For the convenience of the reader, we recall the necessary
definitions from scratch in Section 5.1.2.

5.1. Tangential k-types

We start with some manifold-theoretic preliminaries.

5.1.1. 0-manifolds and tangential k-types

Given amap 6: B — BO, a 8-manifold M is a manifold with a 8-structure on its stable tangent bundle,
by which we mean in this section a stable bundle map ¢y, : 75, — 6y from the stable tangent bundle
of M to the pullback of the universal stable vector bundle y over BO along 6. A tangential structure is
k-connected if the underlying map £; : M — B is k-connected in the usual sense.

Given a codimension 0 embedding e: M < N and a 6-structure {5 on N, we obtain a #-structure
e*fn on M by precomposition with the stable derivative of e. Two 6-manifolds M and N are 6-
diffeomorphic if there exists a diffeomorphism ¢: M — N of the underlying manifolds such that ¢*€x
and {p; are homotopic as bundle maps. A codimension 0 embedding e: M < N is an equivalence
on tangential k-types if N admits a k-connected 6-structure £ for some 6 such that e*{ is again k-
connected. Two manifolds M and N have the same tangential k-type if there is a : B — BO such that
M and N admit k-connected 6-structures £)s and €y (for the same 8).

Example 5.1. Any codimension 0 embedding M < N that is k-connected is an equivalence on
tangential k-types. This is clear from the definition as long as N admits a k-connected 8-structure with
respect to some 6, and there is indeed always such a choice: pick a Moore-Postnikov factorisation
N — B — BO of a classifying map for the stable tangent bundle of N into a k-connected map followed
by a k-coconnected map 6: B — BO.

Example 5.2. The case of most interest to us is k = 2, where there is a simple recipe to decide whether
two d-manifolds My and M; have the same tangential k-types. If the M; are disconnected, then they
have the same tangential 2-type if and only if there exists a bijection between their components such that
the corresponding components have the same tangential 2-type. For connected manifolds M, and M,
one can decide whether they have the same tangential 2-type as follows (cf. [Kre99, p. 712-713]; Kreck
deals with normal k-types as opposed to fangential k-types and has a different indexing convention, but
neither of this makes a difference):

(i) The functionals wp(M;): my(M;) — Z/2 for i = 0,1 induced by the second Stiefel-Whitney
classes need to be both trivial or nontrivial.

https://doi.org/10.1017/fmp.2024.25 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2024.25

Forum of Mathematics, Pi 61

(ii) If they are both nontrivial, then My and M; have the same tangential 2-type if and only if there
exists an abstract isomorphism ¢: 7w;(My) — m1(M;) such that ¢*wi(M;) = wi(Mp), where
wi(M;) e HY(M;; Z)2) = H (K (1 M;, 1); Z/2) is the first Stiefel-Whitney class.

(ili) If they are both trivial, then there are unique classes wo(M;) € H?(K (71 (M;), 1); Z/2) that pull
back to the second Stiefel-Whitney classes along the canonical maps M; — K(x1(M;),1). Then
My and M have the same tangential 2-type if and only if there exists an abstract isomorphism
¢ mi(Mo) — m (M) with *w; (M) =w;(Mp) for j =1,2.

In particular, if My and M, are spin, w;(M) and w;(N) vanish for i < 2, so the recipe shows that
they have the same tangential 2-types if and only if their fundamental groupoids are equivalent. It also
implies that the tangential 2-type of a smooth manifold does not depend on the smooth structure, since

Stiefel-Whitney classes are defined for topological manifolds.

Lemma 5.3. Let M be an m-manifold and k > 0 a number. For any d > 4 with k < L%J, there exists a
closed d-manifold P with the same tangential k-type as M.

Proof. We may assume k > 1 and that M is connected; apply the claim to each connected component
otherwise. Choose a Moore—Postnikov k-factorisation M — B — BO of the stable tangent bundle into
a k-connected map followed by a k-coconnected map 6: B — BO. The condition k < I_%IJ in particular
implies that d > k + 1, so the d-sphere S¢ admits a §-structure by obstruction theory. Doing surgeries
compatible with the 8-structure (see [Kre99, Proposition 4]), we obtain a closed d-manifold P with a
k-connected 6-structure. O

5.1.2. 0-bordism

Given a 6-manifold M, a choice of inwards pointing vector field induces a 8-structure on the boundary
0M. Using the canonical vector field % on [0, 1], we moreover obtain a §-structure on M X [0, 1], which
restricts to a §-structure on the double MUgps M = (M x [0, 1]) of M. Here, M is the #-manifold whose
underlying manifold is M but which is equipped with the opposite 0-structure obtained by restricting the
induced 6-structure on M x [0, 1] to M x {1} € d(M x [0, 1]). A 8-bordism from a d-dimensional 6-
manifold P to another d-dimensional 8-manifold Q is a (d + 1)-dimensional #-manifold W together with
a f-diffeomorphism 0W = P LI 0; we denote this W: P ~> Q. A 6-manifold P is 8-null bordant if there
is a #-bordism P ~» @. By construction, the double M Ugps M of any 6-manifold M is 8-nullbordant.

5.1.3. Handle decompositions
Given a compact d-dimensional bordism W: P ~» Q between closed (d — 1)-manifolds, a handle
decomposition of the bordism W is a decomposition

W10l . WO,1]  W(d-2.d-1] W (d-1,d]
P=W_ ~ "Wy ~ - ~ Wai ~ " Wg=0

of W as a union of bordisms between closed (d — 1)-manifolds W; such that W(k — 1, k] is obtained
from a collar on Wj._; by attaching finitely many handles of index k. Such a decomposition always exists
— for instance, by choosing a self-indexing Morse function. By construction, Wy is obtained from Wy
by finitely many k-surgeries. We abbreviate

W(m, k] = Un<i<k-tW(3E,i+1] and W[m, k] = Up_1<i<k-1W(i,i+1]

and consider these as bordisms from W,, to Wy and from W,,_; to Wi, respectively. The idea behind the
notation is that the half-open or closed interval indicates which handles the submanifold contains. Given
m < k, we say that W has handle type [m, k] if there is a handle decomposition with W = W[m, k]. A
d-manifold M has handle type [m, k] if it has that property when viewed as a bordism M: @ ~ dM.
It is said to have handle dimension < k if it has handle type [0, k]. A codimension 0 submanifold

inclusion N C int(M) has relative handle type [m, k] if the bordism M \int(N): N ~ dM has handle
type [m, k], and N C int(M) has relative handle dimension < k if this bordism has handle type [0, k].
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5.1.4. Handle trading and connectivity
The following two lemmas are certainly standard, but we could not find references for them in the
generality we needed.

Lemma 5.4. Let W: P ~ Q be a bordism between closed d-manifolds P and Q with d > 4. If both
boundary inclusions P ¢ W O Q are k-connected for some k > 0, then the following holds:

(1) If2k <d—1, then W: P ~ Q has handle type [k +1,d — k] and
(i) If2k = d — 1, then WH(S**! x SK*1) - P ~5 Q has type [k + 1,d — k] for some r > 0.

Proof. We begin with the first case. Starting from a handle decomposition of the bordism W: P ~ Q,
we obtain a potentially different handle decomposition of W of type [k + 1,d + 1] by handle trading,
without changing the number of i-handles for i > k + 3 (see, for example, the proof of [Wal71, Theorem
3]). Now we apply the same procedure to the dual of this new handle decomposition to obtain yet
another handle decomposition, this time of type [0, d — k] and with the same number of i-handles for
i <d—-k—-2.Since k < d — k —2 and we previously arranged that there are no i-handles for i < k, the
resulting decomposition has type [k + 1,d — k].

In the case 2k = d — 1, we may reindex so that the claim reads as follows (set n = k + 1): given a
2n-dimensional bordism W: P ~» Q with 2n > 6 such that the inclusions P ¢ W > Q are (n — 1)-
connected, there exists an » > 0 such that the bordism (W#(S" x $")¥): P ~> Q admits a handle
decomposition with only n-handles. We are not aware of a classical reference for this fact; we learned
it from the proof of [GRW 14, Lemma 6.21]. |

Lemma 5.5. Let 0: B — BO be a map and (P, {p) and (Q, £p) two closed d-dimensional 6-manifolds
that are 6-bordant. Assume d > 4 and fix k > 0 with 2k < d.

(i) If €p is k-connected, then there is a 8-bordism W: P ~ Q such that P C W is k-connected.
(ii) Ifalso £g is k-connected, then we may assume that W O Q is k-connected as well.

Proof. For part (i), we refer to the proof of the correction [HJ20, Proposition p. 48] to a part of [Kre99,
Proposition 4]. The proof of part (ii) is a minor extension of their argument which we spell out for the
convenience of the reader in the case k > 1, leaving k = 0 as an easy exercise.

Starting from a 8-bordism (W, tw): (P,{p) ~ (Q,{p), we can assume that {y is k-connected by
performing surgery in the interior of W. As £p and £¢ are k-connected, this ensures that the inclusions
P c W > Q induce an isomorphism on homotopy groups at all basepoints in degrees < k — 1. By
considering each component in 7o (P) = mop(W) = no(Q) = mo(B) separately, we may assume that each
of P, W, Q, B is connected. We now consider the long exact sequences

N {”k(P) (W) —» {

(W, P) o |m-1(P) =
”k(Q) \/A ¢

—> w1 (W
i (W,0) k-1(Q) \;Tk jl; ) =

ni(B) mk-1(B)

of the pairs (W, P) and (W, Q). We first assume k > 2. By the relative Hurewicz theorem, we have
7 (W, P) = Hi (W, P) and similarly for 7z (W, Q), where (—) denotes the universal covers, so these
groups are in particular finitely generated as ; (W)-modules. Contemplating the diagram shows that
there are finite sets of elements {p;} and {qg; } of rx (W) that (i) map trivially to 7rx (B) (and thus trivially
to ;. (BO)) and (ii) map to sets of generators of 7w (W, P) and 7ty (W, Q) as 71 (W)-modules, respectively.
As 2k < d, we may represent these elements by two disjoint embeddings p: LI’ S¥ x DI*1=% s int(W)
and g: LIS x D91k < int(W). Doing 6-surgery on these embeddings (see [Kre99, Lemma 2])
yields a #-bordism W’: P ~» Q which we claim to satisfy the requirements of the statement; that is,
m; (W, P) =0and n;(W’,Q) = 0 fori < k — the reason being that (i) 7; (W’, P) vanishes fori < k — 1
since it is isomorphic to ; (W, P) = 0, and (ii) 77z (W’, Q) vanishes since it is a quotient of 7 (W, Q)
by a subgroup that contains the 7 (W)-orbit of the images of {p;} and {g;}, and we chose the {p;}
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so that their images generate ;. (W’, P) as m; (W)-modules. The same argument applies to the groups
m; (W', Q), so the claim in the case k > 2 follows. For k = 1, the same argument applies even though
m1 (W, P) and 71 (W, Q) need no longer be groups: instead of the relative Hurewicz theorem, one uses
that 771 (W) is finitely generated, being the fundamental group of a compact manifold. )

Combining the previous two lemmas we get the following:

Corollary 5.6. Let §: B — BO be a map and (P, {p) and (Q,{g) two closed 8-manifolds of dimension
d > 4 that are 9-bordant. If {p and €gp are k-connected for some k > 0 with 2k < d, then Q can be
obtained from P by a finite sequence of p-surgeries withk < p <d -k — 1.

Proof. Lemmas 5.4 and 5.5 ensure that there is a bordism W: P ~» Q of handle type [k + 1,d — k],
which implies the statement. O

5.2. k-type invariance

To state the announced tangential k-type result, we denote by 2Manf; the 1-category whose objects are
smooth compact d-manifolds (potentially with boundary) and whose morphisms are isotopy classes of
codimension 0 embeddings. Fixing another 1-category C, we prove the following result for functors of
the form F: hMan?, — C.

Theorem 5.7. Letd > 4 and F: hMan(; — C be a functor such that F maps codimension 0 submanifold
inclusions of relative handle type [k + 1, d] to isomorphisms for some fixed 0 < k < d /2. Then for any
compact d-manifolds M and N of the same tangential k-type, the following holds:

(i) There exists an isomorphism F(M) = F(N).
(ii) For any codimension 0 embedding e: L — M where L has handle dimension < k, there is an
embedding e’': L < N for which the isomorphism (i) can be chosen so that the diagram

F(e) F(L) F(e)

F(M) = S F(N)

is commutative.
(iii) Any embedding e: M — N that is an equivalence on tangential k-types induces an isomorphism
F(M) = F(N) as in (i).

Remark 5.8. Theorem 5.7 is based on arguments we learned from the literature on the space of positive
scalar curvature metrics on a manifold M — in particular, [ERW22, EW24]. This space shares strong
formal properties with the Disc-structure space: it is often an infinite loop space [ERW?22, Theorems
A-B], depends conjecturally only on the tangential 2-type (see [EW24, Conjecture C] and [ERW22,
Section 9]), and is often nontrivial (see, for example, [ERW?22, Remark 1.1.1]).

Remark 5.9. Taking complements, 2Man{, can be viewed equivalently as the *homotopy category of
null bordisms’, by which we mean the undercategory hJ%ord(d) éoo’l) of the empty manifold @ viewed
as an object in the homotopy category h%ord(d)(®!), whose objects are closed (d — 1)-manifolds and
whose morphisms are diffeomorphism classes of compact bordisms.

As preparation to the proof of Theorem 5.7, we show that the values of the functor are invariant
under certain surgeries.

Lemma 5.10. Let F be as in Theorem 5.7. If two compact d-manifolds M and N differ by p-surgeries in
the interior with k < p < d — k — 1, then there exists an isomorphism F(M) = F(N).

Proof. It suffices to show the claim in the case where N is obtained from M by a single p-surgery along
an embedding SP x D?~P < int(M). We consider the zig-zag

F(M) «— F(M\int(S” x D"P)) —s F(N)
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induced by the inclusions M\int(SP? x D?P) ¢ M and M\int(S? x D4P) c N. The former has
relative handle type [d — p, d], and the latter has relative handle type [p + 1,d]. Asd — p > k+ 1 and
p+1 > k+1, and F sends inclusions of submanifolds of relative handle type [k + 1, d] to isomorphisms
by assumption, we conclude the claim. O

Proof of Theorem 5.7. Recall that two d-manifolds M and N have the same tangential k-type if there
exists amap 6: B — BO and k-connected 8-structures €5y and €5 on M and N.

Part (i) of the claim asserts an isomorphism F (M) = F(N). In the case that (M, ;) and (N, €n)
are closed manifolds that are #-bordant, this follows directly from Corollary 5.6 and Lemma 5.10. To
show the general case, we pick a handle decomposition of M viewed as a bordism M: @ ~ dM and
consider the zig-zag (using the notation from Section 5.1.3)

F(M) «— F(M[0,k]) — F(M[0, k] Upy, M[O,k]) (74)
whose arrows are induced by M [k +1,d]: My ~» M and M [0, k]: My ~> @. The former is of handle
type [k + 1,d] and the latter of handle type [d — k, d], so using that d — k > k, the two submanifold
inclusions inducing the maps in the zig-zag have relative handle type [k + 1, d], so the zig-zag consists
of isomorphisms. Applying the same reasoning for N, we see that the claim follows once we provide an
isomorphism between the values of F at the two doubles M [0, k] Uy, M [0, k] and N[0, k] Uy, N[O, k].
Both of these doubles are closed manifolds that are 6-nullbordant (see Section 5.1.2), so they are in
particular -bordant to each other. This implies the claim by the first part as long as we make sure that
the induced 6-structures on these doubles are k-connected. But this is the case, since it holds for M
and N by assumptions, and the above handle considerations in particular imply that all inclusions in
M > M[0,k] € M[O, k] Up, M[O,k] and N D> N[0, k] € N[0, k] Uy, NIO, k] are k-connected.

To prove part (ii), we fix an embedding L < M as in the claim which we may assume by transversality
to be contained in M [0, k] C M, as the complement M [k + 1,d] D dM has relative handle dimension
< d— (k+1) and L has handle dimension < k by assumption. The zig-zag (74) is then compatible with
the maps from F(L) induced by inclusion. Now M [0, k] Ups, MO0, k] differs from N[0, k] Uy, N[O, k]
by surgeries of index k < p < d — k — 1, which we may assume (again by transversality) to be done

away from L, so there is an embedding L — N[0, k] Uy, N[O, k], such that the induced isomorphism

F(MIO0, k] Up, M0, k]) = F(N[O, k] Un, N[O, k]) is compatible with the maps from F(L). Using
transversality one last time, we see that we may isotope the embedding L — N[0, k] Uy, N[O, k] to
land in N[O, k] since N[0, k] c has handle dimension < k and 2k < d. With respect to the isotoped
embedding, the zig-zag (74) is compatible with the maps from F(N), and this concludes the proof.

