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TANGENT VECTORS TO SETS IN
THE THEORY OF GEODESICS

DUMITRU MOTREANU

Introduction

In the setting of Banach manifolds the notion of tangent vector to
an arbitrary closed subset has been introduced in [11] by the author and
N. H. Pavel, and it has been used in flow-invariance and optimization ([11],
[12], [13]). For detailed informations on tangent vectors to closed sets
(including historical comments) we refer to the recent book of N. H. Pavel
[17].

The aim of this paper is to apply this general concept of tangency in
the study of geodesies. We are concerned with geodesies which have
either the endpoints in given closed subsets or the same angle for a fixed
closed subset. This approach allows one to extend important results due
to K. Grove [4] and T. Kurogi ([6], [7]).

Section 1 is devoted to the general theory of tangent vectors. Here
we prove some useful results in critical point theory and existence for
minimization.

In Section 2 we deal with geodesies as critical points of the energy
functional relative to certain sets of paths. In this way we obtain charac-
terizations for various geodesies between closed subsets. In addition, we
point out that the energy functional satisfies a generalized version of
Condition (C) relative to some sets (not necessarily submanifolds).

Section 3 contains the extension of the Kurogi's work on geodesies
with the same angle. More precisely, we provide sufficient conditions
insuring the existence of geodesies invariant with respect to an isometry
and acrossing with the same angle a compact subset.
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30 DUMITRU MOTREANU

§ 1. Tangent vectors and existence for minization

This section contains a theory of tangency for arbitrary subsets of a
C1 Banach manifold emphasizing its consequences in abstract minimization
problems.

Let M be a C1 manifold modeled on a Banach space E with the norm
|| || and let S be a nonempty subset of M.

DEFINITION 1.1 ([11]). A vector v e TXM is called tangent to the subset
S of M at x € S if there is a chart φ: U —> E of M set x such that

lim —d(φ(x) + hDφx(v); φ(U Π S)) = 0
ft-0 Λ

(with A e R).
Here Ztyv TXM-> E is the differential of ^ at x and d(w; A) denotes

the distance in E from a point ue E to a subset A of #, i.e.

d(u; A) = inf||w - α|| .

Remark. Definition 1.1 is independent of the chart (U,φ), that is if
the vector v e TXM is tangent to the set S at x e S and (V, ψ) is an arbi-
trary chart of M at x, then

lim Id(ψ(ίc) + hDψx(υ); ψ(V Π S)) = 0 .

The set of tangent vectors to a subset S at x e S is always nonempty con-
taining at least 0 e TXM. In [11], [12] and [13] the tangent vectors described
in Definition 1.1 are called quasi-tangent vectors.

A vector field X: M -> TM is said to be tangent to a subset S of M
if for each x e S the vector X(x) e TXM is tangent to S at x. According
to the above Remark the vector field X on M is tangent to the set S if
and only if for every chart (U, φ) of M intersecting S and every x e U Π S
we have

lim ±-d(φ(x) + hXφ(x); φ(JJ Π S)) = 0 ,

where Xp(x) = Dφx(X(x)) represents the principal part of the vector field
X in the chart φ.

In the case of submanifolds the tangency introduced in Definition 1.1
reduces to ordinary tangency.
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THEORY OF GEODESICS 31

PROPOSITION 1.1 ([11]). Let S be a C1 submanίfold of M. A vector

ve TXM is tangent to S at xe S in the sense of Definition 1.1 if and only

if v is a tangent vector to S at x, i.e. v e TXS.

The following result shows the functorial character of the tangent

vectors to sets.

THEOREM 1.2 ([11], [13]). Let f: M-+N be a C1 mapping between C1

Banach manifolds M, N and let S be a nonempty subset of M. If v e TXM

is a tangent vector to S at x e S9 then the vector Dfx(v) is tangent to f(S)

at the point f(x). Moreover, if f is a submersion at xe S, then v e TXM is

tangent to S at xe S if and only if Dfx(v) is tangent to f(S) at f(x).

This notion of tangency to sets was introduced in connection with

flow-invariance problems.

DEFINITION 1.2 ([11]). A nonempty subset S of a C2 manifold M is

called flow-invariant with respect to a locally Lipschitz vector field X on

M if every integral curve of X starting from S remains in S as long as

it exists.

The following characterization of flow-invariant sets extends the classi-

cal Nagumo-Brezis result.

THEOREM 1.3 ([11]). Let S be a nonempty closed subset of a C2 Banach

manifold M and let X be a locally Lipschitz vector field on M. Then S is

flow-invariant with respect to X if and only if the vector field X is tangent

to the set S.

For other flow-invariance results including a characterization of flow-

invariant sets with respect to second order differential equations we refer

to [12] and [13].

