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Abstract. We study the application of a predictive control law based on a Kalman filter for
an extreme adaptive optics system. In particular, we discuss the minimization of temporal error
and show the evolution of prediction errors with the order of the model. We also discuss the
choice of the optimal temporal frequency as a function of the control law and the level of noise.
Finally, the gain expected with respect to a non-predictive law is presented.
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1. Introduction
Imaging faint astrophysical objects near bright stars, like exoplanets, is a real chal-

lenge for modern astrophysical instrumentation. Recently, a planet has been imaged by
Chauvin et al. (2005), using the NACO instrument: the faint companion was one hundred
times fainter than the brown dwarf. In this case the atmospherical correction provided
by the adaptive optics [OA] system NAOS was enough to image the planet, but in gen-
eral an instrument dedicated to exoplanets imaging should be able to image objects 105

to 1010 times fainter than the star. This means, among others, that a very powerfull
AO system is needed. This is called an eXtreme AO [XAO] system, characterized by a
resulting Strehl ratio in the imaging band as extreme as 90 − 95 %. This challenge has
recently motivated the publication of a number of ideas to improve AO, for example in
wave-front sensing [WFS] (Nicolle et al. (2004), Vérinaud et al. (2005)).

We propose here to improve again the AO performance by considering a predictive
control law, applying the Kalman-filter-based optimal control law (Le Roux et al. (2004))
to the XAO case. We first remind the principle of this optimal approach in Sec. 2. In Sec. 3
we then discuss some of its limits and the way to apply it to XAO, showing how using a
high order autoregressive [AR] model to describe the turbulence evolution would decrease
the temporal error. We also discuss the trade-off to be found between the temporal error
and the WFS error due to the noise, leading to the notion of optimal temporal frequency.
Finally we show in Sec. 4 how decreasing the temporal frequency and using a predictive
control law permit to increase the performance of an XAO system, with respect to simply
use an integrator control law with a high temporal frequency.

2. State-space formalism and optimal control for AO
The optimal control law used here (Le Roux et al. (2004)) is based on a Kalman filter

in a state-space formalism, built on a state-space model recalled hereafter.
Let us first consider the chronology of events in an AO system: CCD integration for

WFS, read-out of CCD, computation and application of new voltages for the deformable
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mirror. Assuming the same time T for the CCD integration and for the global delay,
there is a 2T time-lag between the measurement and the application of the correction,
time-lag to which is due the so-called temporal error.

The Kalman filter is an estimator of the turbulent phase that is based on a physi-
cal representation of the system turbulence⊕AO, the so-called state model. This model
should sum up the behaviour of the system and the chronology described before which
can be read in three fundamental equations:
• the definition of the residual phase: φres = φtur − φcor = φtur − Nu, where N is the

matrix that links the voltages basis to the turbulent modes basis, u are the voltages,
φtur, φres and φcor are denoting the turbulent, residual and correction phase;
• the definition of the measurement: Yn = Dφres

n−1 + wn , where D is the interaction
matrix, and wn the measurement noise at instant nT ;

• the equation of evolution of the turbulence written as: φtur
n+1 = F [φtur

n , φtur
n−1, . . . , φ

tur
n−p+1]+

νn , where ν is a white noise and F is being choosen as an AR model of order p (ARp).
In Le Roux et al. (2004), and for the sake of simplicity, the evolution of the turbulence

was described by the AR1 model: φtur
n+1 = Aφtur

n + νn . It is then possible to describe the
system by choosing the state vector: Xn =

(
φtur

n+1 φtur
n φtur

n−1 un−1 un−2

)T . The
so-called state-space model is then:

Xn+1 =




A 0 0 0 0
Id 0 0 0 0
0 Id 0 0 0
0 0 0 0 0
0 0 0 Id 0




Xn +




0
0
0
Id
0




un +




νn

0
0
0
0




(2.1)

Yn = D
(

0 0 Id 0 −N
)
Xn + wn . (2.2)

The enhancement brought by the Kalman approach with respect to a more classical
approach, the Optimized Modal Gain Integrator [OMGI] in classical AO (Gendron &
Léna (1994)), was presented in Le Roux et al. (2004), where an improvement essentially
due in that case to the predictive ability of the optimal control law was obtained. The
use of a temporal modeling of the turbulence allows to predict its evolution during the
2T delay between WFS and correction and then reduces the temporal delay. The AR1

model used to characterize the temporal evolution of the atmospherical turbulence was
enough to improve the performance of generic AO and MCAO systems.