For part (iii), we may assume without loss of generality that the embedding is a submanifold inclusion
of the form M c M Ugps W for W: M ~> ON a bordism. We now consider the commutative square
of codimension 0 submanifold inclusions

c(My) —— c(My) Up Mk +1,d] Ugyy W

( ‘ @

M ———————— MUgy W=N,

where c¢(My) C M is a closed bicollar of M C M. The vertical inclusions are of relative handle type
[k+1,d] (thisuses d—k > k+1), so we conclude that they map to isomorphisms under F. It thus suffices
to show that F' maps the top horizontal inclusion to an isomorphism. Since the vertical inclusions and the
0-structures {»y and € are k-connected, it follows that the top horizontal inclusion is an equivalence on
tangential k-type equivalence. Since d > 4, we have d/2 < d —2, so k < min(d/2, d —2). Abbreviating
V = M[k,d]Uspy W, an application of [KK24c¢, Lemma 6.10] shows that we can factor the top horizontal
inclusion as a composition of the form c¢(My) C c(My) Upm, V[k, k] € c(My) Uny, V, where the first
inclusion is obtained by attaching trivial k-handles and the second by attaching > k + 1-handles. By
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assumption, F sends the second inclusion to an isomorphism, so it suffices to show that the same holds
for the first inclusion. By attaching cancelling (k + 1)-handles, the first inclusion fits into a sequence of
inclusions c(My) C c(M) Up, V[k, k] € ¢’(My) whose composition is given by attaching a collar
(so is an isotopy equivalence), and the second inclusion is obtained by attaching (k + 1)-handles. Now
F sends the second inclusion and the composition to isomorphisms, and so also the first. O

5.3. 2-type invariance of the Disc-structure space

By Section 4.5.2, the Disc-structure spaces of compact manifolds form the values of a functor
S?i“(—): %ord(d)éj"’l) — & of co-categories, which induces on homotopy categories in view of
Remark 5.9 a functor

S21¢(=): hMan¢, ~ h%ord(d)é?’l) — hS.

The goal of this section is to show that this functor satisfies the assumptions of Theorem 5.7 for
k = 2. This can be rephrased as follows:

Proposition 5.11. Let M := @ ~» P and W: P ~> Q be d-dimensional bordisms. If W is of handle type
[3,d], then the gluing map (— Up W): S?ISC(M) — S?ISC(M Up W) is an equivalence.

Once this is proved, Theorem 5.7 implies the following refined version of Theorem A.
Theorem 5.12. Let d > 5, and M, N be two compact d-manifolds of the same tangential 2-type.

(i) There exists an equivalence S?iSC(M) ~ S?iSC(N).
(ii) For any embedding e: L = M of a d-manifold L with handle dimension < 2, there is an embedding
e’: L — N so that the equivalence of 5.12 can be chosen to be compatible with

e S?iSC(L) — S?iSC(M) and e.: S?iSC(L) — S?iSC(N).

(iii) Any embedding e: M <— N that induces an equivalence on tangential 2-types induces an equiva-
lence Sb@is"(M) o~ S?iSC(N) asin5.12.

Proof of Proposition 5.11. Unravelling the statement using Definition 4.13, the task is to show that

Bord(d)p — Yy Bord(d)o

(-)VEp, Ew

Mod(d)yy ——— Mod(d);"

is a pullback in &, where /%Od(d)gg;j - ﬂod(d)gpx' and .%od(d)gz’:l C Mod(d)g ., are the oco-
groupoids given as the full subcategories of those objects in the image of the functor E: Bord(d)p —
M od(d)gpxl and in the image of its analogue for P replaced by Q, respectively. We prove that it is a
pullback by showing that the map on horizontal fibres are equivalences, for which we use that for any
map f: E — Bin & (thought of as a full subcategory of Fat,,) and a point b € B, the fibre of f over b
agrees with the colimit colimg Map g (f(—), b). This follows from [Lur(9a, 3.3.4.6] combined with the
fact that the fibre over b is the total space of the unstraightening of the functor Mapg (f(-),b): E — &,
which in turn follows from [Lur(09a, 3.3.2.8].

Applying this to the situation at hand and using the description of E on mapping spaces from
Section 4.1.7, the claim follows once we show that for each nullbordism N € %Bord(d)p, the map

E
colim [Ma -)Uup W,N)| — colim May = =) UEp,, Ew, E
(@ord(dwp[ Pagona(ag () Ur ) (ﬂod(dﬁfi’;:,)"*’[ p/%Od(d)EQxI(( ) Uk Ew.En)]
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is an equivalence. Using the factorisation E : %Bord(d) — # od(d) through the noncompact version of
the bordism double co-category ncord(d), this map fits into a commutative diagram

colim  [Mapgorq(a, (=) Up W, N)] £ colim [Map/”"d(d)EQX, ((=) YEpy Ew.EN)]

(Bord(d)p)°P (/%od(d)gi;:l )op

o lo

. E .
colim Ma —-YUup W,N)| — colim May —-)Ug, Ew ., E
oSN o MPrcszons g () Up W) (od () )op[ P.toi(aro ((-) Ve Ew- En )]

3 S

E
Mapnc@ord(d)Q (P x (=1,0]up W, N) S Map/%od(d)EQxl (EPX(—LO]UPW’ EN)’

where the bottom vertical equivalences result from the fact that the bordism (P X (=1,0]): @ ~» P is
initial in nc%ord(d)p and its image under E is initial in ./# od(d)gixl , by Remark 4.6. By Corollary 4.7,
the bottom map is an equivalence as the handle dimension of P X (—1,0] Up W relative to Qis < d — 3
by assumption. It thus suffices to show that (D and (2) are equivalences.

We begin with (. Since the mapping spaces in nc%ord(d)p are given by spaces of embeddings
fixing the boundary and composition is given by composition of embeddings (see Section 4.1.1) and
the same holds for Bord(d)p with embeddings replaced by diffeomorphisms (see Section 4.1.2), the
map (D is the map induced by restriction

colim Diffg((-) Up W,N) — Embp (W, N).
pSolim  Diffy((=) Up W.N) o(W.N)

Using the decomposition Bord(d)p = |peny Bord(a), BDPiffa(M) into path components (see Sec-
tion 4.1.2), this can further be simplified as

Diff5(M Up W, N)/Diff5(M) —> Embg (W, N). (76)
M eny Bord(d)p

To show that the map (76) is an equivalence, we show separately that it induces a bijection on components
and that it is an equivalence on each component. To see that it is surjective on components, pick
an embedding e € Embg (W, N). Up to changing e within its isotopy class, we can assume that
P c W is mapped to the interior of N and that the complement of ¢(W\P) C N defines a bordism
(N\e(W\P)): P ~ Q.In this case, the class in 7o Diff (M Up W, N) /ng Diff (M) = no(Diffg(M Up
W, N)/Diff5(M)) of the diffeomorphism (N\e(W\P)) Up W = N obtained by extending e by the
identity provides a preimage of [e] € 79 Embg (W, N). Injectivity of (76) on my follows from the
isotopy extension theorem in the form of the homotopy fibre sequence

o((— id S
Diffy (M) LX), b (M Up W, N) =5 Embo (W, N)

with fibre taken over the image of a diffeomorphism ¢: M Up W = N. This sequence also implies that
(76) is an equivalence on components, which finishes the proof for (D.

The argument for ) is similar. Using Sections 4.1.6 and 4.1.7, the reduction to showing that (76) is
an equivalence applies also to the map @ and shows that it agrees with the map

L Map yoa(a):  (Emupw. EN)/Autuoday; (Em)
Ep emy Mod(d)gh:” “ox! P

Epxi \l/

Map/%od(d)zgxl (Epx(-1,0/upw,EN)
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induced by the inclusion P x (—=1,0] Up W ¢ M Up W. From the commutativity of the big diagram
above and the fact that (D and the bottom horizontal map are equivalences, we see that 2) is surjective
on my(—), so we must show it is injective on mo(—) and induces an equivalence on components. This
follows as for (D once we show that for Ey € .#0d(d),;>~ and ¢ € Map/ﬂod(d)zg ) (EmVYE, Ew, EN),

the sequence
res
Autzod(ay;, (Ep) — Map./%od(d)EQXI (Epmupw, En) — Map/%od(d)ggxl (Epx(-1,0lupw-EN),

whose left map is given by ¢ o ((—) Ug,,, idg,, ). is a homotopy fibre sequence when taking homotopy
fibres over the image of ¢. By postcomposition with an inverse of ¢, it suffices to show this in the case
¢ = id. This follows from the second part of Theorem 4.10 (set P = 2,0 =P, R=Q, W =0, W' =W,
M = M, and N = M). The hypothesis to apply this result holds by Corollary 4.7, since it follows from
the assumption that k£ x R? L1 P x (=1,0] Up W is the interior of a manifold obtained from a closed
collar on Q by attaching (< d — 3)-handles for all k. O

We conclude this section with a first application of the tangential 2-type invariance. We will later use
it to reduce the proof of the nontriviality result for S? is¢(M) to the case of M = D9,

Corollary 5.13. For a compact spin d-manifold M + @ with d > 5, the space S?iSC(M) contains
S?iSC(Dd) as a homotopy retract.

Proof. This essentially follows from the fact that any finitely presented group arises as the fundamental
group of a compact connected codimension 0-submanifold N ¢ D¥ as long as k > 5 (in fact, k > 4 is
known to suffice, but we will not need this harder result). Indeed, apply this to k¢ = d and the fundamental
group of each path component of M to obtain a compact d-manifold N ¢ D¢ whose fundamental
groupoid is equivalent to that of M. Since N admits an embedding into D, it is in particular spin, so
the final discussion in Example 5.2 shows that M and N have the same tangential 2-type. Using the
tangential 2-type invariance of S?is"(—) from Theorem 5.12, it thus suffices to show the claim for N.
The latter follows by choosing an embedded disc D¢ c N so that the composition D¢ ¢ N c D4 is
isotopic to the identity and applying S?i“(—). O

6. Theorem B: infinite loop space
The goal of this section is the proof of Theorem B, or rather the following strengthening of it:

Theorem 6.1. For a compact manifold M of dimension d > 8, S?iSC(M ) admits the structure of an
infinite loop space. If M is 1-connected spin, then the bound d > 8 can be improved to d > 6.

In Section 1.2.4, we already gave an informal overview of the proof. We now make it precise.

6.1. Operads with homological stability

The proof of Theorem 6.1 relies on work of Basterra—Bobkova—Ponto—Tillmann—Yaekel [BBP"17] on
operads with homological stability which generalises earlier work of Tillmann [Til00]. We summarise
their main result in this subsection.

Remark 6.2. [BBP*17] is written in the setting of classical operads in topological spaces and algebras
over them. To make it fit in our framework, we will rephrase their result in terms of (symmetric) oco-
operads and algebras over them (see Section 2.7). This translation is justified by the fact that there
is an equivalence of co-categories between the co-category Opd,, of co-operads, and the co-category
underlying the model category sOp of classical coloured operads in simplicial sets (see [CHHIS,
p. 858]), which is in turn Quillen equivalent to that of classical coloured operads in topological spaces;
these equivalences do not affect the induced operad in the homotopy category. These equivalences
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extend to corresponding equivalences between categories of algebras over operads: [PS18, Theorem
7.11] shows that (under mild conditions) the comparison functor from the co-category underlying the
model category of algebras over a simplicial operad to the co-category of algebras over the associated co-
operad is an equivalence, and applying Sing(—), induces (under mild conditions) a Quillen equivalence
from the model category of algebras over a topological operad to the model category of algebras over
the corresponding simplicial operad. The ‘mild conditions’ in both steps are satisfied for all operads
appearing in this section.

Let Ny denote the set of nonnegative integers. To state the main result of [BBP"17], we consider
No-graded oo-operads, by which we mean (symmetric) co-operads &, together with a map of oco-
operads % — Finlj(’ to the oco-operad Finlj" that is induced (via the operadic nerve [Lurl7, 2.1.1.27])
by Ny under addition, considered as a symmetric monoidal category with a single object. Unpacking
the definition, this amounts to an Np-indexed disjoint union decomposition Mulg (X1, ...,X,;y) =
Ug>oMulg (x1, ..., Xx,; y), of all spaces of multi-operations that is additive under operadic composition.
Every oo-operad O can be viewed as an Ny-graded operad in grading 0; formally, this amounts to
considering the composition ©® — Fin, — FinY, where the second arrow is induced by {0} < Np.

Definition 6.3. An operad with homological stability is an Ny-graded co-operad & with a single colour
(whose space of k-ary operations we write as Mulg (x, .. ., #; %) = P (k) = LUg»0P,(k)), together with

(i) amap of Ny-graded co-operads &/ssoc — P from the associative operad &/ ssoc (see Example 2.11)
concentrated in degree 0, and
(ii) a distinguished element s € (1), called the stabilising element,

such that

(a) the map on 2-ary operations &/ssoc(2) — Py(2) lands in a single path component, and
(b) the map P(k) = colimg Py(k) — colimg Pe(0) = P (0) induced by taking horizontal
colimits in the commutative diagram in &

op (s:-) op(s;-)

o P (k) 2 (k) 2D P (k) — -

l"”(_;* ..... °) l”(_;* ..... *) lw(—;*,...,*)

op(s;-) op(s;-)

e Pt (0) 2 2 (0) 2y 1 (0) — -

is an integral homology isomorphism for all k > 0; here, op(—; —) is the operadic composition, and
x € Py(0) is the image of * ~ ossoc(0) — FPy(0).

Given & as in Definition 6.3, we may forget the grading and consider the composition

Alg(8) — Al oo(8) P28, Mon() 25 Monz?($) 5 &, (77)
where the first arrow is the functor between co-categories of algebras in & with its cartesian symmetric
monoidal structure, induced by the morphism &/ssoc — & of co-operads (see Section 2.7), the second
arrow is given by group completion (i.e., the left adjoint of the full subcategory inclusion Mon#'?(&§’) c
Mon(S) of group-like objects — that is, those monoid objects M € Mon(&') C Fun(A°P, &) in the sense
of Section 2.5 for which the induced monoid of path components 7o(M(]) is a group), and the final
arrow is the forgetful functor, given by evaluation at [1] € A. Recall (see, for example, [Lurl7, 5.2.6])
that the composition of the final two arrows sends M € Mon(&) to the pullback in &

QBM % M[O] ~ ok
l l with  BM = colim M.

E M[o] —> BM,
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E
[Lurl7, 5.1.1.6], the main result of [BBP*17] reads as follows:

Writing Algh" (8) c Alg £, (&) for the full subcategory of group-like algebras in & over the E-operad

Theorem 6.4 (Basterra—Bobkova—Ponto-Tillmann—Yeakel). For an operad with homological stability
P, there exists a dashed functor fitting into a commutative diagram of co-categories

Algg?(S)

T
L

-7 (6

Algyp(8) ——— 8,

where U is the forgetful functor.

In other words, the underlying space of the group completion of an algebra over an operad with
homological stability (viewed as an ungraded operad) admits functorially the structure of a group-like
E-algebra, or equivalently — by the recognition principle [Lurl7, 5.2.6.26] — of an infinite loop space.

6.2. A manifold operad with homological stability

The main example of an operad with homological stability considered in [BBP*17] is constructed out
of the manifolds

W2 = Wl (S x SMP with W, = S \int((U* D) L (U'D?™))

for k,I > 0 and n > 1, considered as bordisms of the form LIX$2"~! ~» 11/§2"~1 Here, # denotes the
connected sum operation. This is also the operad that is relevant for the proof of Theorem 6.1, so we
recall its construction in our setting. We omit the 2n-superscripts for brevity.

Consider the tangential structure § = 7*Fr(y) in the sense of Section 4.1.3 given as the GL,, (R)-
space, which is the pullback of the frame bundle of the universal bundle y — BO(2n) along the n-
connected cover map 7: 7-,BO(21n) — BO(2n). Since $2*~! is stably parallelisable, its once-stabilised
tangent bundle admits a #-structure £y compatible its canonical orientation, unique up to equivalence
of #-structures. We consider the symmetric monoidal co-category ZBord? (2n)(*-1 from Section 4.1.3
and write Bord? (2n) (<>D-W for the sub symmetric monoidal co-category (see Example 2.13) obtained
by restricting objects to those equivalent to LIK (S~ £;) for k > 0 and restricting morphisms to those
#-bordisms whose underlying bordism without #-structure is equivalent to a disjoint union of Wy r41’s
for some g, k > 0. Up to issues with components and different models, [BBP* 17, Theorem 1.3] shows
that the endomorphism operad

W = Endgorde (zn)(oo,]),W (szn_1 ) 50)

of (5?2771, £y) in this category (see Section 2.7.1) can be enhanced to an operad with homological
stability for all 2n > 2. For completeness and to deal with these issues, we give a proof in our setting by
adapting their argument. As in [BBP"17], the main ingredient is a stable homological stability result of
Galatius—Randal-Williams [GRW 17] (for the case 2n = 2, one can use [Har85]).

Proposition 6.5. 7" admits the structure of an operad with homological stability for all 2n > 2.

Proof. By definition and (68), the space of k-ary operations
W (k) = Mapg;orde(zn)(oo,l),w ('—'k(Szn_l, €0), (Szn_l, 50))

is the co-groupoid of @-bordisms LI (S2"71, £y)) ~» (5271, ¢y) that are, after forgetting #-structures,
equivalent to W ;41 for some g > 0. As the manifolds W, 1 are pairwise non-diffeomorphic for g > 0,
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Figure 8. A 5-ary operation in the co-operad W' .

this induces a decomposition % (k) = Lg»o% (k) which is compatible with the operad structure given
by gluing bordisms with 6-structures, so it gives rise to an Ny-grading on 7".

To construct a map <fssoc — % from the associative operad (put in degree 0), we first use
Example 2.11 to recognise &fssoc as a suboperad in the sense of Section 2.7.1 of the endomorphism
operad Endgordfr(z)a,(m,l)(D',st) of the 1-disc with the standard 1-framing (that is, framing of its
once-stabilised tangent bundle) considered as an object of the 2-dimensional framed bordism category
with boundary from Section 4.1.3 (formally, the tangential structure involved is fr = (id: GL;(R) —
GL,(R)). Namely, we restrict to those bordisms (N, £): L*(D!,st) ~» (D!, st) for which (N, ¢) is
diffeomorphic (after smoothing corners) to D? with its standard framing such that UX (D!, st) ¢ dD?
is orientation-preserving, (D', st) c dD? is orientation-reversing (see Figure 8 for an example). From
Example 2.11, one sees that this suboperad is equivalent to &fssoc since its space of k-ary operations
is homotopy discrete with components 2; (with the regular Xx-action) as a consequence of the facts
that (i) the diffeomorphism group of D? fixing some boundary intervals is contractible as a result of
the equivalences Diff3(D') ~ % and Diff5(D?) = * (the first is folklore, the latter is [Sma59, Theorem
B]) and that (ii) the space of framings of D? relative to fixed 1-framings on collared intervals in the
boundary is homotopy discrete (as QGL, (R) is).