In order to use the tangent vectors to sets in constrained minimiza-

tion problems we introduce the notion of critical point relative to a subset.

DEFINITION 1.3. Let S be a nonempty subset of a C1 Banach mani-

fold M and let /: M-+R be a differentiable function on M. A point xe S

is called a critical point of the function / relative to the subset S (and

then f(x) is a critical value of / relative to S) if Dfx(v) = 0 for all tangent

vectors v to S at x.

We need the following characterization of tangent vectors.
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32 DUMITRU MOTREANU

LEMMA 1.4. A vector v e TXM is tangent to the subset S of a C1 Banach

manifold M at xe S if and only if there exists a function he (—a, a) ->uh

e TXM (with a > 0) such that the following two conditions hold:

(i) uh -» 0 in TXM as h->0;

(ii) if φ: U —> E is any chart of M at x one has

hDφx(υ + uh)) e S ,

for all h e ( — a, a).

Proof Assume that the vector υ e TXM is tangent to the set S at x e S

and let ψ: U-^E be a chart of M at x. For each h Φ 0 there is a point

&;„ e ψ(U Π S) such that

(1.1) ||^(x) + hDφx(υ) -wh\\^ d(φ(x) + hDφx(v); φ(UΠ S)) + U .

By Definition 1.1 and relation (1.1) we obtain

(1.2) lim l | | p ( x ) + hDψx(v) - wh\\ = 0.

If we denote

wΛ = h-λDφ-\wh - φ(x) - hDψx(v)) ,

then (1.2) implies (i) while (ii) is clearly satisfied.

Conversely, assume that for each h Φ 0 small enough there exists uh e

TXM satisfying (i) and (ii). It follows that

wh - ψ{x) + hDψx(υ + uh) e ψ{U Π S)

and consequently

%(χ) + hDφM; <p(S n t/)) < ^
h \h

as /ι -> 0. Therefore the vector u e T^M is tangent to S at x.

PROPOSITION 1.5. The set TXS of tangent vectors to the subset S of a

C1 Banach manifold M at xe S is a cone. If the set S is locally convex

(in the sense that at every point there is a chart φ: U-+E of M such that

φ(U f] S) is a convex subset of E), then TXS is a vector subspace of TXM.

Proof. This follows immediately by applying Lemma 1.4.

From Lemma 1.4 we derive also the following principle of optimum
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THEOREM 1.6. Let S be a nonempty subset of a C1 Banach manifold

M. If a differentiate function f: M->R has a minimum (maximum) over

S at x e S, then x is a critical point of f relative to S.

Proof Let us suppose that the function / admits a minimum on S

at x e S and let v e TXM be a tangent vector to S at x. In view of Lemma

1.4, corresponding to each heR sufficiently small (say he (-a, a)) there

exists uh e TXM satisfying the above conditions (i) and (ii). By (ii) we have

(1.3) fφ'XΦ) + hDφx(v + uh)) > f(x) .

Since / is different!able at x, it follows

(1.4) fφ'KΦ) + hDφx(v + uh)) = f(x) + hDfx(v + uh) + o(h) .

Then (1.3), (1.4) and condition (i) imply Dfx(v) = 0 which ends the proof.

We state now a version for Condition (C) of R. Palais and S. Smale

([14], [15], [16]) in terms of our generalized tangency. Let M be a Rieman-

nian manifold, S a. nonempty subset of M and /: M—>R a differentiate

function. For every x e S denote

(1.5) \\Dfx\\StX = sup {\Dfx(υ)\; v is a t a n g e n t vector t o S a t x a n d \\υ\\x < 1}.

DEFINITION 1.4. A differentiate function f: M-+R defined on a

Riemannian manifold M is said to satisfy Condition (C) relative to a subset

S of M if whenever {Xj} is a sequence in S such that f(Xj) is bounded and

\s^j~>0 as j -> oo, then {Xj} has a subsequence converging in M.

This constrained form of Condition (C) implies the following extension

of Palais-Smale Existence Theorem ([14], [15], [16]).

THEOREM 1.7. Let S be α closed subset of α complete Riemannian mani-

fold M and let f: M~->R be a differentiate function. Assume that the

function f is bounded from below on S and satisfies Condition (C) relative

to the subset S. Then f\s attains its greatest lower bound.