But the temporal decorrelation of such a model is exponential while the turbulence
one is slower. Figure 1 presents the behaviour of the temporal decorrelation of a Taylor-
Kolmogorov turbulence and two AR1 models. Increasing the order of the model would
allow to better model the temporal evolution of the turbulence and therefore to better
predict its behavior.

3. Control for XAO: optimal prediction and noise filtering
3.1. Prediction and noise filtering

Current projects of XAO systems usually consider high sampling frequencies, higher than
1 kHz, and WFS able to sense very high spatial frequencies, as a Shack-Hartmann [SH]
with many sub-apertures (e.g. 40 × 40 for an 8-m telescope). The first consequence of
such a configuration is a very low signal for each sub-aperture (i.e. a high photon noise).
This should be considered as a consequence of the use of an integrator control law.
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Figure 1. General form of
the temporal decorrelation
for the atmospheric turbu-
lence [dotted line] and for
two AR1 models [continuous
line and dashed line].

The choice of the temporal frequency ftemp being a trade-off between decreasing the
temporal error by increasing ftemp and decreasing the photon noise by decreasing ftemp,
there is an optimal value of ftemp to be found, minimizing the sum of the two error
terms. In the case of a non-predictive control law, as the integrator one, the only way to
decrease the temporal error is to highly increase ftemp. In the other hand a predictive
control law allows to decrease the temporal error by using an efficient temporal model
to predict the turbulent evolution. The resulting optimal ftemp is then lower, allowing to
simultaneously reduce the temporal error, thanks to prediction, and the photon noise.

We propose here to compare the performance of a system based on an integrator control
law with a high ftemp and a system based on a predictive control law, here based on a
Kalman filter, with a lower ftemp.

There are many questions to be answered. First of all, the order of the AR model nec-
essary to do such a prediction is a crucial parameter that decides its practical feasibility.
It has to be determined, as well as ftemp in the predictive case, for a given photon noise.
Finally, we should express the gain brought by this predictive approach.

3.2. Choice of the state-space model for XAO
The choice of the state-space model for XAO depends essentially upon the choice of the
order of the AR model used. In order to address the influence of the AR model order
on the prediction error we have simulated a turbulence made up of 7 layers moving in
random angles with a wind speed of 12 m/s and following a Kolmogorov spectrum with
a Fried parameter of 12.5 cm (at 500 nm), over an 8-m telescope. The turbulent phase
arriving on the telescope aperture is decomposed onto the first 30 radial orders of the
Zernike modes basis for 5000 iterations, at a rate of 500 Hz (the temporal frequency has
been choosen here as an example).

For each Zernike mode, we fit an AR1, AR2, ..., AR11 on 500 iterations. We then use
these AR models to predict the evolution of the turbulence in the next 500 iterations.
The computed resulting global prediction error is plotted on Fig. 2: we obtain that it
decreases continously with the order of the AR model. Note that from an AR1 to an
AR11 model a huge gain in variance is obtained, but this gain is almost already acheived
with a 4th order model, which then represents the best order in this case.

Now let us remark that in reality, the optimal order of the model depends upon ftemp.
The ability of the model to represent the turbulence evolution and hence to predict it
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Figure 2. AR model prediction error vs. order
(order 0 means no prediction).

Figure 3. Best order of the AR model vs.
temporal frequency.

can be linked to the temporal range on which it is written, meaning the order of the
model times the temporal frequency. As an example, 4 iterations at 500 Hz correspond to
the same temporal range than 8 iterations at 1.5 kHz. Of course this argument is totally
qualitative and needs to be quantified.