Now we consider the composition of symmetric monoidal co-categories

_ D2n—],A
Bord™(2)2(=1) XTI i (20 + 1)) 25 Gord! = (20) D 5 Bord? (2n) =D,

where the first arrow takes the product with D**~! equipped with the standard framing and smooths
corners (see Example 3.13), the second arrow takes boundaries and lands in the bordism category
with 1-stabilised framings (see Example 3.12), and the final arrow is induced by the naturality (62)
in the tangential structure and the fact that there is a map of tangential structures (1-fr) — 6 since
7: 7-,BO(2n) — BO(2n) arises as the pullback of 7.,BO(2n + 1) — BO(2n + 1) along BO(2n) —
BO(2n + 1) and thus receives a map from the pullback of *+ — BO(2n + 1). Taking endomorphism
operads and precomposing with the map from &/ ssoc, we have a composition

dssoc — End g, 4t (2).(.1) (D', st) — End ;46 (2 (.1 (821, ),

which lands in the suboperad of End g4 (2,,) .1 (8271 £) whose underlying bordisms are equivalent
to Wo_x+1, using that d(D? x D>~ ")\int(L**1 D! x D**~1) = W) 14, after smoothing corners. In other
words, it lands in the degree O-part of the operad # and thus gives a map &/ssoc — %  as in part
(i) of Definition 6.3. As s € (1) in part (ii), we choose the bordism Wy 1: §?"~! ~» §2"~! with an
admissible #-structure as in [GRW 17, p. 130] that extends £y on the boundary spheres.

It remains to check conditions (a) and (b) of Definition 6.3. For (a), one observes that already the
composition &/ss0c(2) — End gyt s, (D', 50 (2) = Bnd g i (04100 (D, 58)(2) lands in a
single path component, since the bordism (D?"*!,st): LU?(D?",st) ~» (D", st) is for n > 1 framed
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diffeomorphic to the same bordism with the two source components permuted using the isotopy extension
theorem and the fact that the space of framed embeddings LI>D¢ < D< is connected for d > 2.

Finally, to verify (b), we note that the image of * ~ @/ssoc(0) — % is the bordism D*": §?"~! ~» @,
equipped with some 6-structure, so the map %, (k) — %< (0) is a homology equivalence as a result of
applying [GRW 17, Theorem 1.3] to the bordism (with some 8-structure)

(DZn)LIk L (SZn—l % [0, 1]) (SZn—l)uk Ll SZn—l ~ SZn—l,

which, being (n — 1)-connected relative to its source, satisfies the condition of that theorem. O

6.3. Group completion and Disc-structure spaces

Fixing numbers 2 < 2n < d and a closed (d — 2n)-manifold P, we consider the sequence of symmetric
monoidal co-categories

Bord? (2n) DV < Gord® (2n) =D L Bord(2n) <V ZS Bord(ad) ™D s rod(d) D,
(78)

where U forgets tangential structures, P X (—) takes products (see Step ® in Section 3), and the final
functor is discussed in Section 4.1.7. (78) lands in the sub symmetric monoidal co-category

Mod(d) VW c od(d) D,

which is obtained by the restricting the objects to those equivalent to E| x pyg2n-1,; for k£ > 0 and the
morphisms to those bimodules equivalent to E| PxWy a1 for some m, k, g > 0. We write

Bord(2n) DV < Bord(2n) (=D

for the symmetric monoidal sub co-category obtained by restricting objects and morphisms to those that
land in .Zod(d)*-D-W c #od(d)(*-. Taking endomorphism operads, we obtain a composition

dssoc — W' = End g0 (2 (00w (871 6y)

= End g gy (P X 577 = End groq v (P x §2"71)
of maps of co-operads. On 0-ary operations, this induces a map of % -algebras (see Section 2.7.1)

Map g4 oy o7 (25 P X sl — Map o4(a) 0w (Eg,s Epygon-ixg)s (79

which we can also view as a map of &/ssoc-algebras in &, or equivalently, one of monoid objects in .
Going through the construction, the unit in Map ;q(4)@.0.w (@, Epygon-1x7) is given by the bimodule
Epyp, and the fibre at that object of (79), viewed as a map in &, is exactly SZ*¢(P x D>") from
Section 4.5.2. Since the forgetful functor Mon(S§) — & preserves limits, S?¢(P x D*") inherits a
monoid structure which fits into a pullback diagram in Mon(&’)

S?iSC(PXDzn) } Map(@ord(d)(mvl),W(g’PXSzn_l)

l l (80)

PxD2n

# ————> Map yoq(ay 0w (Eg, Epxson-ixg)-

Under mild conditions, this square remains a pullback after group completion. We show this as the first
part of the following proposition.
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Proposition 6.6. Fix 2 < 2n < d with d > 6 and a closed (d — 2n)-manifold P.

(1) Ifalso 2n > 4, then the pullback (80) in Mon(S§') remains a pullback after group completion.
(ii) S?iSC(P x D*") is group-like when considered as a monoid object in S.

Proof. The first part is an application of the following fact, which can be deduced from [Ste2 1, Theorem
2.11]: if amap ¢: X — Y of monoid objects in & has the property that for all y € Y there is an x € X
such that ¢(x) = y and the following squares are pullbacks in &

(-)-x x-(-)

and

<~
<~
<4

—

y-(=)

(=)-y \

—2

~

)

then group completion preserves pullbacks of monoid objects in & along the map ¢: X — Y.
To conclude 6.6, it thus suffices to check the condition for the right vertical map in (80) which
amounts to showing that the square in &

_ (5)Y(PxWg 1) B
Mapﬁord(d)(myl)yW(Q,PXS2n l) % Map@ord(d)(m,l),W(®7PXSzn 1)

J/ (S)YEpxw, J/

Map jo4(a) 0w (Eg,s Epyson-ing) ———————> Map yoq(ayn.w (Egs Epyxson-ix)

is cartesian for all g > 0, where (=) v (=) denotes the monoid structure of the monoid objects in (80),
and that the same holds for the square where we take products from the left. We focus on the former;
the latter is proved in the same way.

Going through the construction of the map &/ssoc — 7" in the proof of Proposition 6.5, we see that
(=) ¥ (Px Wy 1) is given a ‘pair of pants-product’: it sends a bordism M : @ ~» P X 5271 to the disjoint
union (MUPXWg 1): @ ~> L?PXS5?"! and then takes composition with (PXWp 41): L2 PxS?"! ~
PxS§>"~! By monoidality, this agrees with the map that sends M : @ ~> PxS5>"~! first to its composition
with ([0,1] x P x $>"~1 1 P x Wg1): P X §2=1 5 2P x §2"~! and then takes composition with
P xWoo1: U2 Px 8?1~ Px §2%1 The composition of the latter two bordisms is diffeomorphic,
as a self-bordism of P x $?"~!, to P x We.1+1. The same argument applies to (—) ¥ Epxw, ,, SO using
monoidality of the functor E : Bord(d)(®") — #od(d)*V, we may replace the top and bottom maps
in the previous square by the gluing maps (=) Upygon-t (P X W 141) and (=) Ug,, o, EPxw, .1
respectively. Taking vertical homotopy fibres, it thus suffices to show that for # > 0, the gluing map

((—) Upys2n-1 (P x Wg’1+1))2 So(P X Wh,l) — Sg(P x Wh+g,1)

is an equivalence. In the setting of Theorem 5.12, this map is induced by the inclusion (idp X inc): P X
Wh,1 = P X Wpye 1, soitis an equivalence by part (iii) of the theorem because the latter inclusion is an
equivalence on tangential 2-types as a result of W}, ; for all & > 0 being parallelisable and 1-connected
since we assumed 2n > 4.

To show (ii), we first recall from Section 4.5 that 7o S35 (P x D") is the set of equivalence classes
of pairs (W, ¢) of a compact manifold W whose boundary is identified with P x §?"~!, together with
an equivalence ¢: Epy — Epypon in M od(d);X g2n-1» and two such pairs are equivalent if there exists

a diffeomorphism between the manifolds that makes the evident triangle in .4 od(d);>< gon-1 homotopy
commute. Forgetting ¢ induces an exact sequence of pointed sets
o AUt god(ay;  (Epxpn) — o STEC(P x D*") — My(P x D*") — 0, (81)
PxS“n—IxI
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where My(Px D>") is the pointed set of compact d-manifolds W with boundary identified with P x §2"~!

such that there exists an unspecified equivalence Ew ~ Epyp2n in M od(d)E,, ,,,,up to diffeomorphism

relative to the boundary, and based at P x D*". The monoid structure on 7o S3°(P x D*") given by the
‘pair of pants product’ induces a compatible monoid structure on Ms(P x D*"), concretely given by

Wy W = (W (] W’) U pys2n-1 px§2n-1 P x W(),2+1. (82)

A priori, the leftmost pointed set in (81) carries two monoid structures — one induced by the “pair of
pants product’ (—) v (—) and one by composition — but these agree by the Eckmann—Hilton argument.
Thus, (81) is an exact sequence of monoids whose leftmost term is a group. Monoid-extensions of
groups are groups, so it suffices to show that Mz (P x D**) is a group. We do so by showing that every
element has a right- and a left-inverse; since the two constructions are essentially identical, we will only
explain the right-inverse.

For this, it is convenient to use the notion of relative bordism V: Ny ~» N| between two compact
manifolds Ny and N; with identified boundary d Ny = 9Ny, by which we mean a compact manifold V
with a division of its boundary into three codimension zero submanifolds 0V = Ny U (ONg X I) U N
that intersect at corners. Up to creating some corners, we can regard an element W € My(P x D*")
as a relative bordism of the form P x D**! ~s P x D>l by dividing the identified boundary
AW = Px 5> linto (P x D*" ! x {0}) U (P x dD* 1 x [0,1]) U (P x D>"~! x {1}). In these terms,
the monoid structure is given by composition of relative bordisms. By definition of Mg(P x D*"), the
manifold W admits an equivalence ¢: Ew — Epypn in M od(d)EPXsM,X]. In general, for manifold N
viewed as a nullbordism N: @ ~» dN, we can consider the composition

E, ®id act
Egnxi = Eg ® Egnxi —— En ® Egnxs — EN

in PSh(Zisc,) using the Day convolution product ®, the unique embedding @ — N and the fact that
E is the monoidal unit. Evaluating this composition at R? and taking quotients by the Diff(RY) ~
Emb(R?, R%)-action by functoriality recovers the homotopy class of the boundary inclusion N c N.
Applying this principle to the equivalence ¢ above, we obtain a homotopy equivalence W ~ P x D"
under P x $**~!. In terms of relative bordisms, this says that W is a strongly inertial relative h-
cobordism: that is, not only are the inclusions of the incoming and outgoing boundary homotopy
equivalences, but the induced homotopy equivalence between them is homotopic to a diffeomorphism
relative to the boundary. Since we assumed d > 6, relative h-cobordisms W: Wy = P X D1 & Wy,
up to diffeomorphism relative to the incoming boundary P x D?"~!, are classified by their Whitehead
torsion 7(W) € Whj(mr; P), and the Whitehead torsions of strongly inertial relative s-cobordisms form
a subgroup (cf. the discussion in [JK15, Section 3]). Thus, we may find another strongly relative A-
cobordism W’: Px D! ~> Px D*"~! with a diffeomorphism W U p, yon-1 W/ = Px D?" that respects
part of the boundary identification — namely, P x D?"~1{0} U (P x dD*"~! x [0, 1]). By changing the
identification of the outgoing boundary of W’ if necessary, we may assume that this diffeomorphism
respects the full boundary identification. Smoothing corners, this gives a diffeomorphism ¢ : Wy W’ —
P x D?" relative to P x §?"~!. To show that W is a right inverse to W in M (P x D?"), it thus suffices

to produce an equivalence Ew' = Epyp2 in Modg, ., - Thisis given by
¢~ 'vid Ey
Ew' = Epypwn Y Ewr —— Ew Y Ew’ = Ewyw’ — Epypon. |

Corollary 6.7. For4 < 2n < d with d > 6 and a closed (d — 2n)-manifold P, the Disc-structure space
S?‘SC(P X D) admits the structure of an infinite loop space.

Proof. Combining both parts of Proposition 6.6, S?iSC(P x D?") agrees with the fibre of the group
completion of the right vertical map in (80). As the group completion of a map of 7 -algebras, this map

https://doi.org/10.1017/fmp.2024.25 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2024.25

74 M. Krannich and A. Kupers

can be enhanced to a map of infinite loop spaces by Theorem 6.4 and Proposition 6.5. Fibres of infinite
loop maps carry infinite loop space structures, so the claim follows. O

Combining Corollary 6.7 with the invariance under the tangential 2-type from Theorem 5.12, we can
complete the goal of this section:

Proof of Theorem 6.1. For M a compact d-manifold with d > 8, we pick an 2n > 4 such that2n—-d > 4
(the choice 2n = 4 always works) and use the case k = 2 of Lemma 5.3 to pick a closed (d — 2n)-
manifold P of the same tangential 2-type as M. Both Px D" and M are d-dimensional and have the same
tangential 2-type, so S75¢(P x D*") = S7¢(M) by Theorem 5.12 5.12. As $3°(P x D*") admits the
structure of an infinite loop space by Corollary 6.7, the first part follows. For the claimed improvement,
one can replace the role of P in the argument with P = S972" for any 2n > 4 with d — 2n > 2, using
that any two 1-connected spin manifolds have the same tangential 2-type (see Example 5.2). O

Remark 6.8. The construction of the infinite loop space structure on S?iSC(M ) as presented in this
section comes with several drawbacks:

(i) It depends on several choices, most notably: (a) the choice of 2n > 4 with 2n —d > 4 and (b)
the choice of a closed (d — 2n)-manifold P of the same tangentlal 2-type as M. In particular, the
construction does not lift the functor 5‘9”0( -): %’ord(d) ©1 _, $ to a functor with values in
AlggP (), but it does enhances the Diff (P) action on the space SZse(D" x P) for fixed 2n > 4
and a closed manifold P to an action in Alggrp(c?)

(ii) The restrictions on the dimension are likely not optimal.

(iii) The space S?iSC(P x D?") ought to carry the structure of an Ej,-algebra, and the infinite loop
space structure we give ought to extend this E,-structure.

We expect that there is a better construction of the infinite loop space structure on S?iSC(M ) that does
not suffer from these shortcomings.

7. Localisations of mapping spaces between operads

This section serves to prove general results on mapping spaces between (truncated) operads and their
localisations at collections of primes. In particular, given co-operads @ and &, we rely on work of
Goppl-Weiss [GW24] to study the effect on homotopy groups of a map

Map(0, P)q — Map(Oq, Pq) (83)

from the rationalisation of the mapping space between 0 and & to the mapping space between the
respective rationalisations. In Section 8, we use these results to prove Theorems C and E.

Convention 7.1. Up to this point, we phrased our results and arguments in the language of co-categories.
In this and the following section, we will use several intermediate results from various sources, none of
which are written in this language. To stay close to these sources, we switch language for the remainder
of this paper and work in the category of simplicial sets or the category of compactly generated weak
Hausdorff spaces. We denote either of these categories by S and leave the necessary transitions based
on the usual Quillen equivalence between the standard model structures on these categories to the
reader. As a result of not working co-categorically, we have to derive all mapping spaces in various
categories that appear (spaces, operads, etc.) with respect to a class of weak equivalences for example,
using Dwyer—Kan’s functorial simplicial localisation [DK80a, DK80b]. We indicate various derived
mapping spaces by adding an A-subscript, so write Map” (-, —), and we will mention the class of weak
equivalences with respect we derive whenever a new type of derived mapping space is considered.
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7.1. Localisation of spaces and groups at a set of primes

We first recall some facts about T-localisations of spaces for a set of primes 7. Recall that a space Z is 7~
local if the map (—og): Mapg Y,Z2) — Mapg (X, Z) is a weak equivalence for any map g: X — Y that
is an isomorphism on H..(—; Z7 ). Here, the mapping spaces are derived with respect to weak homotopy
equivalences, and Zr is the localisation of Z obtained by inverting all primes in 7. Immediately from
the definition, we see that the class of T-local spaces is closed under

(i) taking homotopy limits,
(ii) passing to collections of path components,
(iii) applying Mapg (X, —) for any space X.

A map f: X — Y is a T-localisation if Y is T-local and f is a Zr-homology isomorphism. Any space
admits a T-localisation, and, suitably modelled, this yields an S-enriched functor

(-)r:8$S—S (84)

together with a natural transformation rr : id — (—)r which enjoys the following properties (see, for
example, [Far96, 1.A.3, 1.A.8, 1.B.2, 1.B.7, 1.C.9, 1.C.13, 1.LE4]):

(a) the map rr: X — Xr is a T-localisation, so a weak equivalence if X is T-local,

(b) (—)r preserves weak equivalences,

(c) the canonical map (X X Y)r — Xr X Yr is a weak equivalence,

(d) the map () o 7 : MapZ(Xr,Y) — Mapg(X,Y) is a weak equivalence if Y is T-local.

If T is the set of all primes, T-localisation is rationalisation, which we denote as (—)q.