Proof Apply the Ekeland's variational principle ([1], [2]) for f\s. Then

for ε > 0 there is a point xε e S such that

(1.6) f(xt) < inf / + ε2

s
and

(1.7) f(x) > f(xε) - εd(x, xe), for all x e S, x Φ xε ,
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34 DUMITRU MOTREANU

where d(x, xe) denotes the distance in M between x and xε which is induced

by the Riemannian structure. Take in (1.7) x = exp^ (tv) with t > 0 and

i; an arbitrary tangent vector to S at x£. Since, for t sufficiently small,

X s ( t v ) , xε) = t\\υ\\Xt ,

one obtains

/ ( e x p x . ( f t ; ) ) - / ( * . ) > -et\\v\\Xi

Letting t —> 0 it follows

Df*.(v)> ~e\\v\U,

which, in view of (1.5), yields

\\Df*.\\s.*.<e-

This allows one to apply Condition (C) and thus for ε —> 0, {xε} converges

(on a subsequence) to some point z e S. From (1.6), by passing to limit,

it results f(z) — infs/ which completes the proof.

In the rest of this section we denote by S a nonempty closed subset

of a Ck Riemannian manifold with k > 2. For every xe S let us denote

by TXS the set of tangent vectors to S at the point x. Admit now that

S satisfies the following regularity hypotheses:

(Hj) TXS is a closed vector subspace of TXM, for all xe S;

(H2) The function Pr: TM\ S->TM mapping υ e TXM

(with x e S) to the orthogonal projection Pr (v) of v on TXS can be extended

to a locally Lipschitz map on a neighborhood of TM\ S = [Jxes TXM in

TM.

Remark. Simple examples show that conditions (H^, (H2) do not imply

on S to be a smooth submanifold of M. For instance, the set

S = {(*, y) e R2; x2 + f - 2x = 0 or x2 + y2 + 2x = 0}

satisfies conditions (H^, (H2) in M — R2, but it is not a smooth submani-

fold of R2. Proposition 1.5 shows that a sufficient condition for TXS to

form a vector subspace of TXM is that the set S be locally convex in M.

If /: M-> R is a C2 function on M, then, according to (H^, the Riesz

representation theorem ensures the existence of a unique tangent vector

gτadsf(x) e TXS called the gradient of / relative to S at x e S and defined

by
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(1.8) <grad*/(*), v)x = Dfx(v) ,

for all v e TXS, where <, ) x denotes the scalar product on TXM determined

by the Riemannian structure.

By hypothesis (H2) it follows that grad5/ can be extended on a neigh-

borhood of S to a locally Lipschitz vector field. This is clear from the

relation

gγsiάsf(x) = Pr (grad/(x)) with x e S .

The following property of the integral curves of the vector field grad5 /

generalizes a well-known result concerning the usual gradient field of a

smooth real-valued function (see Palais [[14], § 10]).

PROPOSITION 1.8. Let S be a closed subset of a Ck complete Riemannian

manifold (k > 2) such that the regularity conditions (Hj) and (H2) hold.

Let f: M->R be a C2 function on M which is bounded on S and satisfies

Condition (C) relative to the subset S. Then every maximum integral curve

T of grad s/ with x = Γ(0) e S is defined on R and T(t) has critical points

of f relative to S as limit points for t-> ±oo.

Proof. By hypotheses (Hx) and (H2), grad s/is a locally Lipschitz vector

field which is tangent to the set S. Theorem 1.3 implies that

(1.9) r(t) 6 S for all t e (Γ(x), t+(x)) = domj .

From (1.8) and (1.9) we deduce that the function t->f(ΐ(t)) is bounded and

monotone, so has finite limits at t—> ±oo. Prove for example that t+(x)

= oo. The same argument as in Palais [[14], Lemma p. 314] shows that

(1.10) Γ(X) ||grads/(r(*))l|2,(ί) dt < oo ,
Jo

so the length of ϊ \ [0, V(x)) is finite and therefore r([0, t+(x))) is a relatively

compact subset of M (see Palais [[15]. Chapter IV B]). On the other hand

if t+(x) < oo, T(t) cannot have limit points in M as t—>t+(x) (cf. Palais

[[14], §6] or [[15], Chapter VI A]). The contradiction shows t+(x) = oo.

Then (1.10) implies that there exists a sequence {tn} of positive numbers

such that tn-> oo and \\DfHtn)\\SJ(tn) -> 0 (see (1.5), (1.8)).

Furthermore, by (1.9), f(T(tn)) is bounded. Hence one can apply Condi-

tion (C) to deduce that (on a subsequence) T(tn) converges in M a s n —> oo

to a point p e S. Passing to limit in

||gradfl/(r(O)llr(im, = \\Dfntn)\\SJ(tn)
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36 DUMITRU MOTREANU

we deduce from (H2) that grads/ vanishes at p, so p is a critical point of

/ relative to S. The result is proved.

For a later use we state

COROLLARY 1.9. Let M, S, f be as in Proposition 1.8. If {ϊt: S-+S}teR

denotes the flow of the vector field (—grad5/) on S, then for any compact

subset K of M with K c S,

(1.11) Cκ = lim m&xf(rt(x))

is a critical value of f relative to the subset S.

