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1. Introduction and results

Let R be the d-dimensional Euclidean space where each point is expressed
by a column vector. Let |x| and <z, y> denote the norm and the inner product in
R’ Let Q = (@;,) be a real d X d-matrix of which all eigenvalues have positive
real parts. Let X be a process of Ornstein-Uhlenbeck type (OU type process) on
R’ associated with a Lévy process {Z,:t 2 0} and the matrix . Main purpose of
this paper is to give a recurrence-transience criterion for the process X when @
is a Jordan cell matrix and to compare it with the case when @ is diagonalizable.
Here by a Lévy process we mean a stochastically continuous process with station-
ary independent increments, starting at 0. By saying that @ is a Jordan cell matrix
(with eigenvalue @) we mean that

Q,=aforl<j<d,Q,;,=1forl1<j<d-—1,and Q; = 0 otherwise.

This paper continues the work [1], where a recurrence-transience criterion is
established when @ is diagonalizable. In one dimension the criterion is given by
Shiga [5].

Precise definition of the process X by its infinitesimal generator is given in
[1] and [3]. It is a Markov process (2, #, %,, P*, X,) on R’ such that the process
{X,:t>= 0} under the probability measure P* is equivalent to the process {X,}
defined by

t
(1.1) X =e"x+ f ez,
0
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where the stochastic integral with respect to the Lévy process is defined by
stochastic convergence from integrals of simple functions. The process {X,} of
(1.1) is the unique solution of the equation

-— t —
(1.2) X=cz+2- [ Qxar.
0

This shows that — @ is the coefficient matrix in the linear drift terms in the in-
finitesimal generator. We do not impose any restriction on the Lévy process
{Z} on R’ in this paper. Let p and B be the Lévy measure and the Gaussian
covariance matrix of {Z,}, respectively. That is, o is a measure on R’ satisfying

0({0}) = 0 and f (x> A 1)p(dx) < o, B is a symmetric nonnegative-definite

d X d-matrix, and
i<z 1
(1.3) Ee' % = exp [— o {z, Bz)
+ [ @7 =1 - ie, D1y, @)0ldD) + i, D),

where b is a d-vector and 1, (@) is the indicator function of the unit disc.
Let {z,} be the dynamical system defined by

dx
—dT'= — Qx, with x, = ,

that is x, = ¢ 2. As is seen from (1.1) and (1.2), the Markov process X is inter-
preted as the dynamical system with a time homogeneous random perturbation
added independently of the past history and the present position. If {Z,} is Brown-
ian, then X is the usual Ornstein-Uhlenbeck process and has a Gaussian limit dis-
tribution. In general, since x, tends to 0 as {— oo (the origin is a sink), the pro-
cess X has a limit distribution unless the frequency of big jumps of the process
{Z,} is beyond a certain extent. A necessary and sufficient condition for X to
have a limit distribution is that

f log | x| p(dx) < o0
|z| =1

(see [2], [3], and papers cited in [1]). A necessary and sufficient condition for X to
be recurrent should be weaker than this.
From now on assume that d = 2. Let us denote
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2 d—1

s s
(1.4) g(s;x) =g(s;x,...,x) =x1+xzs+x3y+ +xd—(d—__—~1—)~!.

Then a main result in this paper is as follows. Our definition of recurrence and
transience is given in [1].

THEOREM A. Suppose that  is a Jordan cell matvix with eigenvalue ¢ > 0. Fix
¢ > 0 arbitrarily. Then X is recurrent if and only if

(1.5) j:@eXp [f du fl;l>c( — 4% glog )| l)p(dx)] = o,

Note that the recurrence condition in the theorem above does not involve the
measure o on any compact set, nor B, nor b.

In Section 2 we will prove Theorem A. Our method of proof is
Fourier-analytic as in [1] and [4]. The idea includes a way how to handle nonsym-
metricity. In carrying through this method estimation of some integrals of
elementary functions is crucial. It is here that we have to overcome difficulty
caused by nondiagonalizability of §. See Lemmas 2.1-2.4.

In Section 3 we will show the following theorem, which gives another form to
Theorem A and unifies it with the result of [1].

THEOREM B. Suppose that the eigenvalues of @ ave real and that there is an in-
vertible matrix R such that RQR™" is either a diagonal matrix or a Jordan cell matrix.
Fix ¢ > 0. Then, X 1is recurrent if and only if

(1.6) j(:—*exp [f du 'l|;|>c ~lutal l)p(dx)]

Q _  (log w)@
where 4™ = e

When @ is a general nondiagonalizable matrix, to find a recurrence-
transience criterion is still an open problem.
In Sections 4 and 5 we restrict our attention to the case d = 2. Let

(1) Q=(20) @a=(22). a0,

With a Lévy process {Z,} on R® being fixed, we denote, for j = 0,1, the OU type
process on R” associated with {Z,} and @, by X,. We tackle the problems whether
recurrence of X, implies recurrence of X, and whether the converse implication is
true. It turns out that these problems are of delicate nature. The answers to both
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questions are negative. Thus the condition (1.6) on the Lévy measure p with Q =
@, is neither stronger nor weaker than the condition (1.6) with @ = @,. A prob-
abilistically deeper fact is contained in the following theorem. The words increase
and decrease are used in this paper in the wide sense allowing flatness. The res-
triction of o to a set E is denoted by [o] .

TueoreM C. (i) There exists a right-continuous positive function h(r) on [e, ),
decreasing to 0 as ¥— ©, such that

Ve du Yo h(r)
(1.8) j(: — €XP [— j; d]
Ve gy 0 () 1
(1.9) f Ty €XP [ f < log r)dr] <
(il) Assume that the function h(r) defined from the Lévy measure 0 by
(1.10) h(y) = 1 oldx) forr > e
a |zyl>7

I
( 01) with Xy #F 0 and let

02

={x=u%,:u>0} forj=0,1.

satisfies (1.8) and (1.9). Fix x,

If, for some ¢ > 0, [p)3)5¢ is concentrated on E, then X, is recurrent and X, is
transient. If, for some ¢ > 0, [0] (515 is concentrated on E,, then X, is transient and
X, is recurrent.

Note that the set E; is identical with the trajectory of the dynamical system

dx
d—tt:_ijt, —00<t<00.