7.1.1. Localisation of groups

Recall that a group G is T-local if the map (- o g): Hom(H,G) — Hom(K, G) is an isomorphism
for all g: K — H such that H;(g; Zr) is an isomorphism and Hy(g; Z7) is surjective. The homotopy
groups of a T-local space at any basepoint are T-local groups [Bou75, Theorem 5.5]. A morphism of
groups f: H — G is a T-localisation if G is T-local and f has the property on H,(—;Zr) for * = 1,2
just described. One way to construct 7-localisations of groups is as follows: the functor (84) has an
analogue (—)r: S, — S, in the pointed setting, which agrees with (84) on connected spaces [Far96,
A.7]. Defining G = 7 ((BG)r), we obtain a functor (—)7 : Grp — Grp on the category of groups
with a natural transformation id — (—)7 which is a T-localisation [Bou75, Lemma 7.3]. Note that we
have (G)® ® Zr = (G1)™ ® Z7 by construction and the Hurewicz theorem. On nilpotent groups, (—)r
agrees with the usual T-localisation of nilpotent groups in the algebraic sense.

7.1.2. Localisation of nilpotent spaces

Recall that a space X is nilpotent if it is connected, has nilpotent fundamental group, and its 71 (X)-
action on 7; (X) for i > 2 is nilpotent. T-localisation preserves nilpotent spaces and can be characterised
as follows (see, for example, [MP12, 6.1.2]):

Lemma 7.2. Let f: X — Y be a map from a nilpotent space X to a T-local space Y. Then the following
are equivalent:

() f: X — Y isaT-localisation of spaces,
(ii) fi: Hp(X;Z) —» Hi (Y; Z) is a T-localisation of abelian groups for all k > 1,
(iii) fi: mx(X) = 7w (Y) is a T-localisation of abelian and nilpotent groups for all k > 1.

Localisations of nilpotent spaces behave well with respect to many constructions, such as the follow-
ing:

Lemma 7.3. Let f: X — Aand g: Y — A be based maps between spaces with nilpotent basepoint
component. Then
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(i) the basepoint component (X XZ YhcX XZ Y of the homotopy pullback is nilpotent,
(ii) the natural map (X XZ Y)Y — (Xr XZT Yr)o is a T-localisation of nilpotent spaces, and
(iii) if Xo, Yo and Ag have finitely generated homotopy groups, then so does (X XZ Y)o.

Proof. Since (Xy XZO Yoo = (X xg Y)o, and similarly for the localised version, we may assume that
X, Y and A are connected. In this case, (i) and (ii) are [MP12, 6.2.5]. For (iii), we use the long exact
sequence for the homotopy groups of a homotopy pullback which exhibits 7; (X xﬁ Y)fori > 1asa
central extension of subquotients of finitely generated nilpotent groups. As the latter are closed under
taking subgroups, quotients and extensions, the statement follows. O

The next lemma involves equivariant mapping spaces Maps(—, —) = Mapgc (—, —) between G-
spaces for finite groups G, which we derive with respect to the G-equivariant maps whose underlying
maps of spaces are weak homotopy equivalences.

Lemma 7.4. Let X and Y be G-spaces for G a finite group. If

o X, is weakly equivalent to a finite CW complex and
o Y has nilpotent path components,

then for any f € Mapf(’; (X,Y), the following holds:

(i) the path component Map’(”; (X,Y)r < Map’(”; (X,Y) is nilpotent,
(ii) the postcomposition map (rr o (-)): Map}("; (X,Y)r — Map}é(X, Y7)(rpor) is a T-localisation,
(iii) if Y has finitely generated homotopy groups at all basepoints, then so does Map}(’; (X,Y)f.

Proof. By the assumption on X;s, we may assume that X is a finite G-CW complex consisting of
free G-cells. This allows us to argue by induction on the number of cells: if X is obtained from X’ by
attaching a single free G-cell, there are commutative squares

-1 G NG Map. (X,Y) —— Map”(D4,Y)
\L \L and J/ J/
Dl xG —> X Map/. (X’,Y) —— Map"(5971,7).

The left square is a homotopy pushout of G-spaces, and the right square is obtained from it by applying
Mapg(—, Y), so it is a homotopy pullback. By an induction over a principal Postnikov tower of the
path components of Y, one sees that the conclusions hold for all components of the right-hand terms of
the right-hand diagram. By induction, we may assume they hold for the bottom-left corner in the right
diagram, so using Lemma 7.3 and that subgroups of (finitely generated) nilpotent groups are (finitely
generated) nilpotent, they also hold for all components of the top-left corner in the right diagram. O

Recall that a k-cubical diagram is a functor on the poset of subsets of k := {1,...,k}.
Lemma 7.5. Let X be a k-cubical diagram of spaces with nilpotent path components.

(i) holimgy;c, X (1) has nilpotent components, and the map holimg;cx X (1) — holimg.;cx (X (I)r)
induced by the T-localisations of the X(I)’s, is a T-localisation when restricted to any component
of the source and the corresponding component of the target.

(ii) If X(I) has finitely generated homotopy groups at all basepoints for all @ + I C k, then
holimgy; cx X (I) has finitely generated homotopy groups at all basepoints.
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Proof. We prove the claim by induction on k. For k = 1, the claim is vacuous as holimg; 1 X (I) =~ X(1).
For larger k, we use that the homotopy limit fits into a homotopy cartesian square

holim X (I) ——— X (k)

o#I Ck

| |

holim X(I) —— holim X(I U {k}).
o#l Ck=1 o+ Ck-1

By induction, the conclusion of the statement holds for two diagrams defining the bottom row, and by
assumption also for X (k), so Lemma 7.3 gives the induction step. m}

7.2. Operads and dendroidal spaces

In this and the following sections, operads O, P, . . . are understood as single-coloured operads in S in the
classical sense. Declaring a weak equivalence to be a levelwise weak equivalence gives rise to derived
mapping spaces Mapgpd (O, P) between such operads. We will be mostly interested in 1-reduced operads
which are operads O whose space of 0- and 1-ary operations O(0) and O(1) are weakly contractible.
For such operads, there are equivalent point of views on their mapping spaces that we will make us of,
related by natural maps

® @
Mapgpd(O, P) — MapﬁShm) (N4O,N4P) = MapSSh@) (N4O,N,4P), (85)

which we explain in the following two subsections. Part of our discussion in this and the following
subsection is similar to that in [Wei21l, Section 3.4].

7.2.1. Dendroidal spaces and the map @®

The two alternative points of view stem from Moerdijk—Weiss’ dendroidal spaces. Briefly (see [HM22]
for details), the category of dendroidal spaces is the category of presheaves O: Q°° — S on a certain
category Q of finite rooted trees with specified subsets of leaves. More formally, an object (z, <, £(¢))
in Q is a finite partially ordered set (¢, <) of edges together with a specified subset £(¢) C ¢ of maximal
elements (the leaves) such that (a) {v € ¢|w < v} is totally ordered for all w € T and (b) there is
a unique maximal element v € T with respect to the partial order, the root (see Section 3.2 loc.cit.).
The subset v(z) = t\€(T) C ¢t is the set of vertices of the tree. The incoming edges in(v) C t of a
vertex v is the set of maximal elements in {w € t|w < v}. We refer to Section 3.2-3.3 loc.cit. for
a description of the morphisms in Q. There is a functor Ny(—) from operads to dendroidal spaces,
the dendroidal nerve (see Example 12.11 loc.cit.), given by NgO() := [ '], ¢, (s) O(lin(v)|). Declaring
weak equivalences between dendroidal spaces to be levelwise weak equivalences gives rise to derived
mapping spaces Map’llSh @ (-, —) of dendroidal spaces, and as N4(—) preserves weak equivalence, we

obtain the map (D.

7.2.2. (1-reduced) dendroidal Segal spaces and the map @

There is a convenient class of dendroidal spaces that includes dendroidal nerves of 1-reduced operads
but is homotopically more flexible. To define it, we consider the k-corolla which is the unique (up to
isomorphism) tree in £ with one vertex and k leaves, denoted by 7. The unique (up to isomorphism)
tree in € with no vertices is denoted 7. For each vertex v in a tree ¢, there is a morphism 7z — ¢ (unique
up to automorphism of #;) that takes the root to v and the leaves to in(v). Given a dendroidal space ©
and a tree ¢, these morphisms assemble to a map

O(t) — [veviry) Otjin(vy))- (86)
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The following definition mimics the definition of a 1-reduced operad on the level of dendroidal Segal
spaces. The examples to keep in mind are dendroidal nerves N,O of 1-reduced operads.

Definition 7.6. A 1-reduced dendroidal Segal space O is a dendroidal space such that the values O(to)
and O(t) at the 0- and 1-corollas are weakly contractible and such that (86) is a weak equivalences for
all trees 1 € Q (this says in particular that ©(n) is weakly contractible).

The full subcategory Q c Q of closed trees (i.e., trees t with £(v) = @) (see [HM22, p. 92, 97], is
often easier to work with. Presheaves 0: Q% — S are called closed dendroidal spaces. Morphisms
between those are still natural transformations and weak equivalences are levelwise; we denote the
resulting derived mapping spaces by MapgSh © (-, ). Restriction along Q c Q induces a map

MapQSh(Q) (0,P) — MapﬁSh(ﬁ) (0, P)

of which @ is a special case. For 1-reduced operads O and P, both maps () and ) turn out to be weak
equivalences (see [HM22, Corollary 14.42] for (D and [GW24, Lemma 3.2.4] for @):

Proposition 7.7. For 1-reduced operads O and P, the maps (D) and 2) are weak equivalences.

7.3. A tower of derived mapping spaces

The category Q of closed trees admits a filtration
ﬁs() Cﬁs] (G Cﬁ,

by the full subcategories Q< on those trees whose vertices v have at most k incoming edges. Denoting
the restriction of a closed dendroidal space O along Q< C € by the same symbol, we obtain a natural
tower of derived mapping spaces

h
Mapgg;, . (0. &) (87)

/ l

h h
Mapgg, ) (0, P) ———— Mapgg, 5 _,(0.9),

all derived with respect to the levelwise weak equivalences. For simplicity, we write
Map” (6, ) = Mappg, (0, %) and  Map”, (6, P) = Mappg, (0, P). (88)

This tower was studied by Goppl and Weiss [GW24]. In Lemma 3.1.1 loc.cit. they note that it converges;
that is, we have a weak equivalence

Map" (6, P) — holim Map”, (0, P). (89)

To identify its layers (i.e., the homotopy fibres of the vertical maps), they consider the kth matching and
latching object of a 1-reduced dendroidal space ©

Latch (0) = hocolim  O(t), and Matchi(0) = holim P(1).

(fe—1) €(Qek-1)7, (t—1k) €(Qer-1) /7,

Here, 75 € Q is the closed k-corolla, the unique (up to isomorphism) closed tree with k + 1 vertices
of which one has k incoming edges and the others have none. Permuting incoming edges defines an
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action of the symmetric group X on 7 in Q which induces a natural X-action on Matchy () and
Latchy (). These are related by X -equivariant maps

Latchg (0) — (O(7x) =: O(k)) — Matchy (0). (90)

Goppl and Weiss used these maps to identify the vertical homotopy fibres in the above tower in terms of
the matching and latching objects and spaces of derived maps between X -spaces; see Theorem 3.2.7
and Remark 3.2.15 loc.cit.:

Theorem 7.8 (Goppl-Weiss). For k > 1 and 1-reduced dendroidal Segal spaces O and P, there is a
natural homotopy cartesian square whose left and top arrow is induced by restriction

Map”, (0. P) —— Map¥ (6(k), 2 (k))

! !

Map", (0,P) ——— Pi(0,P).
The corner Py (0, P) fits into a natural homotopy cartesian square

P(0, P) ———— Map! (O(k), Matchy (P))

| !

Mapgk (Latchg (0), (k) —— Mapgk (Latchy (0), Matchy (92))

whose bottom and right maps are induced by (90).

7.4. Localisations of dendroidal spaces

Given a dendroidal space 0, its T-localisation Or for a set of primes T is the dendroidal space given as
the composition of 0: Q°° — S with the localisation functor (—=); : S — S. The natural transformation
ids — (—)r induces a map rr: O — Or of dendroidal Segal spaces. It follows from properties (b) and
(c) from Section 7.1 that if O is a 1-reduced dendroidal Segal space, then so is Or.

Lemma 7.9. For dendroidal spaces O and 9P such that P is levelwise T-local, MapI;Sh(Q)(@, P) is
T-local and the natural zig-zag

(-) rro(-)
Mapgs}l(g) (0,P) -5 MapgSh(g) (Or,Pr) —— ManSh(Q) (Or,P)

consists of weak equivalences. The same holds when replacing Q by Q or Q<y.

Proof. The derived mapping spaces appearing in the statement are formed in a category of space-
valued presheaves with levelwise weak equivalences, so they can be computed as homotopy limits of a
diagram of levelwise mapping spaces. We saw in Section 7.1 that T-local spaces are closed under taking
homotopy limits and applying Mapg (X, —) for any space X, so this implies the first part of the claim.
Moreover, this argument reduces the second part to proving that the zigzag of derived mapping spaces
in the category of spaces

Map (0(1), (1)) L5 Map! (0(1)r, P(1)r) <=L Mapli (6(0)r. 2 (1))

consists of weak equivalences for all trees ¢ € Q. For the second map, this follows follows the fact that
rr: P(t) — P(t)r is a weak equivalence by property (a) of T-localisation. For the first map, we note

Map (0(1), P(1)) 5 Mapl (6(t)r, P(0)r) 225 Maph (0(1), P(0)r)
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agrees with postcomposition with rr : P(t) — P(#)r, and so is a weak equivalence. The second map
is a weak equivalence by property (d), so the first map is one too. O

7.4.1. Localisations of derived mapping spaces
Recalling the abbreviations of (88), denoting the path component of f € Map}; (0, P) by

Map”, (0, P); € Map”, (6, P),

and abbreviating O (7 ) to ©(k), we can now state the following result:
Theorem 7.10. Let & and O be 1-reduced dendroidal Segal spaces such that for all k > 0,

o 9 (k) has nilpotent path components and
o O(k)pz, and Latchy (O)yz, are weakly equivalent to finite CW complexes.

Then the following holds for all k > 0 and any map f € Mapi (0, P):

(i) the path component Mapi (O, P)y is nilpotent,
(ii) for a set of primes T, the natural map induced by T-localisation rr : P — Pr

Map};k(@, P — Map};k(@, Prrpof

is a T-localisation of nilpotent spaces, and
(iii) if the spaces P (k') have finitely generated homotopy groups at all basepoints for all k' > 0, then
so does Map';k (0, P)y.

The first part of this result (and the strategy of proof) is similar to [Wei2 1, Proposition 5.2.4]. We
start the proof with an auxiliary lemma:

Lemma 7.11. Let T be a set of primes and &P a 1-reduced dendroidal Segal space such that (k) has
nilpotent path components for all k > 0. The following holds for all k > 0:

(i) Matchy (9P) has nilpotent path components,
(ii) the natural map Matchy (%) — Matchg (9Pr) is a T-localisation when restricted to a path compo-
nent of the source and the corresponding path component of the target,
(iii) if the space P (k') has finitely generated homotopy groups at all basepoints for 0 < k' < k, then
so does Matchy ().

Proof. Tdentifying the vertices of 7; with no incoming edges with k = {1,2, ..., k}, every subset I C k
defines a closed subcorolla 7; C 7. This gives rise to an k-cubical diagram k 2 I 9’(5@1).
By the argument above Theorem 3.4.7 in [Wei2l], there is a natural equivalence Matchy () =~
holimg . cx P (tg\1), so the claim follows from an application of Lemma 7.5. O

Proof of Theorem 7.10. We prove the claim by induction on k. The initial case k = 0 is trivial since &
is assumed to be 1-reduced, so the mapping spaces appearing in the statement are contractible. For the
induction step, we assume the claim for k — 1 and prove it for k. To do so, we consider the homotopy
cartesian squares of Theorem 7.8. A choice of f € Mapzk(@, 9P) induces basepoints in all spaces
participating in these squares; we denote these also by f. Now consider the maps
Map} (6(k), P(k)); —> Mapt (O(k), P (k)r)y
Mapf, (6(k), Matchy (%)) —> Map} (6(k), Matchy (P)r )5
Mapf (Latch (0), P(k)); —> Map® (Latchy (6), P(k)r)y
Map'zlk (Latchy (0), Matchy (2))r — Mapgk (Latchy (O0), Matchy (P)r) s

oD

induced by postcomposition with the T-localisations of the codomains. Combining Lemma 7.4 with
Lemma 7.11, all four maps are T-localisations of nilpotent spaces. Moreover, by the first part of
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Lemma 7.11, we may replace Matchy(<)r in the codomain of the second and fourth map by
Matchy (%r). An application of Lemma 7.3 to the second square in Theorem 7.8 shows that the map
P(0,P); — Pr(0,Pr)s between the components induced by f is a T-localisation of nilpotent
spaces. Combining this with the induction hypothesis, another application of Lemma 7.3 — this time to
the first square — shows that the natural map Map’é (O, P)r — Map’; « (O, Pr)y is a T-localisation
between nilpotent spaces, so (i) and (ii) hold.

We argue similarly for (iii): if the spaces &(k) have finitely generated homotopy groups at all
basepoints, then so does Matchy () by the second part of Lemma 7.1 1. By the second part of Lemma 7.4,
we conclude that the domains of the four maps have finitely generated homotopy groups, so the same
holds for Py (O, %) by an application of the final part of Lemma 7.3 and thus also for Map” (0, 9P) f
by another application of that lemma and the induction hypothesis.

This finishes the first part of this section as outlined in Section 1.2.5 after (III).