Proof. The limit in (1.11) exists and is finite because the function

t-+ma.xxeκf(Yt(x)) is continuous, decreasing and bounded. Thus for any

positive integer n there are δn > 0 and a point xn e K such that

) \
n

Letting t -> oo in the above inequality, Proposition 1.8 implies that there

exists a sequence {yn) of critical points of / relative to S such that

(1.12) |/(yn) -Cκ\<±, for every n.
n

The generalized condition (C) given in Definition 1.4 insures that (on a

subsequence) {yn} converges to a point z e S. Arguing as in the final part

of the proof of Theorem 1.7 we derive that z is a critical point of / relative

to S. By (1.12) we get f(z) = Cκ. The proof is complete.

§2. Geodesies as critical points relative to sets
Throughout this section M denotes a smooth Riemannian manifold,

possibly infinite dimensional, with the Riemannian structure <, }x. Con-

sider the Riemannian manifold L\(I; M) of absolutely continuous maps

from the unit interval I = [0, 1] to M with locally square integrable deriva-

tive. The tangent space TcLl(I, M) at c e L\(I\ M) consists of all absolutely

continuous vector fields X along c with square integrable covariant deri-

vative FCX. The Riemannian structure of L\(I; M) is given by

(2.1) (X, Y)c = Γ«X(ί), Y(t)}cω + <VcX(t\ FcY(t))cω)dt,
J 0

where X and Y are arbitrary elements of TCL\(I\ M).
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If N is a closed subset of M X M, denote

(2.2) ΛN(M) = {c e Ll(I; M); (c(0), c(l)) e N} .

The tangent vectors to ΛN(M) (in the sense of Definition 1.1) are charac-

terized as follows.

LEMMA 2.1. A vector Xe TcLl(I; M) is tangent to the set AN{M) at

c e ΛN(M) if and only if (X(0), X(ΐ)) is a tangent vector to the set N at the

point (c(0), c(l)) e N.

Proof. Since the map from L\(I\ M) to M X M given by ω --> (ω(0),

ω(ΐ)) is a submersion, we have only to apply the second part of Theorem

1.2.

The energy integral E: L\(I\ M) —> R is defined by

E(c) = 1 ί1 \\c'(t)\Udt .
2 Jo

Recall that the function E is smooth and the differential DEC of E at

c e L\(I\ M) is the following

(2.3) DEC(X) = Γ (FcX(t\ c\t)ycWdt for all Xe TCL\(I\ M) .
Jo

We refer to [5], [9] and [18] for the general study of the energy functional

in connection with the theory of geodesies.

The following result is an extension of Theorem 1.6 (1) in Grove [4]

and deals with the sets ΛN(M) (see (2.2)) when N = So X S,.

THEOREM 2.2. Let So and S1 be two nonempty closed subsets of the

Riemannian manifold M. Then c e ASoXSl(M) is a critical point of E relative

to ΛSoXSί(M) if and only if c is a geodesic of M from So to Si which is

orthogonal to Su i = 0, 1, i.e. c'(0) e (T^So)1- and c'(l) e (T^S,)1-, where by

TxSi we denoted the set of tangent vectors to Si at a point x.

Proof. Assume that c e ΛSoXSl(M) is a critical point of E relative to

the subset ^ o X 5 l ( M ) of L\(I\ M), that is

(2.4) DEC(X) = 0 for all tangent vectors X to ΛSoXSl(M) at c .

If p = c(0) e So and q = c(l) e Si are the endpoints of the curve c, then c

belongs to the smooth submanifold

ΛP,Q(M) = {ω e L[(I; M); ω(0) - p, ω(l) = q]

https://doi.org/10.1017/S0027763000000866 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000000866


38 DUMITRU MOTREANU

of the manifold L\(I; M). By Lemma 2.1 it is clear that the tangent space

TeAPtQ(M) = {Xe TMI; M); X(0) = 0, X(ΐ) = 0}

is contained in the set of tangent vectors to ΛSoXSι(M) at c, so (2.4) implies

DEC(X) = 0 for all Xe TcΛp,q(M) .

Then it follows that c is a geodesic of M (see, e.g., Grove [[4], Proposition

1.5] or Schwartz [[18], Theorem 6.30]). This fact combined with (2.3) and

(2.4) yields

(2.5) DEC(X) = (X(l), c'(l)>co) - <X(0), c'(0))c(Q) = 0

for all tangent vectors X to ΛSoXSl(M) at c. In view of Lemma 2.1, we

deduce from (2.5) that for all vϋ e Tciΰ)SQ and υx e T^^Si holds

<"o, c'(0»c(0) = (vu

which clearly implies c'(0) e (TcWSQ)L and c'(l) e (T^S,)1.