It is remarkable that concentration of the Lévy measure on E; is relevant to re-
currence of the process X;, although any jump from zx in this case is to x + E|,
not to the trajectory (of the dynamical system) that x belongs to.

Proof of Theorem C will be given in Section 4. The last theorem, which is to
be proved in Section 5, shows that, under a mild additional condition, recurrence
of X, is equivalent to recurrence of X,.

THeOREM D.  Suppose that
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(1.11) j“\ loglog | z| p(dx) < .
Ti>e
Then X, is recurrent if and only if X, is recurrent.

The examples in Section 5 of [1] satisfy the condition (1.11). They include
both recurrent and transient cases.

2. Recurrence criterion in the case where @ is a Jordan cell matrix
Proof of Theorem A needs several lemmas of analytic nature.

Lemma 2.1. Let f(s) be a polynomial with veal coefficients with deg f < n. Let
a>0and 0 < M < N. Then

N K
(2.1) ’L sin(u” f(log u)) d—:\ < 71
and
N . K
(2.2) \./1; [cos (u® f(log u)) — e~ /& ¥ %l < _a_z’

where K, and K, are constants which depend only on n.

Proof. By substitution #” = v, we see that it suffices to prove the lemma for
a = 1. Let ¢ be the coefficient of s” in f(s). Since the integrals in (2.1) and (2.2)
are continuous in ¢, we may assume that ¢ # 0. Further, we may assume that ¢ >
0. By substitution c# = v, we get

N . d cN . - d
./1,; 31n(uf(10gu))7u=£M sin(vf (log v)) Tv,

where f is a polynomial of degree # with coefficient 1 in the highest term, and
similarly for the integral in (2.2). Henceforth let

14 b+aq 2 2
(2.3) f@=M(s~a) I ((s—a) +c),
k=1 k=p+1

where p =20, ¢ =0, p + 2¢ = n, and a, and ¢, are real, ¢, > 0. Denote by I(M, N)
and J(M, N) the integrals in (2.1) and (2.2), respectively, with & = 1 and f(s)
being of (2.3). In order to prove the lemma, it is enough to show that | I(M, N) |
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<K@, @ and | JM, N) | £ K,(p, @), where K,(p, @) and K,(p, q) depend only
on p and ¢q. Let h(u) = uf(logu). If h’'(u) # 0 on the interval (M, N), then sub-
stitution v = h(u) gives

ol
KN sin KN cosy — e "

(24) I(M, JV) o uh/(u) d ](M, M = W dv.

B0
Let s = log #. We note that

f7(s) 4
(2:5) f(s) El s$— ak

ﬂf 2(3 - ak)

kbt (s —a)’ + b

OB MO N S
(2.6) fis) <f(s) ) E—x (s — a,)’
_ b+aq 4(8 - ak) sy 2

’
k=p+1 ((s — ak)z + c;‘:)z k=p+1 (s — a,‘)2 + c,f

en o =new (1425,

f(s)
dlwuh’(w) _ dul’(w) du (s) f”(s) JHMONS
(2.8) dv ~ du v @+2() mﬂ@+ﬂ9>
Choose n > 0 so that
(2.9) p M MEDTOG
1 n
If s& U2M(a, — 1, a, + 1), then it follows from (2.5) and (2.6) that
f7(s) s fr@s) n  n+p+6g
(2.10) lf(s) ’_~<— |2 S OINiOR s277-+—n2 <1.

Let E = (0, @)\ U3Z{[e", ¢ and let (4, B),..., 4,_,, B,_), (4,, B,)
with B,, = o be the connected components of E. We have m < p + ¢ + 1. Con-
sider two cases:
Casel. M, N <€ [e™", ¢™] for some k.
Case 2. M, N € (A,, B)) for some L
In Case 1 the estimate is easy. Namely
exp@e+n) gy,

| I(M, N) | < 5 =2

exp(a,—n) u

and, similarly, | J(M, N) | < 4.
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Let us consider Case 2. No zeros of h(u) exist in (4,, B)). First we assume
that 2(x) > 0 on (A, B). By (2.5)-(2.10), »’'(u) is positive on (4,, B)) and

d
v (uh’(w)) is positive for v € (h(4,), h(B,)). Hence we have

(hAP+TIARB)
+[J

(G+DDARB)
where j is the nonnegative integer determined by jm < h(4,) < (j + 1)x. There-
fore, using uh’(u) > v/2, we obtain

f(f+1)7t sin v
in

h(N) Sln v

h4)p uh ()

| I(A, N) | =

<<;+1)m/\h<3,)
)

(A

T sin v

|14, N) | <2 dv.

Hence

sin 1)

| 1M, N) | = | I(4,, N) — 1(A,,M)|<4f

If h(N) < /2, then
BN | cosv — e |

2| cosv — e ' |
———~—dv £ 2 f —dv.
hA) uh’ (u) 0

v

|74, M| <

If h(4) < /2 < h(N), then

/2 | cos v — e—” | BN o8 p h(N) e—”
< 1cosv—¢ |
VAL A uh’ (u) e wh () dv, + /2 uh’(u) av
2| cosv — e | 3’”2 cos v
< [rlESETe ]
2 A Y dv+2 dv »

If 7/2<h(A), then, using the integer j determined by 7/2 + jr < h(4) < n/2
+ (j + 1), we have

KN) ~os v h(N) e—’)
v ay wh () d”|+ » uh’(u) dv
T2HGHDT (og
B n/2+in v z/2+in U dv

3n/2 o =V
COoS v e
dv‘ +2 [
/2 v 2 U

Hence | J(M, N) | is bounded by an absolute constant. In the case where h(x) < 0
on (4,, B)), we have W'(w) < 0 on (4, B), 0> h(M) > h(N), and — uh’'(u) is
a decreasing function of v. Hence, also in this case, the same discussion applies to
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the majorization of | I(4,, N) | and | J(4,, N)|. Thus | I(M, N) | and | J(M, N) |
are bounded by absolute constants in Case 2. As the integrals in general case are
sums of the integrals of Cases 1 and 2, the proof is complete. ]

LEMMA 2.2. Let f(s) be a polynomial with complex coefficients with deg f < n.
Leta > 0 and 0 < a < b. Then

(211) ‘/0' (e—aua|f(108 )| _ e—bua|f(108 u}l) _d7;i < % <K3 IOg% + K4)

with constants K, and K, which depend only on n.