7.5. Inverse limits and countability
The second part of this section begins with general results on the behaviour of homotopy groups of

homotopy limits of towers of spaces.

7.5.1. Towers of groups

Following [BK72, IX.2], we call a sequence of groups Gy «— G| < G, « --- atower of groups and
abbreviate it by {G}. Such a tower has a limit group limy G and a pointed lim'-set lim}( Gy [BK72,
IX.2.1]. If the tower consists of abelian groups, then lim}( G inherits an abelian group structure. A
short exact sequence of towers of groups induces a long exact sequence as follows [BK72, IX.2.3]:

Lemma 7.12. A levelwise short exact sequence of towers of groups
0— {Gr} — {Hr} = {Kx} — 0
induces a natural exact sequence of groups and pointed sets
0 — limg Gy — limg H, — limg K — lim,lc Gy — 1im,1< H, — lim}{ K; — 0.

Recall that a map {fix}: {Gr} — {Hx} of towers of groups is called a pro-isomorphism if for all
s > 0, there exists a t > s and a homomorphism H; — G such that the diagram

Gs<_Gt

LN s

Hs<_Ht

commutes. Pro-isomorphisms have the following property [BK72, Proposition I11.2.6]:

Lemma 7.13. For a pro-isomorphism { fi}: {Gr} — {Hy}, the induced map limy Gy — limg Hy is
an isomorphism, and the induced map lim}( G — lirn}( Hy is a pointed bijection.

For a tower of groups {G} and r > 1, the rth derived tower (G](cr)) is defined by
G]((r) = im(Grsr — Gy).

For each fixed k, this defines a tower {G( )}reN of inclusions of subgroups. The tower (Gy) is called
Mittag—Leffler if for each k, there is an m < oo so that lim,y >, G(m) — G( is an isomorphism.
Examples of Mittag—Lefller towers include towers of finite groups or ﬁmte dlmensmnal vector spaces.
Mittag—Lefller towers have the following property [BK72, Corollary IX.3.5]:
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Lemma 7.14. If a tower of groups {G} is Mittag—Leffler, then lim,l< Gy ==
To recognise Mittag—Leffler towers, we use the following result from [MM?92, Theorem 2]:

Lemma 7.15 (McGibbon—-Mgller). For a tower {G .} of countable groups, the following statements are
equivalent:

@) lim,'c Gy is countable,
(ii) lim}( G vanishes,
(iii) the tower {Gy} is Mittag—Leffler.

The following lemma appears in [DS78, Corollary 6.1.9], but we include a proof for the convenience
of the reader. For a group G, we denote the constant tower with value G by {c G}.

Lemma 7.16 (Dydak—Segal). If a tower of groups {G} is Mittag—Leffler and limy G is countable,
then the canonical map {climy G} — {Gy} is a pro-isomorphism.

Proof. Any Mittag—Leffler tower of groups {G} is pro-isomorphic to one with surjective transition
maps (consider the tower {G| } of stable images G; C G (i.e., G} = im(Ggsm — Gy) form > 0)), so
we may assume this is the case. This in particular ensures that the maps limy Gy — Gy are surjective,
so G is countable for all £ > 0, and it also shows that the claim is true if lim; G = 0. and thus, G, =0
for all k. We use this special case to prove the following claim, which implies the general statement
when applied to the map {climy G} — {G}:

Claim. Let {G} be a Mittag—Leftler tower of countable groups and {fi}: {Gx} — {H} a levelwise
surjective map of towers of groups. If limy fi: limy G — limg Hy is an isomorphism, then {fi} is a
pro-isomorphism.

Proof of claim. Consider the short exact sequence of towers 1 — {ker(fi)} — {Gx} — {Hx} — 1
and the associated long exact sequence of Lemma 7.12. Since (a) the map limy, f : limg Gx — limg Hy
is an isomorphism, (b) {G} is Mittag-Leffler, and (c) Lemma 7.14, it follows that limy ker( f) and
lim}c ker( f) both vanish. Invoking Lemma 7.15, we see that {ker( fx)} is Mittag—Leffler, so by the first
part of the proof, {ker(fx)} is pro-isomorphic to {c 0}. The result follows since a levelwise surjective
map of towers of groups is a pro-isomorphism if its towers of levelwise kernels are pro-isomorphic to
{c 0} [BK72, Proposition I11.2.2]. O

This completes the proof of the lemma. O
Mittag—Leftler towers often behave well with T-localisation in the sense of Section 7.1.1:

Lemma 7.17. Let {G} be Mittag—Leffler. If limy Gy, is countable, then the canonical map
(1imk Gk)T —> limg ((Gk)T)

is an isomorphism for any set of primes T.

Proof. By Lemma 7.16, the canonical map of towers {c limg G} — {Gy} is a pro-isomorphism, as
limy Gy is countable. As (—)7 preserves pro-isomorphisms and limits of constant towers, the canonical
map from the constant tower on {limy G }7 to {(Gg)r} is a pro-isomorphism, and the result follows
from Lemma 7.13. ad

Remark 7.18. We stated Lemma 7.17 in terms of T-localisation since this is what we will use, but the
same proof applied to (—)r replaces by any endofunctor on the category of groups.

7.5.2. Towers of spaces
Given a tower Xy <« X; « --- of based spaces, taking homotopy groups results in a tower of pointed
sets {m;(Xx)} (of groups for i > 1). The limits of these towers fit into the following Milnor exact

sequence [BK72, Theorem IX.3.1].
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Lemma 7.19. For a tower Xg < X| « --- of based spaces and i > 0, there is a natural short exact
sequence of pointed sets (of groups fori > 1)

0— lim,lc i1 (X)) — mi(holimy Xy ) — limy ; (X)) — 0.

Together with Lemma 7.15, this has the following consequence.

Proposition 7.20. Fixi > 1. For a tower of based spaces Xy < X < - - - such that 7;(Xy) is countable
forall k > 0, at least one of the following statements holds:

(i) m.(holimy Xy ) is uncountable in degree i — 1 or i,
(i) (limgm; (Xg)r — limg (7;(Xg)r) is an isomorphism for all sets of primes T.

Moreover, if w1 (Xy) is countable for all k > O, then at least one of the following is the case:

(i’) m;(holimy Xy) is uncountable,
(ii’) the natural surjection m;(holimg Xy) — limyr;(Xy) is an isomorphism.

Proof. By Lemma 7.15, the assumption that 7r;(Xy) is countable for k > O implies that either (a)
lim,l< (7;(Xy)) is uncountable or (b) the tower is Mittag—LefHer. In case (a), we apply Lemma 7.19 in
degree i—1 to conclude that 7r;_; (holimy X} ) is uncountable, so (i) holds. In case (b), either xr; (holimy X} )
is uncountable and (i) holds, or it is countable and Lemma 7.19 in degree i implies that limy 7; (Xj)
is countable, so (ii) holds by Lemma 7.17. Similarly, if 7;,;(X) is countable for k > 0, then either
m; (holimy X}) is uncountable and (i’) holds, or it is countable and so lim}( 7i+1(Xg) is countable by
Lemma 7.19 and thus vanishes by Lemma 7.15, so the claim follows from the Milnor exact sequence. O

7.6. Applications to maps between operads

Together with Theorem 7.10, we use Proposition 7.20 to prove the following result about the map
Map” (0, P) — Map" (6o, Pq)
for 1-reduced dendroidal Segal spaces @ and & in the sense of Section 7.2.

Theorem 7.21. Let © and &P be 1-reduced dendroidal Segal spaces such that for all k > 0,

e all components of P (k) are nilpotent and have finitely generated homotopy groups,
e O(k) and Latchy (O)ys, are weakly equivalent to finite CW complexes.

Then for all i > 1 and all basepoints f € Map” (0, P), at least one of the following is the case:

(i) m.(Map" (0, P)) is uncountable in degree i — 1 or i,
(ii) the canonical map n;(Map" (0, P — ﬂi(Maph(@Q, Pq)) is an isomorphism.

Proof. During the proof, we implicitly use the equivalence Map" (0, q) ~ Map” (0q, Pq) and its
truncated analogue (see Lemma 7.9). Then (89) gives

Map” (0, P) =~ holimy Map';k (0,%) and Map" (Og, Pq) =~ holimy Mapf;k (Og, Pq),

so from the two Milnor sequences (see Lemma 7.19) together with the fact that r; (Maph (Oq, Pq)) is
Q-local as the homotopy group of a Q-local space (see Lemma 7.9), we obtain a square

i (Map" (6, P))g — 2 (limim: (Map (6, ),

| o
ni(Maph(@Q,g’Q)) Q) limy, ni(Map’;k(@Q,g’Q)).
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Assuming that 7, (Map” (0, %)) is countable in degrees i — 1 and i, we need to show that the left
vertical map is an isomorphism, which we do proving that this holds for the three circled maps. By
Theorem 7.10 (iii), the homotopy groups of Map’i (0, P) are finitely generated for all k, so they
are in particular countable. By Proposition 7.20 (ii’), this implies that (D) is an isomorphism, even
before rationalisation. By Theorem 7.10 (ii), we have 7y (Map]zk(@, P = mx (Mapﬁ (O, Pq))
for all k > 1, so @ is an isomorphism by Proposition 7.20 (ii). Finally, by the Milnor sequence
(see Lemma 7.19), 3 is surjective and its kernel agrees with lim}( Tisl (Mapﬁk(g’Q, 0q)), so it is an
isomorphism if {7;; (Map’z «(ZPq,0q))} is Mittag—Leffler. For this it suffices that it is a tower of finite-
dimensional vector spaces, which is indeed the case by Theorem 7.10 (ii) and (iii). ]

7.6.1. Applications to maps between E,,-operads

Here and henceforth, we write E,, for any operad weakly equivalent to the operad of little n-discs (the
unital version, so E,,(0) =~ x). As E, (1) =~ %, we can consider E,, via the dendroidal nerve as a 1-reduced
dendroidal Segal space, denoted by the same symbol, and abbreviate its 7T-localisation (see Section 7.4)
by ET. Proposition 7.7 says that the derived mapping spaces between E,-operads do not depend on
whether we consider them as operads or as 1-reduced dendroidal Segal spaces. Keeping this in mind,
we use Theorems 7.10 and 7.21 to prove the following two results:

Theorem 7.22. Fixn > 1 and m > 3, and a set of primes T. For f € Map};r(En, En) and k > 0, the
following holds:

(i) the path component Map}; & (Ens Ei)y is nilpotent,
(ii) the map (ry o (-)): Mapzk (En,En)r — Map’;k (Ens EY)poy is a T-localisation,
(iii) the homotopy groups of Mapi «(Ens En)y are finitely generated.

The case of Theorem 7.22 that will be relevant to the proof of Theorem C and Corollary E in the
next section is n = m. For m —n > 2 and (—)r being rationalisation, this result appears also in Section
10.2 of [FTW17] (see Remark 10.9 and Proposition 10.10 loc.¢it.).

Theorem 7.23. Fixn > 1 and m > 3. For all i > 1 and any basepoint in Map” (E,,, E,,,), at least one
of the following statements holds:

(i) m.(Map”"(E,, E,,)) is uncountable in degrees i — 1 or i,
(ii) the canonical map m;(Map" (E,, En))g — 7;(Map” (E,?, E,%)) is an isomorphism.

Proof of Theorems 7.22 and 7.23. This follows from Theorems 7.10 and 7.21 once we checked the hy-
pothesis. The space of k-ary operations E,, (k) is weakly equivalent to the space of ordered configurations
Fr(R"),s0 E, is 1-reduced for all n > 1. Moreover, by transversality, E,, (k) is 1-connected (so in partic-
ular, nilpotent) as long as n > 3, so its homotopy groups are finitely generated if its homology groups are.
We are thus left to show that E,, (k),x, and Latchy (E,)sx, have the weak homotopy type of finite CW
complexes for all n > 1 and that £, (k) has degreewise finitely generated homology groups forn > 3. By
[GW24, Examples 1.1.6, 2.1.13] (see also [Wei2 1, Proposition 3.4.6]), the map Latch,, (E,) — E, (k)
agrees up to weak equivalence of Xg-spaces with the boundary inclusion dFM,,(k) C FM,, (k) of the
Fulton—-MacPherson compactification of Fy (R™). This is a compact manifold with corners and free X -
action [Sin04], so we conclude (i) that (E, (k))ns, =~ FM, /% and (Latchy (E,))ns, =~ 0F M, /% have
the weak homotopy type of smooth compact manifolds with corners and so are weakly equivalent to
finite CW complexes, and (ii) that E, (k) ~ FM,,(k) has degreewise finitely generated homology. O

8. Theorem C: nontriviality

In this section, we prove results on the homotopy groups of the homotopy fibre Aut”(Ez)/Top(d)
of the map BTop(d) — BAut"(E;) mentioned as (4) in the introduction (and explained below), and
deduce results on the homotopy groups of S?i“ (D%); Theorem C and Corollary E will follow as special
cases. As explained in the outline in Section 1.2.5, the main ingredient besides Theorem 7.23 is work
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of Boavida de Brito—Weiss [BdBW 18] and work of Fresse—Turchin—Willwacher [FTW17]. We also
make use of results of Krannich, Kupers, Randal-Williams and Watanabe [KrRW21, KuRW25, Wat09],
though this can be avoided in most cases (see Remark 8.15).

8.1. A theorem of Boavida de Brito—Weiss

We first extract the relevant parts of [BABW 18]. By Theorem 1.2 loc.cit., the space Map" (Eg, Eg4) =
Mapgpd (Eg, E4) of derived operad maps is equivalent to a mapping space between certain co-categories
of configurations spaces associated to R?. These configuration categories only depend on the underlying
topological manifold, so this in particular shows that the standard action of O(d) on E factors through
an action of Top(d) and thus gives a map

BTop(d) — BAut"(Ey). (92)

We will explain below how a reformulation of further results of Boavida de Brito—Weiss relates the
homotopy fibre Aut” (E;)/Top(d) of this map to the Jisc-structure space S?iSC(Dd) of a disc. To state
the precise result, we denote by

szg;jl) (Aut" (E4)/Top(d)) € Q4! (Aut" (E4)/Top(d))

the collection of those path components that are sent to classes in the image of the map 74+ (BO(d)) —
nq4+1(BTop(d)) under the map

o(Q! (Aut" (Eq) [ Top(d))) = ngr1 (Aut” (Eq) /Top(d)) —> mas1 (BTop(d)).
Theorem 8.1 (Boavida de Brito—Weiss). For d # 4, there exists a 0-coconnected map of the form
Qdty (Aut" (Eg) /Top(d)) — S3(D?).

Recall that being 0-coconnected amounts to being an ‘inclusion of path components’, meaning a map
that induces an injection on my(—) and an isomorphism on 7;(—) for i > 1. After taking loop spaces,
Theorem 8.1 can also be deduced from work of Ducoulombier—Turchin [DT22, (13)].

Remark 8.2. After this work was finalised, a different proof of Theorem 8.1 was given in [KK24c,
Section 5.9.4]. This proof is independent of [BABW 18] and [DT22] and shows the slightly stronger
statement Q4*! (Aut" (E4) /Top(d)) = S75¢(D?).

Proof of Theorem 8.1. This can be deduced from [BABW 18] as follows: combining their Theorems 1.2
and 1.4 with their Section 6 (see also Equation (1.3)), there is contractible space C(D?, D?) (a certain
mapping space of configuration categories) which fits into a homotopy cartesian square

TwEmby (D9, DY) —— C(D?, DY)

¢ ¢

Bung(TD4, TDY) —— Q?Map"(E4, Eq).

where Bung (TD9, TD?) is the space of vector bundle maps of D4 that are fixed on the boundary and
T Emby (D9, D?) is the embedding calculus approximation to Embg (D, D). The bottom horizontal
map admits a factorisation

Bunyg(TDY, TD%) — Bung(T D4, TD?)™ — QIMap" (E4, E4) (93)
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through the space of topological microbundle maps (compare the proof of Theorem 1.6 loc.cit.). Under
the equivalences Bung (TD4, TD?) ~ Q?0(d) and Bunyg(T D4, TD?)™P ~ Q4 Top(d), this agrees with
the d-fold looping of the composition O(d) — Top(d) — Aut’*(Ey).

Now the factorisation (93) allows us to form the commutative diagram

Embg(D?, DY) > Embg(D9, D4)Top

> —
l TwEmby (D9, DY) | > C(D4, DY)

1
Buny(TD4, TDY) ——— | —— Bung(T D4, TD%)ToP l
= —

Buny(TD4, TD?) > QIMap"(Eq, Eq)

whose front and back face are homotopy cartesian; the former by what was said above and the latter by
smoothing theory (see [KS77, Essay V]; this uses d # 4). Note that Embg(D?, DY) = Diff5(D%) and
Embs (D4, D?)™P = Homeos(D4). From the constructions in [BABW 18], one sees that this diagram
is in fact a diagram of A.-spaces if one uses the A,-structure on To,Embg (D%, D¢) by composition
induced by the model for embedding calculus with boundary condition from [BdBW 13, p. 379] which
agrees with the A-structure provided by our model as a result of Proposition 4.8 (see the discussion
at the beginning of Section 4.3.1). Using contractibility of C(D9, D?) and of Homeog (D) (using the
Alexander trick) and Theorem 4.5, the diagram becomes a map of homotopy fibre sequences

Diff5(D?) —— % Q10(d) —— Q4Top(d)

I || !