Conversely, assume that c e ΛSoXSl(M) is a geodesic on M with cXO) e

(Ϊ7

C(O)SO)-L and c'(l) e (T^^S^1-. Since c is a geodesic, one can write (2.3)

in the form

(2.6) DEC(X) =

for all Xe TCL\(I\ M). Taking into account Lemma 2.1, the orthogonality

hypothesis and (2.6), it results that DEC(X) = 0 for each X belonging to

the set of tangent vectors to ΛSQXSI(M) at c. This completes the proof.

Remark, If the sets So and Sj are smooth submanifolds of My then

Theorem 2.2 reduces to Grove's Theorem 1.6 (1) from [4].

COROLLARY 2.3. A minimizing geodesic between two closed subset SQ

and Sj of M is orthogonal to SQ and Sx. Moreover, if in a homotopy class

of curves joining So and S1 a geodesic c has minimal length, then c is

orthogonal to SQ and Sίt

Proof. It is sufficient to prove the first statement because the second

part follows by arguing on the component of c. Thus let c be a mini-

mizing geodesic from SQ to Su that is the length of c equals

Sd= inf

It results that c minimizes the energy integral E over the subset ΛSoXSl(M)

of L%I; M) (see, e.g., Milnor [[9], Lemma 12.1]). We apply Theorem 1.6
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to deduce that c is a critical point for E relative to the set ΛSoXSl(M) (in

the sense of Definition 1.3). The result follows now from Theorem 2.2.

The above result yields the following generalization of a classical

result [[14], Theorem 2.6] from the case of closed submanifolds to arbitrary

closed subsets.

COROLLARY 2.4. Let M be a finite dimensional complete and connected

Riemannίan manifold. Let SQ and Sι be two closed subsets of M provided

at least one of them is compact. Then there exists a geodesic starting orthogo-

nally from So and ending orthogonally to St with length equal to d(SQ, S^.

Moreover in any homotopy class of curves joining So and Sι there is a

geodesic of minimal length and orthogonal to Si9 i = 0, 1.

Proof. A simple argument based on the Hopf-Rinow Theorem shows

that there exists a minimizing geodesic between SQ and Sx (see the proof

of Theorem 1 in [10]). Hence it suffices to apply Corollary 2.3. The second

part follows analogously.

Remark. It is well-known that on infinite dimensional Riemannian

manifolds the Hopf-Rinow Theorem is generally not true (see Ekeland [2]

for a counterexample). Therefore in Corollary 2.4 we cannot drop the

hypothesis on M to be finite dimensional.

As a further application of tangent vectors to sets we shall extend a

general result due to Kurogi ([6], [7]) concerning the geodesies with the

same angle.

Let / be an isometry of the Riemannian manifold M. If we denote

the graph of / by G(f), then

ΛGif)(M) = {ω β Lt(I; M); /(ω(0)) = ω(l)}

is a smooth submanifold of L{(I; M) (see Grove [4]). If S is a nonempty

subset of M, denote

(2.7) Λ(S, f) = ΛGifmisxM)(M) = {ωe ΛGU)(M); ω(0) e S}.

LEMMA 2.5. If ceA(S,f), then XeTcL\(I\M) is tangent to Λ(S,f) if

and only if Dfci0)(X(O)) = X(ϊ) (i.e. Xe TCAGU)(M)) and the vector X(0) e

TC(O)M is tangent to S at c(0).

Proof. The result follows from Lemma 2.1 for the case N = G{f) Π

(S X M) and the fact that G(f) is a smooth submanifold o f i l ί x l .
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The consideration of the set Λ(S, f) given by (2.7) is motivated by its

closed relation with the problem of geodesies acrossing the set S with the

same angle.

DEFINITION 2.1. Let S be a nonempty subset of a finite dimensional

Riemannian manifold M. A geodesic c: I-^M with (c(0),(c(l))eSχ S

forms the same angle with the set S if

(2.8) < (c'(0), Span ΓC(O)S) = < (c'(l), Span ΓC(1)S) ,

where Span TcWS and Span r c ( t ) S denote the vector subspaces of TcmM

and TC(1)M spanned by the sets of tangent vectors TC(Q)S and TC(1)S respec-

tively.

In the case when S is just a smooth submanifold of M, Definition

2.1 reduces to Definition 2.3 of Kurogi [7] (see also Kurogi [6] for the case

of submanifolds of codimension 1).