Proof. Substituting = v, we see that it suffices to give the proof for a =
1/2. Further we may and do assume that the coefficient of s” in f(s) is 1. Let
F(s) = f(s) | Then, for real s, F(s) equals a polynomial of degree 2z with real
coefficients with coefficient 1 in the highest term. Factorize it as in the right-hand
side of (2.3) with p + 2¢q = 2n. Let v = h(u) = uF(log ). Choose 1 > 0 satis-
fying (2.9) with 2# in place of #. Consider

B
_ —aul/2F (log u)'/2 —bul/2F (log w)1/? du
I= | (e —e ) —.
A u

If A=¢""" and B= ¢""" then I < 27. Let A=A, and B = B,, where 4, and
B, are defined as in the proof of Lemma 2.1. Then, 2(x) > 0 and uh’(u) > h(u)/2
on (A, B). Hence

wE) L~V bl w —avt? i
e e e e b
B Y (R
I " @ dv <2 A » dv = 4log 2
Summing up these estimates, we get (2.11). O
Lemma 2.3. Letc, ay,..., a,, b,,..., b, be complex numbers and let
n - n
f(s) =ckI_11 (s —a,), f(s)=ckI_I1 (s —b).

Then
(2 12) fw l e—“a|f(108 w | . e—ua|f(108 )| Iﬁ

. A ”

2K, » 2
<55 S log(1 + | a, — b,]) + 2 K, + 4n,
a 5 o
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where K, and K, are the constants in Lemma 2.2.
Proof. Let h(s) = cIl;_,(s — a,) and consider the integral in (2.12) with
(s — b)h(s) in place of £(s). Let
E,={u>0:|logu—a,| <|logu—1b,},
and let E, be the complement of E, in (0, ©). Then

(e—uallog u—ay||hlog w| __ e—u"llog u—b, || h(log u)l) du
E, u

< fw e—u“llog u—ay| | h(log u)l(l _ e—u“lal—blllh(log u)l) du
0 u

Rea;—-1 Rea;+1

Partition the integral over (0, ) into that over F = [e , e ] and that
over (0, ©)\ F. The former is clearly less than 2. The latter is majorized by

* . —u%hGog w)] —u®(1+ lay-b, ) [htlog w1\ AU
(e — € ) 7,
0

which is not greater than a 'K, log(1 + | a, — b, ) + @ 'K, by Lemma 2.2. Simi-
larly the integral over FE, is estimated. Repeating this procedure #z times, we
obtain (2.12). |

LEmma 24. Fork=1,...,d let x, and 2z, be real numbers with |zk| <1.
Suppose that z;, F 0. Let g(s) be the function g(s ; x) of (1.4). Let

a k-1
(2.13) f(s) = E 2,877 (s,
(2.14) 6o = 518" |,
k=1

where g*7V(s) is the (k — 1)-th derivative of g(s). Then, for any a > 0,

) —u®ifdog u —u%|g(log u 1
(215) [ eV — ‘g('g)‘I%SE<KslogT—[:l +KS>+K7,

0

| —u®ifdog w| _ —u%Gog w) d_u<l< 1 )
(2.16) fo | e e | < Kslogm1 + K,) + K,

where Ky, . . ., Ky are constants that depend only on d.
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Proof. We may and do assume that x; # 0. Define £(s) and h(s) by f(s) =
1
2 () = g(s) + h(s). Let
1

_ ® —u®|f (log u)| —u®|f(log )| du
= (e —e ) —,
0 u

o0 ~
—u®|f(log w)| —u®|glog w)| du
I,= j; | e —e Eis

Then the integral in (2.15) is bounded by I, + I,. By Lemma 2.2,

L < —i— (K3log1711T + K,).

In order to estimate [, by using Lemma 2.3, factorize g(s) as

x,
(2.17) g(s) = @-Dn1 8 II (s —a),
where a,,..., a,_; are in the complex plane C and depend on x,,..., Z;. Denote A
= maX,< <4 | 2,/2 |. We claim that
(2.18) fs) = 1), II (s — by,

with some b,,..., b,_; € C satisfying
(2.19) la, — b, | <K, A+ 1) fork=1,...,d—1,

where K, is a constant depending only on d. Let

d—1
D=U{seC:|s—al<n, n=d—-DDd—-1A+1.

k=1

Then, for s on the boundary 0D of D,

h(s) 2, 1
&(s) zlkzs—ak T2 21k§k (s_ak)(s_ak)
1
+ - +(d—'1) 21 (S )'“(s—ad—l)

SA<(d—1)%+(d;1)%+(d;1)3_!+...+M>

3 d—1
' 7 7
< (d— 1).);d— 1A

<1.

Let D, be a connected component of D. Suppose that the number of zeros (with
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multiplicity counted) of g(s) in D, is m. Then D, = U {s€ C:|s— akll
< 1} with some k,, ..., k,, and @D, C D. Hence, by Rouché’s theorem, £(s) has
exactly m zeros in D,. Denote them by bk yoows by, Then, forj=1,..., m,

la, — b, | <@Cm—1Dn<@2d—3)n<K,A+1D

with some K, Making this procedure to all connected components, we get (2.18)
and (2.19). Since Izk| <1 for all k, we have A +1 < 2/| z, |. Now Lemma 2.3
yields

2K, 2Km>

<
I < 5

—1>1og(1 2K -1y +ad -,

Hence (2.15) is proved.
In order to get (2.16) from (2.15), it is enough to show that

® _ua d 1
(220) '/0‘ (e u¥|gog w)| ¢ u%G (log u)) 7” < EKU + Klz

with constants K;, and K|, depending only on d. Let I, be the integral in (2.20).
Using a, in (2.17), let E = ﬂk 1{s € C:|s—a,| = 1). By the same estimate as
above, we get

, (d-1)
|g(s)|+|g(s;L||g @l _ d—DId—1 fors€ E.