Map yoa(ay;, , (Epds Eps) — Q10(d) — QIAu" (Ey)

of As-spaces. Here, we used the abbreviation from (72). Aside from the bottom left fibre, all spaces in
this diagram are visibly group-like, so this fibre is as well; that is,

Map yoaaye, (Epa, Epa) = Autwoaare, , (Epa),

using the notation from Section 4.5. We may thus deloop the diagram once (after restricting the
components of the rightmost spaces to those in the image of the maps from Q?O(d)) and take vertical
homotopy fibres to get

Qd+l Aut(Ed)/Top(d) ~ Aut/”od(d)EaD

ot _ (Epa)/Diffy(DY).

d

The right-hand space is a collection of components of S?iSC(Dd) by (73), so the claim follows. O

8.2. Some results of Fresse—Turchin—-Willwacher

Next, we recall part of work of Fresse—Turchin—Willwacher [FTW 17], who gave a complete description
of the rational homotopy groups of Map” (E,,, Eg) in terms of certain graph complexes. We collect the
parts of their results that are relevant to us below, after explaining why they are applicable in our setting.

8.2.1. A comparison
The derived mapping spaces Maph(En,E,?l) considered in [FTW17] differ a priori from those we
considered in Section 7.6.1 in two ways:

First, the derived mapping spaces between operads considered in [FTW17] are formed not in the
usual category sOp of simplicial operads as we did in Section 7.2, but instead in a certain category
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sAOpg, of connected simplicial A-operads, equipped with levelwise weak equivalences. This category
is isomorphic to the full subcategory sOp,; C sOp of the category of simplicial operads such that
P(0) and P(1) are singletons (see the discussion following Proposition 4.4. loc.cit.). The inclusion
functor sAOp,, = sOp,; — sOp induces weak equivalences on derived mapping spaces: by [FTW18,
Theorem 1], the inclusion sOp, — sOp induces weak equivalences on derived mapping spaces, and
the same holds for sOp,; — sOp, since this full subcategory inclusion preserves fibrant and cofibrant
objects in suitable model categories on these categories with levelwise weak equivalences (see [Frel7,
p. 369] where this is explained in terms of the isomorphic categories sAOp,, C sAOp,). Hence, the
mapping spaces Map” (E,,, E,,,) considered in [FT'W 17] agree with any of the variants of mapping space
we discussed in (85) as a result of Proposition 7.7, using that the space of 0- and 1-operations of E,, are
weakly contractible.

Second, the authors in [FTW17] rationalise operads differently than we do — namely, via a rationali-
sation functor of Fresse [Frel7, Section 12.2] (therein denoted LG.Q;(—) and phrased in terms of the
isomorphism sAOp,, = sOp,; mentioned above) that we denote

(—)rQ: sOp,; — sOp,;.

This functor comes with a natural transformation rrq : id — (—)rg and has the property that any operad
P € sOp,,, the induced maps rrq: P(k) — Prq(k) agree up to weak equivalence with the Sullivan
rationalisation as long as H*(P(k); Q) is degreewise finite dimensional for all k > 1 (see Theorem 2.2.1
loc.cit.). We can compare this to the rationalisation (—)q we use (that is, levelwise T-localisation for T
the set of all primes) as follows:

Lemma 8.3. If P € sOp,, is levelwise connected nilpotent such that H*(P(k); Q) is degreewise finite
dimensional for all k > 1, then there exists a natural zig-zag of weak equivalences

Na(Prq) = (Na(P))g

between the dendroidal nerve of Fresse’s rationalisation and the rationalisation of the dendroidal nerve
in the sense of Section 7.4.

T Ny (reQ)
Proof. Consider the zigzag N4 (Prq) AN (Na(Pr@))o SR (Na(P))q. To check both these maps

are weak equivalences, it suffices to do so levelwise. Using the dendroidal Segal condition and the fact
that rationalisation commutes with products of connected nilpotent spaces by Lemma 7.3 (ii), we may
verify this on corollas. For those, the zig-zag becomes

F FF
Pro (k) —> Pro(k)g — P(k)g.

Under the assumption on P(k), Sullivan rationalisation agrees with the rationalisation in Section 7.1,
so all three spaces in the zig-zag are Q-local and the two maps are weak equivalences. O

8.2.2. Homotopy groups of spaces of maps between rationalised E,, -operads

The ingredient from [FTW 17] required for the proofs of Theorem C and Corollary E is a computation
of the homotopy groups of the derived mapping space Map” (E4, ES) based at the rationalisation map
rq: Eq — E; inarange of degrees, which we summarise as the first two items in the following theorem.
In its statement, we write Q[k] for the Z-graded 1-dimensional vector space concentrated in degree k,
and we write t: E; — E 44 for the standard inclusion.
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Theorem 8.4 (Fresse—Turchin—Willwacher).

(i) For2n > 4, we have an inclusion of graded rational vector spaces

70 (Map" (Esn, ED),7q) (s QU120 - 4i — 1] )
Q[6n—-6]®Q[10n - 10] ® Q[12n — 15]®
Q[14n - 14] ® Q[16n — 16] ® Q[16n — 19]&
Q[18n — 18] @ Q[18n —21].

This inclusion is an equality in degrees * < 20n — 28.
(ii) For2n+1 > 3, we have an inclusion of graded rational vector spaces

7o (Map" (Esnst, ES,, ). 7q) 3 B0 Q21 - 4i 2] @
Q[4n-1]® Q[6n-3] ® Q[8n —5]®
Q*[10n-7] ® Q*[12n - 9] ® Q[12n - 6]@
Q*[14n—11] ® Q[14n - 8].

This inclusion is an equality in degrees = < 16n — 14.
(iii) Ford > 2, (=) ov: Map"(Eg4, E(?)rQ — Map” (Eq4_1, Eg)rQOL is a weak equivalence.
(iv) Ford > 1, nge1 Map” (Ey4, E3+2), rqQ o t) is an infinite-dimensional Q-vector space.

Proof. By [FTW17, Corollary 5], there is an isomorphism of graded vector spaces of the form
>0 (Maph(Ed, E‘?), rqQ) = H*>0(GCZ) for d > 3, where GCEJ is a certain graph complex introduced
by Kontsevich (see loc.cit. for details). This complex splits into subcomplexes according to the number
of loops of the graphs. The subspaces in (i) and (ii) are the homologies of the subcomplexes of loop
order < 9 and < 7 depending on the parity of d (see Equation (4) loc.cit.). The fact that this subspace
spans the full homology in the claimed ranges appears as Corollary 6 loc.cit., which proves (i) and (ii)
(see also [BW24] for more computations in this direction). Part (iii) is [FTW17, Equation (12)]. Part
(iv) follows from the isomorphism 7 (Map” (E,, E3+2), rq oinc) = Hy_1(HCGy, 442) of Corollary 3
loc.cit. by considering the 1-loop contribution to degree n of HCG 442 explained in Equation (2) loc.cit.
and noting that the graph Hj in that equation has degree d for all k. O

Remark 8.5. Note that we have Map” (E,,, Eg)row ~ Map” (E,(,2 Eg)tq by Lemma 7.9.

8.3. Homotopy groups of Aut” (E;)/Top(d)

We now state our main technical result on the homotopy groups of the fibre Aut” (Ey)/Top(d) of the
map BTop(d) — BAut"(E,) from (92). We phrase the result in terms of the following statement that
we will refer to as (H,‘im). It depends on a choice of dimension d > 1 and degrees k, m > 2.

At least one of the following two scenarios is the case:

(i) m.(Aut"(Eg)/Top(d)) is uncountable in degree k — 2 or k — 1, or (H‘,f’m)
(ii) 7, (Aut” (E4)/Top(d))q is nontrivial.

Theorem 8.6. The statement (Hz’m) holds in the following cases:

(i) dimension d =3 and degrees k =7 and m = 6,
(ii) dimension d = 4 and degrees k = 4 and m = 4,
(iii) dimension d =2n+1 > 5, degrees k < 8n — 12 with k = 0 (mod 4) and k # 6n — 2, and m = k.
For2n+1 =15, the bound k < 8n — 12 can be weakened to k < 8n — 8,
(iv) dimension d =2n > 6, degrees 2n < k < 8n— 12 with k = 0 (mod 4), and m = k. If n is odd, then
the condition 2n < k can be removed.
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This in particular shows that the map BTop(d) — BAut" (E) is not a weak equivalence for d > 3,
so proves the first part of Corollary E in these cases (the second part follows by combining Theorems
6.1 and 8.1). In the low-dimensional case d < 2, the map is an equivalence which one can see by
combining the facts that in these dimensions, BO(d) — BTop(d) and BO(d) — BAut"(E,) are weak
equivalences, the first by [KS77, Essay V.§5.0(7)] and the latter by work of Horel for d = 2 [Horl7,
Theorem 8.5] and a folklore result for d = 1.

To prepare the proof of Theorem 8.6, we extract two results on the homotopy groups of the space
BTop(d) from the literature. The first says they are countable, and its proof requires the following lemma
which is likely known to experts but for which we do not know a reference.

Lemma 8.7. For a compact topological manifold M, possible with boundary, or the interior of such a
manifold, the homotopy groups of BHomeog (M) are countable.

Lemma 8.7 will be a consequence of the following point-set topological fact. Recall that a topological
space is second countable if its topology has a countable basis, and locally weakly-contractible if for
every neighbourhood U of a point p, there exists a weakly-contractible open neighbourhood V C U of p.

Lemma 8.8. If X is a locally weakly-contractible second countable space, then the homotopy groups of
X based at any basepoint are countable.

Proof. Recall (for instance, from [Dug78, VIIIL.6.3]) that every second countable space X is Lindeldf
(i.e., every open cover has a countable subcover). For locally weakly contractible X, we apply this to
the collection of all weakly-contractible open subsets to see that X admits a countable open cover by
weakly-contractible subsets. As being a locally weakly-contractible second countable space is preserved
by passing to an open subset, the same is true for open subsets of X. This allows one to inductively
construct an open hypercover U, — X such that each U, has countable many components, each of
which is weakly-contractible. Now consider the zigzag X « hocolim U, — hocolim p(U.) whose
left map is the weak homotopy equivalence of [DI0O4, Theorem 1.3] and whose right map is induced
by taking path components, so it is also a weak homotopy equivalence since homotopy colimits take
objectwise weak homotopy equivalences to weak homotopy equivalences. Now observe that the right
term is equivalent to a countable CW complex — for example, using the formula in [DI04, Proposition
3.2] exhibiting the homotopy colimit as the geometric realisation of a simplicial set with countable sets
of k-simplices for all k — and hence has countable homotopy groups. O

Proof of Lemma 8.7. For M compact, restriction to the boundary induces a fibration sequence
Homeoy(M) — Homeo(M) — Homeo(dM) as a result of the existence of collars. Hence, it suffices
to prove the result for the topological group of homeomorphisms of a compact manifold with boundary
or the interior of such a manifold, with no boundary condition. This space is second countable in the
compact-open topology [GP57, Proposition 5.4] and locally contractible by [Cer69, Theorem 1, Theo-
rem 2] (or [Che08, Corollary] for the case R4, which also serves an erratum for the previous reference)
or [EK71, Corollary 1.1, Corollary 6.1] (or [Kir69, Theorem 4] for the case R9), so the claim follows
from Lemma 8.8. m}

Applying Lemma 8.7 to R? = int(D?), we conclude the following:
Corollary 8.9. The homotopy groups of BTop(d) are countable.

Remark 8.10. For d # 4, Corollary 8.9 also follows by combining [Mil09, Lemma 10, p. 188] with
[KS77, Essay V.§5.0(1)]. The advantage of the proof above is that it applies to d = 4.
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The second result on BTop(d) we will use follows from works of Krannich, Kupers, Randal-Williams
and Watanabe [KrRW21, KuRW25, Wat09]. It concerns two commutative squares

BO(2n) —** s k(Q,2n) x BO BOQ2n+1) —25 s k(Q, 4n) x BO

i o o I o]t ©4)

BTop(2n) % k(Q,21) xBTop ~ BTop(2n + 1) L% k(Q, 4n) x BTop,

where the vertical arrows are induced by the inclusion O(d) C Top(d) and the horizontal arrows by
the stabilisation map, the Euler class e € H>"(BTop(2n); Q), and the odd-dimensional analogue of its
square E € H>™*!1(BTop(2n + 1); Q) (see [KrRW21, Sections 1.2.2 and 8.1.1] for further information
on this class). That the right vertical maps are rational equivalences follows from the finiteness of the
groups 7. (Top/O) [KS77, Essay V.§5.0(5)].

Theorem 8.11. The maps induced by the bottom horizontal arrows
mr(BTop(2n))g — mi(K(Q,2n) x BTop)q mx (BTop(2n +1))g — mr (K(Q, 4n) x BTop)q

are surjective in degrees k < 4n — 1 for all n, and in degrees k < 8n — 12 as long as n > 3. Moreover,
the right-hand map for n = 2 is also surjective in degree 4n.

Proof. In degrees = < 4n — 1, the claimed surjectivity follows from the classical fact that the upper
horizontal arrows are rationally surjective in exactly this range.

In order to show the claim for the bottom horizontal map in the left square of (94) for n > 3 in
the range * < 8n — 12, it thus suffices to show that the map Q(Z)”BTop(Zn) - Qé"BTop is surjective
on 7.(—)g for * < 6n — 12, which can be further reduced to showing that the map BDiff5(D?") ~
Q2"Top(2n)/0(2n) — Q§"Top/O(2n) is surjective on m.(—)q for * < 6n — 13; here, we have used
Morlet’s smoothing theory equivalence [KS77, p 241]. This surjectivity was proved in [KuRW?25,
Corollary 6.7]. By precomposing the map BTop(2n + 1) — BTop with BTop(2n) — BTop(2n+ 1), this
argument also shows that the bottom horizontal map in the right square of (94) for n > 3 is surjective
on 7, (—)q for * < 6n — 12 as long as * # 4n.

This leaves us with showing that for all n > 2, the bottom horizontal map of the right square of (94)
is surjective on 74, (—)g. Since the pullback of the class E € H*'(BTop(2n + 1); Q) to BO(2n) agrees
with e? by definition of E and hence is decomposable, evaluation of the pullback of E on the image of the
Hurewicz map 714, (BO(2n))q — Hi,(BO(2n); Q) is trivial. Hence, the fact that the map BO(2n) —
BTop is surjective on 74, (—)q implies that the direct summand 74, (BTop)g C 74, (K(Q, 4n) X BTop)g
is in the image. So we are left with showing that the map E: BTop(2n + 1) — K(Q, 4n) is nontrivial
for all n > 2. Using the smoothing theory equivalence BDiff}y(D*"*!), ~ Q2"*!Top(2n + 1) involving
the framed diffeomorphism group, the composition

7an(BDIfFT (D))o = 74, (BTop(2n + 1))g — Q € R

agrees by [KrRW21, Theorem B.4, Remark B.5] up to a constant with the ‘Kontsevich class’ {3 3 from
[Wat09, p. 631], so it is nontrivial for n > 2 by Theorem 3.1 loc.cit and [Wat22]. O

Proof of Theorem 8.6. Throughout the proof, we use the fact that mx.o(BTop)q is 1-dimensional for
k = 0 (mod 4) and trivial otherwise, and that BTop(d) has countable homotopy groups by Corollary 8.9.
We divide the proof into three cases.

d = 3 Applying Theorem 7.23 for n = m = 3 and i = 6, we see that either
(a) m.(BAut"(E3)) is uncountable in degrees 6 or 7, or
(b) m7(BAut" (E3))q = 17 (BAut" (EQ)).
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By the long exact sequence of Aut"(E3)/Top(3) — BTop(3) — BAut"(E3), there is nothing
left to show in the first case since BTop(d) has countable homotopy groups. In the second case,
we use that first, the map BO(3) — BTop(3) is a weak equivalence by [Hat83, p. 605], and
thus, m7(BTop(3))q = m7(BO(3))q vanishes, and that second, Theorem 8.4 (ii) combined with
Remark 8.5 shows that 7r7(BAuth(E?)) = 7r6(Maph(E_?, E?); id) is nontrivial — in fact, at least
3-dimensional (since 12n — 6 = 14n — § for n = 3). Using the same long exact sequence as before,
this shows the claim in the second case.
d = 4 The logic is the same as in the case d = 3: we again apply Theorem 7.23, this time forn = m = 4
and i = 3, to see that either
(a) m.(BAut"(Ey)) is uncountable in degrees 3 or 4, or
(b) ma(BAut" (Eq))g = 7a(BAut" (ED)).
As before, there is nothing left to show in the first case. In the second case, we use that
first, m4(BTop(4))q is at least 2-dimensional as a result of Theorem 8.11, and that second,
n4(BAut" (E4Q)) is 1-dimensional as a result of Theorem 8.4 (i) (since 2n — 4i — 1 = 3 fori = 0,
and all other terms are in degree > 7).
d > 5 Theorem 7.23 for n = m = d and i = k — 1 shows that either
(a) m.(BAut"(E,)) is uncountable in degrees k or k — 1, or
() 7 (BAut" (Eq))q = i (BAut" (E)).
As previously, nothing is left to show in the first case. In the second case, we first consider odd d.
Ifd=2n+1>5and1 <k <8n—-12(or1 < k < 8n—8ifn =2)suchthat k # 6n —2 and
k = 0 (mod 4), then we use first, that mx (BTop(2n + 1))q is at least 2-dimensional if k = 4n and
otherwise at least 1-dimensional by Theorem 8.11, and second, that Theorem 8.4 (ii) shows that
7 (BAut” (E?n ,1)) is trivial for k # 4n and 1-dimensional for k = 4n. Finally, for even d = 2n > 6
and k = 0 (mod 4) with 2n < k < 8n — 2 for n even and k < 8n — 2 for n odd, we use a) that
mr (BTop(2n))q is at least 1-dimensional and at least 2-dimensional for k = 2n if n is even by
Theorem 8.11, and b) that Theorem 8.4 (i) shows that 7 (BAut” (E?n )) is trivial for k # 2n and
1-dimensional for k = 2n. O
Remark 8.12. The proof of Theorem 8.6 simply compares the homotopy groups of Top(d) and
Aut" (E;) abstractly. It does not use anything about the specific map Top(d) — Aut"(E,).