THEOREM 2.6. Let S be a closed subset of a finite dimensional Rieman-

nian manifold M and let f be an isometry of M such that f(S) = S. Then

c e Λ(S, f) is a critical point of the energy integral E relative to the subset

A(S, f) of L\{I\ M) if and only if c is a geodesic on M such that c'(ΐ) —

DfcW(c'(0)) is orthogonal to TC(1)S. Moreover, if c is a critical point of E

relative to Λ(S, /), then c is a geodesic on M with the same angle for the

set S.

Proof. Assume that c is a critical point for E relative to the subset

Λ(S, f) of L&I; M). Then

(2.9) DEC(X) = 0 for each tangent vector X to A(S, f) at c.

Arguing as in the proof of Theorem 2.2, relations (2.3) and (2.9) imply

that c is a geodesic on M and furthermore

(2.10) DEC(X) = <X(1), c'(l»c ( 1 ) - <X(0), c'(0)>c«» = 0

for all tangent vectors X to Λ(S, f) at c. Taking into account that / is

an isometry of M and using Lemma 2.5 we deduce from (2.10) the equality

(2.11) <X(1), c'(l) - D/c(o)(c'(0))>c(1) = 0 ,

if X belongs to the set of tangent vectors to Λ(S9 f) at c. Notice that

when X is an arbitrary tangent vector to A(S9 f) at c, X(ΐ) is an arbitrary

tangent vector to S at c(l) (see Theorem 1.2). Consequently (2.11) implies
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that c'(l) - DfeW(c'(0)) is orthogonal to TcωS{.

Conversely, suppose that c is a geodesic on M such that

(/(I) - D/c(0)(c'(0)) e (Tc{ΌS,y .

This yields (2.11) which, under our assumptions, clearly insures (2.9). There-

fore we proved the sufficiency part.

To check the last assertion of Theorem 2.7 assume now again that

c e Λ(S, f) is a critical point of E relative to Λ(S, f). Then, according to

the necessity part of the proof, c'(l) — DfcW(c'(0)) is orthogonal to TC(1)S{

and thus

(2.12) <c'(l) - ZYc(0)(c'(0)), ZYc(o)Po(c'(0))>c(1) = 0 ,

where P0(c'(0)) denotes the orthogonal projection of c'(0) on Span TC{Q)S.

Since / is an isometry, from (2.12) we deduce

<c'(0), P0(c'(O))>c(0) = <c'(l), P^c'ft)))^, ,

where P^c^l)) represents the orthogonal projection of c'(l) on SpanΓc ( 1 )S.

Therefore (2.8) holds which concludes the proof.

Remark. If the set S is a smooth submanifold of M, we obtain from

the last part of Theorem 2.6 the result of Kurogi [[7], Theorem 4] (see also

[[6], Theorem 1.3] for submanifolds of codimension 1).

We end this section with an extension of Theorem 2.4 in Grove [4]

concerning Condition (C) for the energy integral on ΛN(M). Our result

provides a basic example of functional satisfying Condition (C) relative

to a set in the sense of Definition 1.4.

THEOREM 2.7. Let M be a finite dimensional complete Riemannian

manifold and let N be a closed subset of M X M such that at least one of

the projections pr̂  (N), i = 1, 2, is a compact subset of M. Then the energy

integral E: L\(I\ M)-> R satisfies Condition (C) relative to the subset ΛN{M)

of Ll(I; M).

Proof. We follow the same lines as in the proof of Grove [[4], Theo-

rem 2.4], Let {Cj} be a sequence in ΛN(M) such that E(Cj) is bounded and

\\DECJ\\AlfUdhcJ-+0 as j-> oo. The same argument as in [4] shows that there

exist constants λ > 0 and C such that

(2.13) λ\\Xt- Xj\\ < C| |X t — Xj\\l + (D(Eoexpa)Xi -
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where we denoted by expα: TaL%I; M) —> L\(I; M) the natural exponential

chart on L\(I\ M) at some a e C°°(/; M), X} = expα ~\Cj) for every j , || || the

norm on TaLl(I; M) induced by the Riemannian structure in (2.1) and || Ĥ

the uniform norm on TaL\(I\ M). On the other hand, using the Schwartz

inequality, one obtains from (2.3) and (2.1) the following estimate

(2.14) j j

The same argument as in [4] shows that there exists a decomposition

(2.15) Xj = X}+ Yj for all j

such that D(eχ-pa)x.(Xj) is a tangent vector to ΛN(M) at c ; for each j ,

while Yj belongs to a finite dimensional vector space V independent of j .

Using the assumptions on the sequence {c; } together with (2.14), (2.15) and

the boundedness of \\Xt — X;||, it follows from (2.13) that (on a subsequence)

\\Xt — Xj\\ —> 0 as ί, j —> co. This proves the result.