Therefore, letting E” = {u > 0:logu € E}, we have

d-1 exp(Rea,+1) d% @ d
~u®|g(log u)| —u®Glog u)\ AU
<X + [ — e
,

k=1 Yexp(Rea,—1) U

<2d—1) + f (e—ua|g<1os Wl _ Kyl oy %
0

<2d—1 + % (K,log K,; + K,)

with K; =1+ (d —1)!(d — 1). Here we used Lemma 2.2. Hence we have
(2.20), completing the proof. 0

Now we can show that (1.5) is a recurrence criterion.
Proof of Theorem A. Let X be the OU type process associated with {Z,} and

Q of Theorem A. For ¢ > 0 denote by p° the restriction of the Lévy measure p of
{Z) to the set {x :|x| = ¢}, and let {Z;} be the compound Poisson process hav-
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ing 0° as its Lévy measure. Let X° be the OU type process associated with
{Z/} and Q. Let p,(x, E) and p;(x, E) be the transition probabilities of X and
X°, respectively. Let §,(x, 2) and p;(z, 2) be their characteristic functions. Shiga
[5] shows that transience of X is equivalent to that, for any x and any compact set

E

(2.21) pr,(x, E)dt < oo,

It is equivalent also to that there is a point x such that, for any compact set FE,
(2.21) holds.
First let us notice that, for any ¢ > ¢ > 0,

L du f —u®|g(log u;x) |
— 1—e ’ dx
‘/z: U Je<izi<e ( )p( )

is bounded in v € (0,1). In fact, it is increasing as v | 0 and, for any ¢ € (0, ),
there is a constant K such that

' du ~u%| g(log u;x)| L du —Kus| g
== _ ; < au _
j(: u ‘[S|1‘|<t’ (1 ¢ )p(dx) - ./(: u ££!z!<c’ a ¢ )p(dx)

1 K’ —u Au
= — ££|11<C'p(dx)£ (1—e )7.

Therefore, if

(2.22) jod%ziexp ul%j';!zc (¢ Istm Dl 1)p(dx)] < o

for some ¢ > 0, then it is true for any ¢” > 0 in place of c.

Suppose that X is transient. Let us prove (2.22). Transience of X implies
transience of X for every ¢ >0 (5] p. 439 and [1] Lemma 2.1). Let h(x) =

II_, (01— |z;]) V). Let a2 :fei<z’x>h(x)dx, the Fourier transform of h.

Then

-~ d ; -~
i@ = 1427 sin"@72), W@ = ™ [ “ i@z,
j=1
Hence

> [at [ 50, wn@ = o™ [ at [ i@50, Hdz
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- —a [ ;

= (27) fo dt [ H@Refi 0, 2)dz.
It follows from (1.1) that
(2.23) $:,(0, 2) = exp U; drf (" - 1)pc(dx)]

(see [3]). Hence

Rep; (0, z) = (cos F(t, 2)) (exp G(¢, 2)),
where
F(t, z) = ft drf sinz, ¢z o’ (dx),
0
— ! -7Q _ c
G(t, 2) —j; drf(cos(z, e "z — 1)p (dx).

Let g(s; x) be the function of (1.4) and let g(k)(s ; x) be its k-th derivative in s.
Since Q is a Jordan cell matrix with eigenvalue @, we have 2%z = (y,), ., <, with

y,=u’glogu;x), y, = ug'(logu;2), -, y, = u'g“ " (logu; ).
Thus
1 K
|F(t, 2) | = ‘f_ld—;f sinz, %2> p°(dx) | < —alpc(Rd)
e

by Lemma 2.1. Choose ¢ so large that a 'K,0°(R®) < /4. Then cos F(t, z) >
1/v2 and, therefore,

fﬁ(z)dzjom exp G(¢, 2)dt < oo,

Let U(z) = f exp G(t, 2)dt. Then U(2) is finite for some (in fact almost every)
0

2= (2)), ;<4 satisfying | z;| <1 and 2, # 0. By ¢ = wand ¢”' = v we get
L dv Ydu
U(z) = f — exp [f —f (cos<z, x> — 1)pc(dx)].
v L u
By virtue of Lemmas 2.1 and 2.4,

Uz) = fo‘l%exp [f Pc(dx){j;l (cos<z, ux) — ¢~ = iuti
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1 1
—1<z,u9%> | —u®igog wip |\ AU —u%|g(log u;x) | du
+f (e —e )—u—l— (e™ R —1) —
v v

u
= C, j:%liexp [f p‘(dx) jv'l (e_ua'lg(log w0 ) @_]’

u

where
¢ K K 1 K
C, = exp [— 0 R% (‘&2‘ + ‘&ilogm + '076 + K7>].

Hence we get (2.22).

Conversely, suppose that (2.22) holds. We will prove transience of X. Use
h(x) = H;i:l((a — | x; DV 0) with @ > 0. Its Fourier transform is % [2) =
II;_, 4z, " sin’(2"az,). Hence, in order to show transience, it suffices to prove

fom dt [ 9,00, dDh,@) <

for all small @ > 0. But

[ 5,0, dh,@ = [ 5,0, Dh,(dz < ad[i 150,29 dz

The function f,(0, 2) has an explicit expression like (2.23). It follows from the ex-
pression that | 5,0, 2) | <|$;(0, 2) | for any ¢ > 0. Hence transience of X fol-
lows if we show that

fodtflzl<l|ﬁf<o,z>|dz<oo

for some ¢ > 0. Use G(t, 2) and U(2) above. Then |p;(0, 2) | = exp G(¢, x).

Our task is to show that f U(z)dz < . Rewriting U(2) as above and using
|
Lemmas 2.1 and 2.4 again, \lfreqobtain

o e (B Ky 1K,
‘]l‘zl<1 U(z)dz < mﬂdzj‘: L €XP [p (R)<oz + alog]—le + +K7>

+ f 0°(dx) f (et _ @}

u
1 1
— —a K¢ (RY) dv [ ¢ —u®|glog w;p)| __ du]
Czjl;KlIle dz_[; =, €xp fp(dx)./; (e D

with some constant C,. Now choose ¢ so large that a 'K°(R’) <1 and use
(2.22). Then the last expression is finite. The proof is complete. ]
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Remark. Let d = 2. The recurrence condition (1.5) reads as

(2.24) fol%ﬂexp [fvl%uj‘;m (¢ It s ul _ l)p(dx)] = oo,

Let us compare it with the condition

225 [ DLexp[[ B[ (et ()] = o

Clearly (2.25) implies (2.24). However, (2.24) does not imply (2.25). Indeed, we
will prove in Section 4 the existence of a measure p such that (2.24) is fulfilled
but

(2.26) jod%exp U:%LQC (e — 1)p(dx)] < oo

u|z —u (x| +1x,])

this o satisfies, a fortiori, the condtion (2.26) with e | replaced by e ,

and so, does not satisfy (2.25).