8.3.1. Applications to S f;zisc (D%
In view of the O-coconnected map of Theorem 8. 1

Qg;},)Auth(Ed) /Top(d) — S7¢(D?),
as long as k —d — 3 > 0, the statement (Hz ,») implies the following variant for S?iSC(Dd):
At least one of the following two scenarios is the case:
(i) n*(S?iSC(Dd)) is uncountable in degree k —d —3 or k —d — 2, or (Hz’fi“)
(i) Tpm—g-1 (Sb@isc(Dd))Q is nontrivial.
For k — d — 3 = 0, this implication uses that if 7o(Q?*! Aut" (E,)/Top(d)) is uncountable, then so

is no(Qg?;)Auth(Ed)/Top(d)). This is because w441 (BTop(d)) is countable, so if the domain of the

map 7441 (Aut(Ey)/Top(d)) — mg+1 (BTop(d)) is uncountable, then so is its kernel. Combined with
Theorem 8.6, we therefore obtain the following:

Corollary 8.13. Under the additional assumption k —d — 3 > 0, the statement (HZ’%SC) holds for all
choices of triples (d, k, m) to which Theorem 8.6 applies.

‘We now use Corollary 8.13 to prove that S?iSC(Dd) is not contractible for all d > 5 with d # 3.

Theorem 8.14. For d =3 or d > 5, the space S?iSC(Dd) is not contractible.
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Proof. Ford = 3, the claim follows from (HZ’ZBC) for the triple (d, k, m) = (3,7, 6) since this statement
holds true in this case k —d — 3 > 0 and Theorem 8.6 applies to this triple. In the case d > 5, the claim
follows similarly as long as we ensure that there exists a k such that kK — d — 3 > 0 and Theorem 8.6
applies to the triple (d, k, k). For d = 2n + 1 with n > 4, we pick the unique k¥ = 0 (mod 4) with
2n+5 < k < 2n + 8. This satisfies the requirements because k —d —3 > 0 and k # 6n — 2 as
2n+8 <6n—-2and 2n+8 < 8n — 12. For d = 2n + 1 with n = 3, we choose k = 12. This works
because k —d—-3=2>0and 12 < 8n—12 =12. Ford = 2n + 1 with n = 2, we choose k = 8, which
works using the improvement of the bound since k —d -3 =0 > 0and k < 8n —8 = 8. For d = 2n
with n > 4, we can pick the unique k¥ = 0 (mod 4) with 2n +4 < k < 2n + 7, which is valid since
k—d-3>0and k <2n+7 < 8n— 12. Finally, for d = 2n with n = 3, we pick k = 12, which works
because k —d -3 =3>0and k <8n-12=12. m]

Remark 8.15. If one relaxes the range k < 8n — 12 in Theorem 8.6 (iii) and (iv) to k < 4n — 1, then
the proof we gave does not rely on the recent works [KrRW21, KuRW25, Wat09], since the proof of
Theorem 8.11 does not use them in this range. This is sufficient to deduce Corollary E. It also gives
a weaker version of Corollary 8.13 that does not rely on these works. The latter is good enough to
conclude Theorem 8.14 except in dimensions d = 5,6,7.

Combining Theorem 8.14 with Corollary 5.13 implies Theorem C.

Remark 8.16. Even though Theorem 8.14 applies to d = 3 and all orientable 3-manifolds M are spin,
we cannot conclude that S?iSC(M ) is nontrivial in this case, because our tangential 2-type invariance

result does not apply if d = 3, so Corollary 5.13 is not available. Nonetheless, S?iSC(M ) is nontrivial if
M embeds into D? after removing finitely many codimension 0 discs, since

(i) removing discs does not change the homotopy type of S? is¢(M) by Proposition 5.11,
(ii) S? is¢(D3) is a homotopy retract of S? is¢(M) if M embeds into D by the same argument as in the

second part of proof of Corollary 5.13, and
(iii) S?iSC(D3) is nontrivial by Theorem 8.14.

This applies in particular to $> or to the handlebodies (S' x D?)88h(5% x D)8 for g, h > 0, with
denoting the boundary connected sum operation.

8.4. Positive codimension

We conclude this section with a brief discussion of an analogue of the nontriviality results of the previous
section in positive codimension, by which we mean the following: the subgroup O(c¢) c O(d) acting
on the last ¢ coordinates stabilises the standard inclusion E;_. — Eg4 for ¢ > 0 under the O(d)-action
on Map” (Ey4_., E4), so we have a map O(d)/O(c) — Map” (Eq4_., E4). In the same way as in the case
¢ = d discussed in Section 8.1, Boavida de Brito—Weiss’ work [BdBW 18] shows that this action factors
as a composition

0(d)/0(c) —> Top(d)/Top(d,d — ¢) — Map" (Ey_¢, Ey),

where Top(d, d — ¢) c Top(d) is the subgroup of those homeomorphisms that fix {0} x R~¢ c R¢.
Generalising from the codimension ¢ = 0 case of Corollary E, one might wonder whether

Top(d)/Top(d,d — ¢) — Map" (E4_c, E4) (95)

is a weak equivalence. In codimension ¢ > 3, this was shown by Boavida de Brito—Weiss [BABW 18,
Theorem 1.6] after taking (d — ¢ + 1)-fold loop spaces. Adapting the methods of the previous subsection,
we consider the remaining cases ¢ = 1,2. As before, we phrase the result in terms of the following
placeholder statement involving dimension d > 1, codimension ¢ € {1,2}, degrees k > 3 and m > 1.
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At least one of the following two scenarios is the case:

(i) The homotopy groups
. (nofib, (Top(d) /Top(d, d = ¢) — Map" (Eq-c, Ea))

are uncountable in degree k — 3 or k — 2, or (Hi’fn)
(i) The homotopy group

Tmel (hoﬁbL(Top(d) [Top(d, d — ¢) — Map" (Eq_c. Ed)))Q

is nontrivial.
The proof requires some results about the homotopy groups of the spaces Top(d, d — ¢):
Lemma 8.17.

(i) The map (=) x R?~1: O(1) ~ Top(1) — Top(d, d — 1) is a homotopy equivalence.
(ii) The map (=) x R4"2: O(2) ~ Top(2) — Top(d, d - 2) is (d — 2)-connected.

Proof. Part (i) admits an elementary argument: if f(—, —): R¥! x R = R¢ — R is an orientation-
preserving homeomorphism fixing R?~! x {0} pointwise, then

(x,5) if |s] <1,
[0,00) x R xR 3 (t,x,5) — fi(x,5) =13 f(x,s—1) ifs>1,
flx,s+t) ifs<—t

gives an isotopy of homeomorphisms that extends continuously to # = co with value idgs and depends
continuously on f. If f is orientation-reversing, a similar formula works. Part (ii) is due to Kirby—
Siebenmann [KS75, Theorem B] for d # 4, who deduce it using immersion theory from an existence
and uniqueness result for normal bundles of codimension 2 locally flat embeddings into d-manifolds. In
the remaining case d = 4, the necessary results on normal bundles of locally flat embeddings of surfaces
into 4-manifolds were established later by Freedman—Quinn [FQ90, Section 9.4]. ]

Remark 8.18. The proof of Corollary 8.9 extends to show that Top(d, d — ¢) has countable homotopy
groups: use Lemma 8.8, that it is second countable being a subspace of Top(d), and that it is locally
weakly-contractible by the variant of [EK71, Corollary 7.3] for this group.

Theorem 8.19. The statement (HZI;) holds in the following cases.

(i) For c =1, it holds for all choices of (d, k, m) to which Theorem 8.6 applies.
(ii) Forc =2, itholds ford >3, k =d andm =d — 1.

Proof. For 8.19, we consider the following zig-zag of maps:
Top(d) — Top(d)/Top(d,d — 1)
Qo (=) (-)o
— Map" (Eg-1, Eq) —— Map" (Eq_1, EQ) «—— Map" (E4, E).

After taking loop spaces, the leftmost and the rightmost arrow become weak equivalences — the former by
Lemma 8.17 (i) and the latter by Theorem 8.4 (iii). Since the homotopy groups of Top(d) are countable
by Corollary 8.9, it thus suffices to prove that for choices k > 3 and m > 1 as in the claim, either

(a) m.(Map(Ey, E;);id) is uncountable in degrees k —2 or k — 1, or
(b) the dimension of 7,1 (Top(d); id)q is larger than that of 7,1 (Map(Ey4, Eq);id)g.
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But we already showed this, as part of the proof of Theorem 8.6. To establish 8.19, we apply
Theorem 7.23 to degree i = d — 1 to conclude that either

(a) m.(Map”(Eg4_., Eq4),t) is uncountable in degrees d — 2 or d — 1, or
(b) ma—1(Map"(Eg-c, Eq), 1) = ﬂd—l(MaPh(Ed—c,Eg),rQ o).

Since 74_1 (Map” (E4_s, Eg), rq o t) is infinite-dimensional by Theorem 8.4 (iv), it suffices to show
that the groups n.(Top(d)/Top(d, d —2)) are finitely generated in degrees = < d — 1. The latter follows
from a combination of the following facts:

(i) m.(Top(d)) is finitely generated in degrees * < d — 1 for all d.
(ii) The map (=) x R472: O(2) =~ Top(2) — Top(d,d — 2) is (d — 2)-connected, so in particular,
n.(Top(d, d — 2)) is finitely generated in degrees * < d — 2.

The first statement follows from [KS77, Essay V.§5.0] for d # 4 and from [FQ90, Theorem 8.7A]
for d = 4, and the second is Lemma 8.17 (ii). O

Unwrapping the statement, Theorem 8.19 in particular implies the following:
Corollary 8.20. The map (95) is not an equivalence if d > 3 and ¢ = {1, 2}.

Remark 8.21. There are no maps of the form E;_. — E4 for ¢ < 0. Indeed, by restricting to 2-ary
operations, such a map would induce an equivariant map S¢=¢~! — §9~! with respect to the antipodal
action, which implies ¢ > 0 by the Borsuk—Ulam theorem.
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S oo-category of spaces 10
Neon Coherent nerve 11
h Homotopy category 11
Fin,. Category of pointed finite sets 12
(p) Pointed finite set {1,2, ..., p, *} in Fin, 12
A Category of non-empty totally ordered finite sets 12
Ay Wide sub-category of A of injective maps 12
[p] Totally ordered finite set (0 < 1 <--- < p)in A 12
Gap Category of gaps 13
(p) Totally ordered set (L <1 <--- < p < R) in Gap 12
Gapg,, Wide sub-category of Gap of surjective maps 13
Cat(%) oo-category of double co-categories 14
Mon(%) oo-category of monoid objects in € 14
Catp, (6) oco-category of non-unital double co-categories 14
Mony, (¥) oco-category of non-unital monoid objects in € 14
CMon(%) oo-category of commutative monoid objects in € 14
GA.B Mapping co-category from A to B in double co-category € 15
Catqy (%) oco-category of quasi-unital category objects in € 15
(=) (=D Functor extracting co-category from double co-category 16
(—)(2 Functor extracting (o0, 2)-category from double co-category 16
(=)= Functor extracting co-category from (o0, 2)-category 16
PSh(®) oo-category of &-valued presheaves on € 16
y Yoneda embedding 16
Mulgy Spaces of multi-operations of an co-operad O 17
o6 Operadic composition map of an co-operad O 17

https://doi.org/10.1017/fmp.2024.25 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2024.25

Endg (x)
A/lp]
Ass(6)
BMod(%)
Ua,

Fa,B
ALG(®)
ALG(%®)
(=)~
COSPAN*(®)
E
ncBord(d)™
ncFBord(d)™
(W, 1)
Man?

M anG
wall(W, u)
ch(W, w)
tch(W, u)
coll(W, u)
lab, (W, )
wlab o (W, )

Gap ),

fé’apqp )/
EgCO

E

FBord(d)
ncHord(d)?
SBord(d)?

6
ncBord? (d)
Bord? (d)
Aod(d)
RBord(d)p
Mod(d)
S%iSC(X)
S?IBC(W)

~>

W(m, k]
Wim, k]
hMan,

Finl,:IO

Y

()

(—)o

Mapgsmz) (=-)
MapgSh(ﬁ) (=-)
Q

Q

Forum of Mathematics, Pi

Endomorphism operad of x in &

Full subcategory of cellular maps in A [,

co-category of associative algebra objects in €
oco-category of bimodule objects in €

Forgetful functor from (A, B)-modules

Free (A, B)-bimodule functor

Pre-Morita double co-category of €

Morita double co-category of €

Cocone construction

Double co-category of cospans in €

Functor from bordism category of presheaf Morita category
Non-compact d-bordism non-unital double Kan-enriched category
Non-compact d-bordism non-unital double co-category
[p]-walled d-manifold W

Monoidal Kan-enriched category of d-manifolds
Monoidal co-category of d-manifolds

Submanifold of (W, u) of walls

Submanifold of (W, ) of chambers

Submanifold of (W, u) of thickened chambers
Submanifold of (W, u) of collars

Submanifold of (W, u) of pieces labelled by a
Submanifold of (W, u) of thick walls labelled by «
Kan-enriched thickening of Gap ),

oo-categorical thickening of Gap, ),

Functor from bordism category to manifold pre-Morita category
Functor from bordism category to presheaf pre-Morita category
Compact d-dimensional bordism double co-category
Noncompact d-bordism double co-category with boundary
Compact d-bordism double co-category with boundary
Tangential structure

Noncompact d-bordism double co-category with 6-structure
Compact d-bordism double co-category with #-structure
Double co-category of bimodules in PSh(Qiscy)

oo-groupoid of null bordisms of a compact (d — 1)-manifold P
oo-category of right-modules over A in PSh(Qiscy)
Disc-structure space of a right-E pxy-module X
Disc-structure space of the right-E gy x;-module Eyw

A bordism

Part of bordism W with i-handles form <i < k

Part of bordism W with i-handles form <i < k

1-category of compact d-manifolds

oo-operad of pointed finite sets with Ny-grading on morphisms
Pair-of-pants product

Localisation at a set of primes T

Rationalisation

Derived mapping space of dendroidal spaces

Derived mapping space of reduced dendroidal spaces
Category of trees

Category of reduced trees

https://doi.org/10.1017/fmp.2024.25 Published online by Cambridge University Press

18
18
18
18
19
19
20
20
21
25
25
27
28
27
28
28
30
30
30
30
30
31
34

35

36
36
46
46
46
47
47
47
51
60
60
60
60
62
62
62
64
69
73
76
76
78

79

78
78

95


https://doi.org/10.1017/fmp.2024.25

96 M. Krannich and A. Kupers

Ny Dendroidal nerve 78
Qo Subcategory of trees whose vertices have < k incoming edges 79
Latchy (0) kth latching object of reduced dendroidal space © 79
Matchy (0) kth matching object of reduced dendroidal space O 79
{Gk} Tower of groups Gg «— G| « - -+ 82

Acknowledgements. Our thanks go to Fabian Hebestreit and Markus Land for answering several questions on co-categories, to
Rune Haugseng and Claudia Scheimbauer for helpful conversations on their work, to Calista Bernard for sharing her view on
manifold calculus and bordism categories, and to Oscar Randal-Williams for general discussions.

Competing interest. The authors have no competing interest to declare.

Financial support. MK was partially funded by the ERC under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 756444), and partially by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy EXC 2044 —390685587, Mathematics Miinster: Dynamics—Geometry—Structure.
AK acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) [funding reference
number 512156 and 512250], as well as the Research Competitiveness Fund of the University of Toronto at Scarborough. This
material is partially based on work supported by the Swedish Research Council under grant no. 2016-06596 while the authors
were in residence at Institut Mittag-Leffler in Djursholm, Sweden, during the semester Higher algebraic structures in algebra,
topology and geometry.

References

[AF15] D. Ayala and J. Francis, ‘Factorization homology of topological manifolds’, J. Topol. 8(4) (2015), 1045-1084.
[AFT17] D. Ayala, J. Francis and H. L. Tanaka, ‘Factorization homology of stratified spaces’, Selecta Math. (N.S.) 23(1)
(2017), 293-362.
[And10] R. Andrade, ‘From manifolds to invariants of En-algebras’, PhD dissertation, 2010, Massachusetts Institute of
Technology.
[BBP*17] M. Basterra, I. Bobkova, K. Ponto, U. Tillmann and S. Yeakel, ‘Infinite loop spaces from operads with homological
stability’, Adv. Math. 321 (2017), 391-430.
[BABW13] P. Boavida de Brito and M. Weiss, ‘Manifold calculus and homotopy sheaves’, Homology Homotopy Appl. 15(2)
(2013), 361-383.
[BdBW18] P. Boavida de Brito and M. Weiss, ‘Spaces of smooth embeddings and configuration categories’, J. Topol. 11(1)
(2018), 65-143.
[BK72] A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions and Localizations (Lecture Notes in Mathematics)
vol. 304 (Springer-Verlag, Berlin-New York, 1972).
[Bou75] A. K. Bousfield, ‘The localization of spaces with respect to homology’, Topology 14 (1975), 133-150.
[BW24] S. Brun and T. Willwacher, ‘Graph homology computations’, New York J. Math. 30 (2024), 58-92.
[Cer69] A. V. Cernavskii, ‘Local contractibility of the group of homeomorphisms of a manifold’, Mat. Sb. (N.S.) 79 (121)
(1969), 307-356.
[Che08] A. V. Chernavskii, ‘Local contractibility of the homeomorphism group of Rn’, 7r. Mat. Inst. Steklova 263 (2008), no.
Geometriya, Topologiya i Matematicheskaya Fizika. I, 201-215.
[CHH18] H. Chu, R. Haugseng and G. Heuts, “Two models for the homotopy theory of co-operads’, J. Topol. 11(4) (2018),
857-873.