We reproduced the same steps as before with the same parameters but for a range of
ftemp between 100 Hz and 1 kHz, in order to find the best order for the AR model. The
best ftemp is the frequency from which there is no relevant gain in increasing again the
frequency. Figure 3 presents the best model order pbest vs. fsamp. The expected behaviour
of pbest increasing with fech is clearly shown.

3.3. Choice of the temporal frequency and gain obtained
In a second step, it is possible to quantify the improvement brought by a predictive
approach with respect to the integrator control law and to determine the corresponding
ftemp. We have hence simulated again the same Kolmogorov turbulence. The temporal
frequency explored a range from 100 to 2000 Hz, and for each frequency we computed
the same way as before the parameters of the ARp model, with p optimized, as in Fig. 3.

Such a control law is based on the same type of model that the one presented in
Sec. sec:rappels but with more turbulent phase vectors in the state vector, in order to
be able to write the full AR model. To use an AR5 model, the state vector must be
Xn =

(
φtur

n+1 φtur
n φtur

n−1 φtur
n−2 φtur

n−3 un−1 un−2

)T , in order to be able to write
φtur

n+2 (within Xn+1) as a function of φtur
n+1, φtur

n , φtur
n−1, φtur

n−2 and φtur
n−3 (within Xn ). Of

course this means that all vectors and matrices are much bigger than with an AR1 model.
If we consider in the same time that the number of measurements (given for example by a
40×40 SH) can be already large and that recent propositions to increase the sensitivity of
WFS in XAO (Le Roux et al. (2005)) could increase even more this number, one should
understand that an XAO system represents a huge number of parameters to deal with.
A full study must be done to understand how the computing time can be decreased,
probably by using sparse matrix properties.

4. Discussion
Figure 4 shows, as a function of the temporal frequency, the temporal errors corre-

sponding to the predictive case [full line] and the non-predictive case [dashed line]. The
photon noise as a function of the temporal frequency is also plotted [dotted line], as well as
the sum of the temporal errors and of the noise [dashed-dotted and dashed-triple-dotted
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Figure 4. Temporal errors
in the integrator case and
the predictive control case,
and WFS error due to pho-
ton noise.

Figure 5. Evolution of
the number of candidate
stars for a predictive ap-
proach with respect to a
non-predictive approach.

lines] in order to be able to compare the relevant parameters, which are the sum of both
error terms. In the predictive case, an optimum is obtained at a temporal frequency fpred

which is about half the optimal frequency obtained in the non-predictive case. In terms
of variance of error, choosing fpred and a predictive control reduces the variance by a
factor 2.

It should be indeed noticed that the goal of this first study is the understanding of the
prediction aspect of the Kalman-based filter. It does not take into account parameters
like for example a difference of noise propagation between predictive and non-predictive
control. A full AO simulation would be necessary to confirm the gain of the predictive
approach in a realistic case. We are currently implementing an optimal control based on a
high-order AR-model within the Software Package CAOS (Carbillet et al. (2005)) in order
to simulate a full AO system working with a control law and quantitatively compare it
to an integrator control law.

For what concerns the number of candidate stars for exoplanet search, the previous
result has the following implication. A gain of two in variance of residual phase implies
a gain of one mag. in limiting magnitude. Figure 5 shows the resulting gain in number
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of observable stars by square degree vs. the magnitude and for three typical positions in
the sky, based on the Bachall & Soneira model of distribution of stars (Bahcall & Soneira
(1984)). This gain in number of observable stars is in average in the field larger than 2.

References
Chauvin, G., Lagrange, A.-M., Dumas, C., et al., 2005, Astron. Astrophys., 438 (2), L25
Nicolle, M., Fusco, T., Rousset, G., & Michau, V., 2004, Opt. Letters, 29 (23), 2743
Vérinaud, C., Le Louarn, M., Korkiakoski, V., & Carbillet, M., 2005, MNRAS, 357 (1), L26
Le Roux, B., Conan, J.-M., Kulcsár, C., et al., 2004, J. Opt. Soc. Am. A, 21(7), 1261
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