3. A unified form of recurrence criteria

We prove Theorem B given in Section 1.

Proof of Theorem B. Our assumptions are that the eigenvalues of @ are posi-
tive reals and that, with some invertible matrix R, one of the following two cases
takes place:

Case 1. RQR™"is diagonal.

Case 2. RQR™"is a Jordan cell matrix.

Our assertion is that (1.6) is a recurrence criterion of X.

Consider Case 1. Let ay,. .., a, be the distinct eigenvalues of @, and let V; be
the eigenspace of @;. Let I =T, + -+ + T, be the decomposition of the identity
matrix [ associated with the direct sum decomposition R = V;® - -+ @ V,. Thus
QT,x = a,T;x. Hence

n n
k R
Qx=2aTx and u'z= 2 u"Tux.
=1 1=1

Define a norm |z by [ z[ = ;l=1l zjl. Then

Q < L a; — Q
qul_zlu | Tz | = || u’z]|.
=
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Sato, Watanabe, and Yamazato [1] prove that X is recurrent if and only if

(3.1) f:—iﬁexp [»[%LQC (e — 1),o(dx)] = oo,

There is a constant K > 0 such that | x| = K| x| for every x. Define the condi-
tion (3.1) by replacing | #®z | in (3.1) by K| «°z[. Obviously, (3.1) implies (1.6)
and (1.6) implies (3.1). Lemma 4.1 of [1] says that (3.1) and (3.1)" are equivalent.
This settles Case 1.

Next consider Case 2. Let G(s;x) = ZZ=1 | g(k_l) (s;x)|. First we remark
that Theorem A remains valid if we replace | gllog#; 2) | in (1.5) by G(logu; 2).
To see this, we have only to repeat the proof of Theorem A using (2.16) in the
place where we used (2.15). Let RQR™ = S. Since (aR) Q(aR) ™ = S for every a
> 0, we may assume that either | R | or | R™! | equals a preassigned positive num-
ber (here the norm |T| of a matrix T is the norm as a linear operator). Since
#® = Ru®R™", it follows from (1.1) that

t
RX, = ¢ "Rz + f e "A(RZ).
0

Hence the process RX defined by {RX,} is the OU type process associated with
{RZ} and S. The Lévy process {RZ} has Lévy measure oR™' defined by
(0R™)(E) = p{x : Rx € E}. The process X is recurrent if and only if RX is re-
current. So, the condition for recurrence is

(3.2) joll%exp U:%ijl;lzc (e 684D _ 1) (oR™Y) (dx)] = oo,

Denote ||| z|l| = =i, | x| for £ = (x),,<s Then u*GUogu;z) = ||| u’x|||. 1f
we assume that | R™'| = 1, then
f (e—HWSIHl _ 1)(pR—l) (dx) g (e—|us.l‘| _ 1) (pR-l) (dx)
lzl =¢ |zl =¢
= "™ — Doldn) < (™™ — 1)p(da).
Rzl =c¢ lzl=¢

Hence (3.2) implies (1.6). If we assume that | R| = 1/vd, then

[ . @ — 1) R™Y (dx) > @~ 1) (R ™ (dx)

x| =>c

= (¢ VIRl _ 1)o(dx) > ("™ — 1) p(dr).

IRzl =c lxl>vdc
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Let a be the eigenvalue of @. For any ¢ € (0, &) there is a constant K such that
|u’z] < Ku"*|z| for 0<u<1 and z€R"

Therefore the condition (1.6) does not depend on the choice of ¢ ; this is shown by
an argument similar to that given in the proof of Theorem A. It follows that (1.6)
implies (3.2). The proof is complete. O

4. Comparison of the cases with diagonalizable and nondiagonalizable matrices
in linear drift terms. Proof of Theorem C

Let d = 2 and let @, and @, be defined by (1.7). We compare OU type pro-
cesses associated with @, and @, combined with a common Lévy preocess. First

we prove (i) of Theorem C. Then, after two important lemmas, we establish (ii) of
Theorem C.

Proof of (i) of Theorem C. We can choose a sequence @, = e < a, < a, < '+
such that if we write b, = log a,, then the following are satisfied:

Aop-1 1ban-1 -n
(4.1) (T) by, < e form=1,
2n
b2n—1 Vban- -n
(4.2 (%) < por 2 1,
2n
nora,. O\ m-1 p b
(4.3) {H (Ju) }[ 5 = }bz,, log z"“ =1lforn>1,
j=1 \ Gaj =1 g1 2n
where, for n =1, H;:ll is understood to be 1. Indeed, if a,, a,, . . ., @,,_, are

found, we can find a,, satisfying (4.1) and (4.2) and determine a,,,, by (4.3).
Clearly a, tends to infinity. Define 2(#) as follows:

(4.4) h(r) =1/b,y,_, for a,,_, < 7 < a,,
(4.5) h(r) = 1/log 7 for a,, < 7 < ayy4;-

Then A(#) decreases to O as ¥ — co. We claim that it satisfies (1.8) and (1.9). Let
¢, =1/a, It ¢c,, < v < ¢y, then

1/vh n—lb.—b._ n—1 b 1 1/
(4.6) f '-(’,er= e B S U zllog 2+l | og(1/v) 1
e iz

=1 b2j -1 b2j bZn— 1

If ¢yp01 < ¥ < ¢y, then
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ve h(") by — by baina log(1/v)
(4.7) j; ———dr= ]Zl B, + Z log b, + log 5,
o n(r) 1 b,;
(4.8) j; 7log rdr = El By log B
nl/] 1 1 1
* :—% <b_2; B bz;'+1> * by, ~ Tlog/v)"

Let w = 2. It follows from (4.1) and (4.6) that

j:”_l%exp [_ j;m h(r) (1 n 102 r) dr} < L:zn-l%gexp [_ lw h(:) dr]
= {0 (%) ™)1 Fb‘} b () = () )

Ayp_g) /P
<e (T byy_y < e
-2

It follows from (4.7) that
Con dv [ fl/v h(r) ]
—exp |— d
Con+1 v €

since the left-hand side of the above equals that of (4.3). Hence, using (4.2) and

(4.8), we get
[0 1 Y <[ AL
{8 G) H(Wew Gy = ) = () e
Therefore h(#) satisfies (1.8) and (1.9). ]

Lemma 4.1 Suppose that o is a finite measure on {x € R*: | z,| > €}. Let @ >
0. Define H(r), F,(v), and F,(v) by

(4.9) H(r) =%j; N o(dx),
(4.10) F,(v) = f i—”_[l‘ La- e p(da),
(4.11) F1(U) = fe g;j; R a- e—u“lrl+rz log ul)p(d.l‘).
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Assume that o is concentrated on the set E, in Theorem C. Then, as v | 0,

(4.12) Fw=[ T4+ o,
v~%|log v|™!
(4.13) RO = [ HY) (1 +F;7) dr+ 0Q).