§3. Geodesies with the same angle for a compact set

The aim of this section is to extend the existence result of T. Kurogi

([β]j U]) concerning geodesies acrossing a compact submanifold S with the

same angle to the general case of an arbitrary compact subset S. Namely

we shall provide sufficient conditions insuring existence of nontrivial

geodesies with the same angle for a given compact set S. Our approach

is based on the theory of tangent vectors that we developed in Section 1.

Throughout this section M denotes a complete and connected finite

dimensional Riemannian manifold, S a nonempty compact subset of M

and /: i l ί - > M a n isometry of M such that f(S) = S. We look for non-

trivial geodesies c: I-± M such that

(3.1) c(0)eS, /(c(0)) = c(l)

(3.2) <>» (c'(0), Span Γe(0)S) = Ĉ (c'(l), Span Γe(1)S)

(i.e. geodesies with the same angle for S as introduced in Definition 2.1).

The first result in this direction is the following

THEOREM 3.1. If the compact set S does not contain fixed points of the

isometry /, then there exists a nontrivial geodesic satisfying (3.1) and (3.2).

Proof. According to the last part of Theorem 2.6 we need only to

prove that there exists a critical point c of the energy functional E relative
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to the set A(S, f) so that the curve c is nontrivial. Since the set S is

supposed to be compact, by Theorem 2.7 it follows that the function E

satisfies Condition (C) relative to the subset Λ(S, f) of L\{I; M). Then

Theorems 1.6 and 1.7 insure the existence of a critical point c of E relative

to the set A(S, /). The curve c is necessarily nontrivial because c e Λ(S, f)

and the isometry / is without fixed points in S. This completes the proof.

Remark. If S is a smooth submanifold of M, Theorem 3.1 reduces to

a result of T. Kurogi ([7], [6]).

Identifying a constant curve with its single-element image, we have

(3.3) £-χθ) Π Λ(S, f) - Fix (/) Π S ,

where Fix(/) denotes the fixed points of the mapping /.

PROPOSITION 3.2. There exists some ε > 0 such that, under the identi-

fication (3.3), Fix(/)ΠS is a strong deformation retract of JE f̂O, ε] Π(S, /).

Proof. In order to use Generalized Morse Lemma (see Meyer [8]) con-

sider a compact smooth submanifold W of M such that S C Int W. The

existence of W is proved for example in Fuks and Rohlin ([3], p. 227).

Then Λ(W, f) is a smooth submanifold of L\(I\ M). Observe that corre-

sponding to each component Ft of Fix(/)Π W one can apply Generalized

Morse Lemma [8] for the restriction of Eoexp to a tubular neighborhood

Vi of Ft. Then, by the same argument as in [6], we deduce that there

exist a diffeomorphism ψw near the 0-section of V, an orthogonal projec-

tion Pw and some constant δw > 0 such that

(3.4) Eoψw(X) = ||P,F(X)||2 for

where || || denotes the norm induced by the Riemannian structure of

Λ(WJ).

As in the proof of Corollary 3.3 in [4] and using essentially Condition

(C), it follows from (3.4) that

(3.5) φw{U Vt) = (E\Λ(W, Πrn εw] ,

with εw — δw and Vt sufficiently small. Moreover, φ(0x) = x, for every

xe¥ix(f)Γ\W.

By (3.5) we see that Fix(/) Γ\W is a strong deformation retract of

(E\Λ(W, Z))"1^, εw] and let Gw be the corresponding homotopy.

Choose now a sequence {Wn} of compact smooth submanifolds of M

such that
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(3.6) C\Wn = S and S C int Wn+ι C Wn+ι c int W.

for every rc (see [[3], p. 227]).

In view of (3.6), from the above construction one can see that, for

each n, <pWn+1 *
s the restriction of φWn and εWn > ε > 0. Therefore, by passing

to limit, the sequence of homotopies {GWn} defines a homotopy G: (E\

A(S, /))-![0, ε] X I-> (E\Λ(S, /Xr^O, ε]. Clearly G inherits the properties of

the homotopies GWn, so Fix(/) Π S is a strong deformation retract of iJ^fO, ε]

Π Λ(S, f) which proves the result.

The below lemma is the main step in generalizing the Kurogi's result

from compact submanifolds to compact subsets. The proof relies on the

concept of gradient field of a smooth real valued function relative to a

set (in our case gra.άΛ{Sf)E) which we introduced in Section 1.

For our purpose it is now convenient to take the gradient of E rela-

tive to Λ(S, f) with respect to the Riemannian structure on L\(I; M) used

in Palais [14] or Schwartz [[18], Chapter 6], namely

(3.7) <X, Y)c = <X(0), Y(O)>c(0) + P <X'(ί), Y'(t))Rndt,
Jo

for all X, Ye TCL\(I\ M), where M is isometrically embedded in an Euclidean

space Rn. The advantage of this metric lies in the fact that, contrasting

with (2.1), Λ(S, f) endowed with the metric induced by (3.7) is locally iso-

metric to the product of S and a Hubert space (see [14] or [18]).