[DI04] D. Dugger and D. C. Isaksen, “Topological hypercovers and Al-realizations’, Math. Z. 246(4) (2004), 667-689.
[DK80a] W. G. Dwyer and D. M. Kan, ‘Function complexes in homotopical algebra’, Topology 19(4) (1980), 427-440.
[DK80b] W. G. Dwyer and D. M. Kan, ‘Simplicial localizations of categories’, J. Pure Appl. Algebra 17(3) (1980), 267-284.

[DS78] J. Dydak and J. Segal, Shape Theory (Lecture Notes in Mathematics) vol. 688 (Springer, Berlin, 1978). An introduc-

tion.
[DT22] J. Ducoulombier and V. Turchin, ‘Delooping the functor calculus tower’, Proc. Lond. Math. Soc. (3) 124(6) (2022),
772-853.
[Dug78] J. Dugundji, Topology (Allyn and Bacon Series in Advanced Mathematics) (Allyn and Bacon, Inc., Boston, London-
Sydney, 1978). Reprinting of the 1966 original.
[Dwy14] W. Dwyer, ‘Introduction to operads’, Lecture at the MSRI ‘Algebraic topology introductory workshop’, 2014,
https://www.msri.org/workshops/685/schedules/17876.
[EK71] R. D. Edwards and R. C. Kirby, ‘Deformations of spaces of imbeddings’, Ann. of Math. (2) 93 (1971), 63-88.
[ERW22] J. Ebert and O. Randal-Williams, “The positive scalar curvature cobordism category’, Duke Math. J. 171(11) (2022),
2275-2406.

https://doi.org/10.1017/fmp.2024.25 Published online by Cambridge University Press


https://www.msri.org/workshops/685/schedules/17876
https://doi.org/10.1017/fmp.2024.25

Forum of Mathematics, Pi 97

[EW24] J. Ebert and M. Wiemeler, ‘On the homotopy type of the space of metrics of positive scalar curvature’, J. Eur. Math.
Soc. (JEMS) 26(9) (2024), 3327-3363.
[Far96] E. D. Farjoun, Cellular Spaces, Null Spaces and Homotopy Localization (Lecture Notes in Mathematics) vol. 1622
(Springer-Verlag, Berlin, 1996).
[FQ90] M. H. Freedman and F. Quinn, Topology of 4-Manifolds (Princeton Mathematical Series) vol. 39 (Princeton University
Press, Princeton, NJ, 1990).
[Fral3] J. Francis, ‘The tangent complex and Hochschild cohomology of En-rings’, Compos. Math. 149(3) (2013), 430-480.
[Frel7] B. Fresse, Homotopy of Operads and Grothendieck-Teichmiiller Groups. Part 2 (Mathematical Surveys and Mono-
graphs) vol. 217 (American Mathematical Society, Providence, RI, 2017).
[FTW17] B. Fresse, V. Turchin and T. Willwacher, ‘The rational homotopy of mapping spaces of En operads’, Preprint, 2017,
arXiv:1703.06123.
[FTW18] B. Fresse, V. Turchin and T. Willwacher, ‘The homotopy theory of operad subcategories’, J. Homotopy Relat. Struct.
13(4) (2018), 689-702.
[GK15] T. G. Goodwillie and J. R. Klein, ‘Multiple disjunction for spaces of smooth embeddings’, J. Topol. 8(3) (2015),
651-674.
[GP57] A. M. Gleason and R. S. Palais, ‘On a class of transformation groups’, Amer. J. Math. 79 (1957), 631-648.
[GRW14] S. Galatius and O. Randal-Williams, ‘Stable moduli spaces of high-dimensional manifolds’, Acta Math. 212(2) (2014),
257-3717.
[GRW17] S. Galatius and O. Randal-Williams, ‘Homological stability for moduli spaces of high dimensional manifolds. IT’,
Ann. of Math. (2) 186(1) (2017), 127-204.
[GW99] T. G. Goodwillie and M. Weiss, ‘Embeddings from the point of view of immersion theory. II', Geom. Topol. 3 (1999),
103-118.
[GW24] F. Goppl and M. Weiss, ‘A spectral sequence for spaces of maps between operads’, Algebr. Geom. Topol. 24(3) (2024),
1655-1690.
[Har85] J. L. Harer, ‘Stability of the homology of the mapping class groups of orientable surfaces’, Ann. of Math. (2) 121(2)
(1985), 215-249.
[Hat83] A. E. Hatcher, ‘A proof of the Smale conjecture, Diff(S3) ~ O(4)’, Ann. of Math. (2) 117(3) (1983), 553-607.
[Haul7] R. Haugseng, ‘The higher Morita category of En-algebras’, Geom. Topol. 21(3) (2017), 1631-1730.
[Haul8] R. Haugseng, ‘Iterated spans and classical topological field theories’, Math. Z. 289(3—4) (2018), 1427-1488.
[Hau21] R. Haugseng, ‘Segal spaces, spans, and semicategories’, Proc. Amer. Math. Soc. 149(3) (2021), 961-975.
[Hau23] R. Haugseng, ‘Some remarks on higher Morita categories, Preprint, 2023, arXiv:2309.09761.
[HJ20] F. Hebestreit and M. Joachim, “Twisted spin cobordism and positive scalar curvature’, J. Topol. 13( 1) (2020), 1-58.
[HM22] G. Heuts and I. Moerdijk, Simplicial and Dendroidal Homotopy Theory (Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd
Series. A Series of Modern Surveys in Mathematics]) vol. 75 (Springer, Cham, 2022).
[HMS20] R. Haugseng, V. Melani and P. Safronov, ‘Shifted coisotropic correspondences’, J. Inst. Math. Jussieu (2020), 1-65.
[Horl7] G.Horel, ‘Profinite completion of operads and the Grothendieck-Teichmiiller group’, Adv. Math. 321 (2017), 326-390.
[JK15] B. Jahren and S. Kwasik, ‘How different can h-cobordant manifolds be?’, Bull. Lond. Math. Soc. 47(4) (2015),
617-630.
[Kir69] R. C. Kirby, ‘Stable homeomorphisms and the annulus conjecture’, Ann. of Math. (2) 89 (1969), 575-582.
[KK24a] B. Knudsen and A. Kupers, ‘Embedding calculus and smooth structures’, Geom. Topol. 28(1) (2024), 353-392.
[KK24b] M. Krannich and A. Kupers, ‘Embedding calculus for surfaces’, Algebr. Geom. Topol. 24(2) (2024), 981-1018.
[KK24c] M. Krannich and A. Kupers, ‘co-operadic foundations for embedding calculus’, Preprint, 2024, arXiv:2409.10991.
[Kre99] M. Kreck, ‘Surgery and duality’, Ann. of Math. (2) 149(3) (1999), 707-754.
[KuRW25] A. Kupers and O. Randal-Williams, ‘On diffeomorphisms of even-dimensional discs’, J. Amer. Math. Soc. 38 (2025),
63-178.
[KrRW21] M. Krannich and O. Randal-Williams, ‘Diffeomorphisms of discs and the second Weiss derivative of BTop(-)’,
Preprint, 2021, arXiv:2109.03500.
[KS75] R. C. Kirby and L. C. Siebenmann, ‘Normal bundles for codimension 2 locally flat imbeddings’, in Geometric
Topology. (Proc Conf., Park City, Utah, 1974) (Lecture Notes in Math.) vol. 438 (1975), 310-324.
[KS77] R. C. Kirby and L. C. Siebenmann, Foundational Essays on Topological Manifolds, Smoothings, and Triangulations
(Annals of Mathematics Studies) no. 88 (Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo,
1977). With notes by John Milnor and Michael Atiyah.
[Lur09a] J. Lurie, Higher Topos Theory (Annals of Mathematics Studies) vol. 170 (Princeton University Press, Princeton, NJ,
2009).
[Lur09b] J. Lurie, ‘On the classification of topological field theories’, in Current Developments in Mathematics (Int. Press,
Somerville, MA, 2009), 129-280.
[Lurl7] J. Lurie, Higher Algebra, version September 2017.
[Mil09] J. Milnor, ‘Collected papers of John Milnor. IV’, in Homotopy, Homology and Manifolds (American Mathematical
Society, Providence, RI, 2009). Edited by John McCleary.
[MM92] C. A. McGibbon and J. M. Mgller, ‘On spaces with the same n-type for all n’, Topology 31(1) (1992), 177-201.

https://doi.org/10.1017/fmp.2024.25 Published online by Cambridge University Press


https://arxiv.org/abs/1703.06123
https://arxiv.org/abs/2309.09761
https://arxiv.org/abs/2409.10991
https://arxiv.org/abs/2109.03500
https://doi.org/10.1017/fmp.2024.25

98 M. Krannich and A. Kupers

[MP12] J.P.May and K. Ponto, More Concise Algebraic Topology: Localization, Completion, and Model Categories (Chicago
Lectures in Mathematics) (University of Chicago Press, Chicago, IL, 2012)
[Pal60] R. S. Palais, ‘Local triviality of the restriction map for embeddings’, Comment. Math. Helv. 34 (1960), 305-312.
[PS18] D. Pavlov and J. Scholbach, ‘Admissibility and rectification of colored symmetric operads’, J. Topol. 11(3) (2018),
559-601.
[Riel4] E. Riehl, Categorical Homotopy Theory (New Mathematical Monographs) vol. 24 (Cambridge University Press,
Cambridge, 2014).
[Sal01] P. Salvatore, ‘Configuration spaces with summable labels’, in Cohomological Methods in Homotopy Theory
(Bellaterra, 1998) (Progr. Math.) vol. 196 (Birkhéuser, Basel, 2001), 375-395.
[Sch14] C. Scheimbauer, ‘Factorization homology as a fully extended topological field theory’, PhD dissertation, 2014.
[Sin04] D. P. Sinha, ‘Manifold-theoretic compactifications of configuration spaces’, Selecta Math. (N.S.) 10(3) (2004), 391—
428.
[Sma59] S. Smale, ‘Diffeomorphisms of the 2-sphere’, Proc. Amer. Math. Soc. 10 (1959), 621-626.
[Ste21] W. Steimle, ‘An additivity theorem for cobordism categories’, Algebr. Geom. Topol. 21(2) (2021), 601-646.
[Til00] U. Tillmann, ‘Higher genus surface operad detects infinite loop spaces’, Math. Ann. 317(3) (2000), 613-628.
[Wal71] C.T. C. Wall, ‘Geometrical connectivity. I’, J. London Math. Soc. (2) 3 (1971), 597-604.
[Wat09] T. Watanabe, ‘On Kontsevich’s characteristic classes for higher-dimensional sphere bundles. II. Higher classes’, J.
Topol. 2(3) (2009), 624—660.
[Wat22] T. Watanabe, ‘Corrigendum: On Kontsevich’s characteristic classes for higher-dimensional sphere bundles ii: Higher
classes’, J. Topol. 15(1) (2022), 347-357.
[Wei99] M. Weiss, ‘Embeddings from the point of view of immersion theory. I, Geom. Topol. 3 (1999), 67-101.
[Wei05] M. Weiss, “‘What does the classifying space of a category classify?’, Homology Homotopy Appl. 7(1) (2005), 185-195.
[Weill] M. Weiss, ‘Erratum to the article Embeddings from the point of view of immersion theory: Part I’, Geom. Topol.
15(1) (2011), 407—409.
[Wei2l] M. Weiss, ‘Rational Pontryagin classes of Euclidean fiber bundles’, Geom. Topol. 25(7) (2021), 3351-3424.
[WWO01] M. Weiss and B. Williams, ‘Automorphisms of manifolds’, in Surveys on Surgery Theory , Vol. 2 (Ann. of Math.
Stud.) vol. 149 (Princeton Univ. Press, Princeton, NJ, 2001), 165-220.

https://doi.org/10.1017/fmp.2024.25 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2024.25

	1 Introduction
	A) Tangential 2-type invariance
	B) Infinite loop space structure
	C) Nontriviality
	1.1 Relation to embedding calculus, the Ed-operad and factorisation homology
	1.1.1 Embedding calculus
	1.1.2 The operad Ed of little d-discs
	1.1.3 Factorisation homology

	1.2 Summary of proofs
	1.2.1 The case with boundary
	1.2.2 Extension to the bordism category
	1.2.3 Theorem A: tangential 2-type invariance
	1.2.4 Theorem B: infinite loop space
	1.2.5 Theorem C: nontriviality


	2 ∞-categorical preliminaries
	2.1 Conventions
	2.2 The coherent nerve and the homotopy category
	2.3 Cocartesian fibrations
	2.4 The categories Fin*, Δ, and Gap
	2.5 Category and monoid objects
	2.5.1 Category objects and monoid objects
	2.5.2 Commutative monoid objects
	2.5.3 Monoidal categories and double categories
	2.5.4 Mapping ∞-categories
	2.5.5 Quasi-unital monoid and category objects
	2.5.6 Double ∞-, (∞,2)- and (∞,1)-categories

	2.6 Presheaves and the Yoneda embedding
	2.7 ∞-operads
	2.7.1 Suboperads, endomorphism operads, and algebras over them
	2.7.2 Generalised ∞-operads
	2.7.3 (Generalised) nonsymmetric ∞-operads

	2.8 Associative algebras and bimodules in the nonsymmetric setting
	2.9 Haugseng's Morita category
	2.9.1 The pre-Morita category
	2.9.2 Composite algebras and the Morita category
	2.9.3 Composite algebras in terms of semisimplicial objects
	2.9.4 Functoriality and monoidality

	2.10 Span and cospan categories
	2.10.1 Categories of (co)spans
	2.10.2 Relation to Morita categories


	3 From the bordism to the Morita category
	Step ① The bordism category via manifolds with walls
	Step ② The monoidal category of manifolds and embeddings
	Step ②.1 Cocartesian pushforward along active maps

	Step ③ From nc=142 =168 =194 =195 =512   ==66==66 B   ord(d)nu to the pre-Morita category of manifolds
	Step ④ Composite algebras
	Step ⑤ Unitality
	Step ⑥ Symmetric monoidal structure
	Step ⑦ Variants
	Step ⑦.1 Compact variant
	Step ⑦.2 Variants with boundary
	Step ⑦.3 Tangential structures without boundary
	Step ⑦.4 Tangential structures with boundary
	Step ⑦.5 Taking boundaries with tangential structures

	Step ⑧ Product functors

	4 Properties of E, embedding calculus and =142 =168 =194 =195 =512   ==68==68 D   isc-structure spaces
	4.1 Mapping ∞-categories
	4.1.1 nc=142 =168 =194 =195 =512   ==66==66 B   ord(d)
	4.1.2 =142 =168 =194 =195 =512   ==66==66 B   ord(d)
	4.1.3 nc=142 =168 =194 =195 =512   ==66==66 B   ordθ(d)
	4.1.4 =142 =168 =194 =195 =512   ==66==66 B   ordθ(d)
	4.1.5 Variants with boundary
	4.1.6 =142 =168 =194 =195 =512   ==68==68 D   iscd and =142 =168 =194 =195 =512   ==77==77 M   od(d)
	4.1.7 The functor E

	4.2 Descent with respect to Weiss ∞-covers
	4.3 Relationship to embedding calculus
	4.3.1 Comparison with the model of Boavida de Brito–Weiss

	4.4 Isotopy extension for E
	4.5 =142 =168 =194 =195 =512   ==68==68 D   isc-structure spaces
	4.5.1 =142 =168 =194 =195 =512   ==68==68 D   isc-structure spaces of modules
	4.5.2 =142 =168 =194 =195 =512   ==68==68 D   isc-structure spaces of manifolds


	5 Theorem A: 2-type invariance
	5.1 Tangential k-types
	5.1.1 θ-manifolds and tangential k-types
	5.1.2 θ-bordism
	5.1.3 Handle decompositions
	5.1.4 Handle trading and connectivity

	5.2 k-type invariance
	5.3 2-type invariance of the =142 =168 =194 =195 =512   ==68==68 D   isc-structure space

	6 Theorem B: infinite loop space
	6.1 Operads with homological stability
	6.2 A manifold operad with homological stability
	6.3 Group completion and =142 =168 =194 =195 =512   ==68==68 D   isc-structure spaces

	7 Localisations of mapping spaces between operads
	7.1 Localisation of spaces and groups at a set of primes
	7.1.1 Localisation of groups
	7.1.2 Localisation of nilpotent spaces

	7.2 Operads and dendroidal spaces
	7.2.1 Dendroidal spaces and the map 1
	7.2.2 (1-reduced) dendroidal Segal spaces and the map 2

	7.3 A tower of derived mapping spaces
	7.4 Localisations of dendroidal spaces
	7.4.1 Localisations of derived mapping spaces

	7.5 Inverse limits and countability
	7.5.1 Towers of groups
	7.5.2 Towers of spaces

	7.6 Applications to maps between operads
	7.6.1 Applications to maps between En-operads


	8 Theorem C: nontriviality
	8.1 A theorem of Boavida de Brito–Weiss
	8.2 Some results of Fresse–Turchin–Willwacher
	8.2.1 A comparison
	8.2.2 Homotopy groups of spaces of maps between rationalised En-operads

	8.3 Homotopy groups of Auth(Ed)/Top(d)
	8.3.1 Applications to S=142 =168 =194 =195 =512   ==68==68 D   isc∂(Dd)

	8.4 Positive codimension

	References