Proof. Denote ¢ = x,,/x,, where x, and x,, are given in Theorem C. Since

E,= [x= <;;c> s (sgnxy)r > 0}, we have

e d L u(1+ctle
(4.14) F,(v) = af —}f (e — 1)dH®»),
(4.15) W =a [ % [7@rems i),
Since

e —ru¥(1+cH1?  —yu® d_u’ i 2
_/; (e e )u Szalog(l-l-c),

we have

F,() = a f ‘ -‘i—“ f T @™ = DaH® + 0(1)

- [ o [ @ =vane +om = [ " [ e Hmar+ ow

by integration by parts. Below we will use the inequality 1 — ¢ < w several
times. We get

Fw = [THL " 4k o)

= [ HD gy o) = [T HD

dr + 0Q1),

which proves (4.12).
In order to show (4.13), denote by F, (v) the function F,(v) with ¢ = 0. Then

Flo(l)) — fa %f (e-m\log ul/a 1)dH(7’)
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1 e_a « —ru ul/a
= EL Ilogulduf; Y (D dr + 0Q1) = G, + G,(v) + 0QV),

G,(v) = %{—f H(r)drfa ¢ (log u | — 1) du,

60 =~ [ Har [ e gy,

We have

% o v™%log v|™!
G,(v) = f if,’ie_"’ "¢l gy + const = f Hir) dr + 0Q1).

We claim that

v™%|log v|7L H®»
(4.16) 6w = [ rl(fgrdf‘l— o).
L e dw
Make substitution # | log #| = w for 0 < u < ¢”°. Note that - = [logu| —12=
¢e—1. Leta=¢e"°Aae’. Then
. l ¢ dw “ —rw/a
G,(v) = o Lﬂa‘m ) W—[ H(»e dr + const

1 re dw
& Joy®10g vl Ing

[ THG e dr + 01).

Here we employed that

log|logu| —1

1 1
‘ logul —1 llogwll— (logul— 1) [logw]’

log|logu| —1<log|logwl|, |logu|—1=>=]logwl/2,

a oo a
[ lesllosl llogwl ,, [ HOe™dr < ane) [T1081B01 llogwl ) < oo,
0 e 0

(log w)® w(log w)’
Next, using integration by parts, we get
o I —7rv%|log vl
G = [[HD e dr
e 7 Jlog(av”|logv]) |
o H 7’) a e—rw/a
+[ ¢ ar |  ——du+ o).

»liog ol gy (log w)

The first term of the right-hand side is bounded, as is seen by splitting the inte-
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gral at v™%|log v|™". Since

a dw a/w H(?’) —rwla 1 a a/w
1—e Ydr £ — H@»dr,
>fc:u"‘llol; ol w(log w)2 '[e' r a '/; (lOg W) f
a dw ~ H(») —rw/a ehs
dr < H(e) E— ——ds,
Lu“llog ol w(log w)® j;/w r j; w(log w)* f S

we get

a a/w
6w = [ dw H(’) dr + 0(1)
av®|log vl w(]og w)z e

v~ % log v|~!
_ L Zf HD | o).
a/a w(log(w/a))

By integration by parts again,

_ ~%|log v| 7 Hw)
G,(v) = j;/a de + 0(1),

which gives (4.16) since

1 l const
loglw/a)  logw| ™ (g 4)*

Therefore (4.13) is obtained for F, (). Now consider the case ¢ # 0. Let b = ¢°.
Then, from (4.15),

b/ed ® —7u/b)%|log u
R =af S5 @~ DaHG).

Since

bre —7(u/b)%|log u —ru®|log u du 1
jb'v (¢ sl _ “"')7‘£E(K3a|c|+K4)
by Lemma 2.2, we get
_ b/e@_ . —ru|log ul __
F) =a f,, u f (e DdHG) + 0(1)
1/e du o s “
=a£-7£<e'“qumﬁ+mn=ﬁm+om,

v d
using o ¢. Hence (4.13). O
by u
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Lemma 4.2. Let H®), Fy(v), F,(v) be defined by (4.9)-(4.11). Assume that 0
is concentrated on the set E; in Theovem C. Then, as v | 0,

v~%|log v|~1
(4.17) o= [ Hi’) (1 + 102 ) ar+ 0,
(4.18) o= [ 22 41 0w

(4
_ Zn -1
Proof. Denote ¢ = I« log | x,,|. Then
02

E, = [:c= <”+ a—;rlogl r|> 1 (sgn ) r > 0}.

Hence

F(,(v) — af %f (e—u"r(1+(c+a" log A2 l)dH(f’),

Fl(v) — af d_:f (e—u"rlcﬂog(ur‘/“)l . 1)dH(T)

Let us show (4.17). We have

o1
—u®r(1+(c+a™! log 7)?)1/2 —a %y log du
(e —e ) —-
v

u

A+ (c+alognH?

-1
a logr

S%llog <K

for » > e with a constant K independent of v and #. Therefore

e du e g 7
o f o f (e — DdH® + 0(1)

-1

= f ua_lduf H» 1 + log e ™ T gy + 0Q1)

- jj Hi”) (1 + lo; r> e gy + 0D).

F,(v)

Let s =a 'vrlogrand s, = a ' |logv|  loglv ™| logv|™). We have s 'ds =
1+ (og» ™7 'dr, and

7 log 7 s
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1
log 7

fv“’nog vt H(?’)

_ —a W% lg
S ) 1—e )dr

(1+
= [" Ha - %= o,
since s, 1 as v | 0. Hence we get (4.17).