LEMMA 3.3. Let f: M-^M be an isometry of the finite dimensional

complete Riemannian manifold M and S a compact subset of M satisfying

condition (Hj), (H2) from Section 1. // there are no nontrivial geodesies with

the same angle for S, then under the identification (3.3) the inclusion ί:

Fix(f) Π S—» Λ(S, f) is a weak homotopy equivalence.

Proof. If L\(I\ M) is endowed with Riemannian structure (3.7), the

energy function E: L\(I\ M)->R admits a locally Lipschitz gradient field

gradA(s,nE relative to the set Λ(S, f) in the sense of Section 1. Indeed,

from (Hi), Lemma 2.5 and relation (3.7) it follows that for every c e Λ(S, f)

the set of tangent vectors to Λ(S, f) at c forms a closed vector subspace

of TcLl(I; M). Furthermore, A(S, f) is locally the product of S by a

Hubert space and the identification of the corresponding tangent spaces

is an isometry under the metric (3.7). Therefore condition (H2) for S in
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M implies condition (H2) for A(S, f) in L\(I) M), so grsidΛis,f)E exists and

is locally Lipschitz.

Turn now to the proof that for any integer q > 0, the induced homo-

morphism ίq: πq(Fix(f) Π S) -> πq(Λ(S, /)) is an isomorphism. We proceed

as in Grove [[4], Lemma 3.4]. Let iq[g] = 0 and let G: SqX I->Λ(S,f)

be the null-homotopy of g in Λ(S, /). Then Corollary 1.9 insures that

(3.8) CG = lim max E(Tt(c))
ί-oo ceG(SQXl)

is a critical value of E relative to A(S, /), where Tt denotes the flow on

Λ(S, f) defined by (—grad^(s,/}£J). Notice that Theorem 2.7 holds also when

L\(I; M) is endowed with the Riemannian structure (3.7). According to

the assumption that there is no nontrivial geodesic with the same angle

for S, the second part of Theorem 2.6 implies CG — 0. From (3.8) it follows

that for ε > 0 chosen as in Proposition 3.2 and t sufficiently large,

Then Proposition 3.2 shows that g is null-homotopic in Fix(/) Π S, so ίq

is injective.

Now let [h] e πq(Λ(S, /)). Arguing as above, we derive

lim max E(Tt(c)) = 0 .
ί-oo ceh(SQ)

Hence for some ε > 0 given by Proposition 3.2 and t > 0 large enough

we have

(3.9) rt(Λ(S«)) c j ε - m ε] n Λ(S, f).

If r: ίJ-^O, ε] Π ̂ 1(S, /) -> Fix(/) Π S is the deformation retract from Propo-

sition 3.2, then (3.9) yields iq[r<>rtoh] = [h], so ίq is also surjective. This

concludes the proof.

We are now prepared to prove the main result of this section which

together with Theorem 3.1 extends the Kurogi's existence theorem ([6], [7]).

THEOREM 3.4. Let M be a finite dimensional complete Riemannian

manifold, S a pathwίse connected compact subset of M and f an isometry of

M with f(S) = S. Suppose moreover that M is simply connected, S satisfies

conditions (Hj), (H2) and Fix (/) Γ) S is not pathwise connected. Then there

exists in M a nontrivial geodesic with the same angle for the set S.

Proof Choose some point p belonging to Fix (/) Π S as the base point
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in M and also in Λ(S, /). If G(f) denotes the graph of /, then we have

the canonical ίibration P: ΛGU){M) -> G(f) ΞΞ M given by P(ω) = (ω(0), ω(l)).

The restriction of the fibration P to the subset S of M defines a fibration

A(S, f) -> S over S whose fibre is ΛP(M) = {ωe L%I; M); ω(0) = p}. The

exactness of the homotopy sequence

• πQ(Λp(M)) • πo(Λ(S, /)) > πΰ(S)

of this fibration (see for example [[19], Chapter 7]) shows that under the

required hypotheses on M and S we have πo(Λ(S, /)) = 0. This implies the

existence of a nontrivial geodesic with the same angle for the set S because

otherwise we arrive at a contradiction with Lemma 3.3. The result is

established.

Remark. In particular, if the isometry /of M has only finitely many

fixed points in S but not exactly one Theorem 3.4 applies. Therefore,

Theorems 3,1 and 3.4 extend completely the Kurogi's existence results

([6]> IW o n geodesies with the same angle for compact submanifolds to

geodesies with the same angle for compact sets satisfying the natural

regularity hypotheses (H^, (H2).
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