In order to prove (4.18) in case ¢ =0, denote by Flo(v) the function
F,(v) with ¢ = 0. Write

F @) = G,(v) + G,(v) + const,

. . ~1/
where we define, with @ = ¢ 7,

GO(U) — af d_:f (euar log (urt/®) _ l)dH(r),
Gl(v) — Q'f iuu_f_a (e—u"r logur'/®) DdH®.
We have

G,(v) = af u* " du f H(r)<~ log(ur'®) — %) ¢ N g 1 0(1)

_ f Hf’r) (ev“r log (wr!/®) Ddr + 0(1),

and hence

! s% log s ds
| G,(») | < aH(e) fm 1= & S+ o)

1
< aH(e) f s logslds + 01) = 0Q1).
0
On the other hand,

G, = a j; " j; : H(») (log (ur'™) + é) e W“’W)(ér

v_aH —(ae)™1r log(e 7,
_ (n (1—"8( )77 log(e ))di’

o v
“ H(?’) ~1% log(vrl/®) —(ae) Y7 log(e™7)
+ _/1:_ L (e —e )dr
_ v H() = H®») —v%7 log(vrV/®)
= [ Frar+ [ e dr+ 0Q1).
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The second term of the last line is bounded, as is seen from substitution o —

s. Hence we obtain (4.18) for Flo(v). To handle F,(v) in case ¢ # 0, let b = &,

Then
3 OO diy ™ alyuyiiog url
ORI NG — DaH®)
_ @)% dy e —~a~tur|log ur'
- ena U ./; (e VdH() + 0,
since

(b/e)% d + K
e ot u
‘ f (e a 16" %r|log ur| __ e urllog “r() < K3a| CI 4

[k “

by Lemma 2.2. Hence
e du ® —a lur ur
Fw = [ 5[ @ - DaHm + o) = R + o),
completing the proof. ]

Proof of (ii) of Theorem C. We assume that the restriction [0l(;5¢ of the
Lévy measure o is concentrated on E; or E,. It follows from the criteria in
Theorems A and B that, for any bounded set E, the measure [p]E is irrelevant to
recurrence and transience. Hence we may and do assume that p itself is concen-
trated on E, or E; and that [o]y, <, = 0. Denote

(4.19) I,= af’;ﬂexp uad—:flxm(e”““‘“ — 1)p(dx)],

0

(4.20) I = jo.a%exp [fa%L |>e(e'“‘""l”z gl l)p(dx)],

where a is an arbitrarily fixed positive real. The recurrence conditions of X, and
X, are, respectively, [, = o and I, = . Define H(#) by (4.9) and denote

s= [ %g exp [ f H() o),

o ¥
o [ S - [ 1+ ) o).

To prove the first assertion in (ii), assume that p is concentrated on E,. Then
we claim that
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(4.21) I, = o if and only if J, = o,

(4.22) I, = oo if and only if J, = oo,
It follows from (4.12) of Lemma 4.1 that I, = o is equivalent to
¢ dv v H(r
- [T H,
e

——ex
p 4

] =
o U

Hence (4.21) follows. Likewise, using (4.13) of Lemma 4.1, we see that I, = o is
equivalent to

(4.23) oaf‘iﬁexp [— -[;v-a“mlﬂ H;’) <1 + lo; r) dr] = oo,

Choose a so small that v”|log v| is strictly increasing on (0, al. Let v“|log v |
= w. Since (a|logv| — 1) |logv| v 'dv = w 'dw, (4.23) is equivalent to J, =
oo This shows (4.22). Now, if (1.8) and (1.9) are satisfied with H(#) in place of
h(7), then X, is recurrent and X, is transient.

To prove the second assertion in (ii), we assume that o is concentrated on E;.
Then, using Lemma 4.2 instead of Lemma 4.1, the same argument shows that

(4.24) I, = oo if and only if J, = oo,
(4.25) I, = o if and only if J, = o,

If we have (1.8) and (1.9) with H(#) in place of h(#), then (4.24) and (4.25) show
that X, is transient and X, is recurrent. The proof is complete. l

5. Comparison of the cases with diagonalizable and nondiagonalizable matrices
in linear drift terms. Proof of Theorem D

We continue to assume that d = 2, @, and @, are given by (1.7), and X, and
X, are the OU type processes associated with @, and @,, respectively, combined
with a common Lévy process {Z,}. We will prove Theorem D, using Lemma 5.2.
The proof of Lemma 5.2 needs Lemma 5.1. Delicate estimate of integrals is re-
quired.

In the following two lemmas let M be a positive real and H(7) be a function
which is defined on [e, %), nonnegative, right-continuous, and decreasing, and
which satisfies

* H(»)
., rlogr

(5.1) H(e) + ar<M,
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that is,
(5.2) - f (1 + log log NdH(») < M.

It follows that

1 7 H(s)

loglog 7 slogs ds =

(5.3) H» < for 7 > e.

loglog 7

Let us denote by K, K,,... constants that depend only on M.
LEMMA 5.1, Let0<e<1/2.If0<v<e  and|1l+celogv| > ¢, then

(5.4)

f v 1+¢ log v| ™! H(r) —dr| <K
-1 ’

Proof. Denote by J the integral in the left-hand side of (5.4). Cosider three
cases.
Casel: e < |1+ celogv| <1/2.
Case 2: 1/2< |1+ celogv| < 1.
Case 3: |1+ elogv| > 1.
In Case 1, note that (1/2) |logv|™ < e < (3/2) |logv|™ and obtain

(ev)™
U|<H(v—1)f dr M|loge| <Mlonglogvl <K,

logllogvl log [log v |

using (5.3). In Case 2 we get
-1

2v
Nl<B© [ ¥ <mMog2=kK,

In Case 3, notethatll+slogv|=e|logv|—l <|logv|, and

H(r) - ) Mlog|logv]|
|]|<f_1“mll dr < Hw™ [logo| ™ logllogv| < 101 8 80 - < K,

These together prove (5.4). l
LemMa 5.2. Let ¢ > 0 and 0 < ¢ < 1/2. Define, forv € (0, ¢),

(5.5) FQ) = fe_ d_:f‘” (e—crull+e log ul __ 1)dH®).
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Then, for all v and &,

P H»)
r

(5.6) ‘F(v) — d?" <K, + K;|logc|.

Proof. Since F(v) is continuous in &, we may and do assume that 0 < e < 1/2.
Denote F(v) with ¢ = 1 by F'(»). First notice that

IF(U) _ Fl(v) | — if d_;"f (e—cru|1+s log u| e-—rul1+e log ul)dH(?’) '

¢! d
—crull+e log ul ~rull+e log uly AU
(e —e )~
o u

< - fm dH(r)
< H(e)(C,|loge|+ C)

with absolute constants C, and C, by Lemma 2.2. Thus it is enough to consider
only F'. Notice also that we may assume that v € (0, ¢”?), because (5.6) is evi-
dent if v € [e7% ¢7)). Let a(e) = ¢~"*. We split the proof into three cases.
Casel: ¢ ' > v = ale)e.
Case 2: a(e)e > v = ale)e™.
Case 3: ale)e™ > v > 0.

Case 1. We have 1 + elog v = ¢. Use integration by parts. We get Fl'lv) =
G, + G, — G, with

~1

Gl — f; (1 _ e—eu(1+s log u))H(e) L:,

-1

G,= j; 1+clogu+ e)duj; e MR H () d,

Gg =¢ f duf e——ru(1+e log u)H(T)dT.
First,
(5.7) 0<G, < f 1+ clogw)eH(e)du < K,.

Secondly, by Lemma 5.1,

" H(»)
r

(5.8) | G, — dr’ <K,

since
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o -1 -1
Gz — f H:?’) (e—rv(1+e log v) __ e—(l—s)r/e)dr — f” (I+e log ») Hfj’)

dr + R,
l R | s foo -I—{.(vr)— e-—(l—e)r/edr + © H(r) e_yv(H_e log v)dr
¢ 4 vla+elog 7! ¥
v (1+¢ log v)7!
+ f Hif) (1 _ e—m(1+slogv>)drS Kg.

Thirdly, let us handle G Let y = u/a(e). Write ea(e) = A for brevity. Since G,
is greatest when v = a(¢)e,

1/(a(e)e) o
0< G, < Af dyf e Hdr.

d 1
Let w = ylog y and note that d_;; =logy+1= glog w. Then

G,<24 [ [ ™ B®ar= U, + U,

log w J,

where

_ “ dw Y _Awr © _Awr
U1—2Afe logwj,; T HWdr, U, = 2Af logw e HG dr

Now
U, =24 f “HWdr f ) 12_:;; dw
w _ Awr - —Awr
=2A‘£ H(r)dr{[z;l%g—w], —j; mdw}
<2 em fl{(f;)r e dr < oM,
U, <2Af Hw) dwj: e gy —zf wlﬁfg")w e dw < 2M.

Hence 0 < G, < 4M. Combined with (5.7) and (5.8), this shows (5.6) in Case 1.
Case 2. Since ale)e > v = ale)/e, we have

0<F'o) — Fa@a <H@ [ <oy, (0 HY

aeyre U awe ¥

dr < 2M.

Therefore (5.6) in this case follows from (5.6) for v = a(e)e.
Case 3. In this case we have 1 + elogv < — ¢ and
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a(e)/e oo
F‘(v) — F‘(a(e)/e) + f d_“f (e—’ruﬂx-\-s fos uf l)dH(i’)

= Faw/o+ [ e - e

+ull+elogul f e_’“'”“"gulH(r)dr].
e

Hence

F'(v) = F'(ae)/e) + G, + G, + G,

a(e)/e _ du
— __ —eulltelog ul\ GU
Go=H@ [ (- e
a(e)/e co
G, = f (—elogu—1-— e)duf PG - (V3
v e

aterve ® rull+e log ul
G, = sf duf e H(dr.
v e

It follows from Case 2 that

e/a(e) H

(5.9) ‘ F'(ae)/e) — f —E,L) dr| < K,,.
Obviously

a(e)/e
(5.10) OSGISH(e)f ell+elogul|du< K.
Concerning G, and G, let us show that

vt H
(5.11) ‘Gz— ) dr( <K,

e/a(e)
(5.12) 0<G;<K,,.
We have

” =rv e log v wH —ra(ele/e
stf Hi")erlulgldr_f f’f’)e @cre g,

v 11+ log v|™! e/(@(e)e)
‘”f 8 H(r) f H(r) r+ R,

_ fu 1 H(?’) je<e/a(e) H®») gy + R
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with | R, | and | R, | bounded by some K,,. Here we applied Lemma 5.1 twice: to v
directly and to a(e)e”’, noting that a(e)ee ' = ale)e ' |1 + eloglae)e™) |.
Thus (5.11) was proved. Write A = a(e)e. Let y = u/a(e). Then
¢! o
0<G,<A f dy f T Hpar = U, + U,
0 e
et )
(]1 — Af dyf e—AﬂlIlog ylH(i’)d?’,
e? e
e? o0
U,= Af dyf N (D) dy
0 e

Now
U<H(e)fe—l d__ g
1= 2 yllogyl = 7w
dw
Let y|logy| = wfor0<y<e Thend =|logy| —1=|logw]|/2. Hence

27 dw ” —Awr
U2§2Aj; W-[ e H(i’)d?’SVl'}‘Vz,

where

V,= ZAJ‘; - mf e Hdr,
V, =24 fo m f TH D dr

Notice that

< dw w™ _ ' Hw™) ©  du
V<24 [ rroar) Hoar=24[ o du L Tioga
' Hw™) _ < H(7)
<24 [ Lrerayde=24 [
< Hw™) “ awr, _oo-a [ Hw)
VZSZAJ(: Tog de_le dr = 2e j{: wllogw] dw < 2¢7*M.

Then (5.12) follows. Now (5.9)-(5.12) together imply (5.6) in Case 3. ]

rdrSZAM,

Proof of Theorem D. We assume (1.11) for the Lévy measure p of {Z}. Define
I, and I, by (4.19) and (4.20) replacing the domain of integration {| le > e}
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with {| | > e} and letting @ = ¢™". Then, by Theorems A and B, [, = % and I,
= o0 are recurrence conditions of X, and X, respectively. Define M by

M=a" (1 + loglog|xDpdx).

lzl>e

Make polar decomposition of [0](;5, in such a way that

p(E) = —a a(do) f 1.(rcos 6, rsin 6)dH,(»)
(0,2m) e

for every Borel set E in {x lxl > ¢}, where ¢ is a probability measure on

[0, 2m), H,(») is a nonnegative function right-continuous and decreasing in 7 €

[e, =) and Borel measurable in 8 € [0, 27), and

H,,(r)
rlog r

(5.13) H,(e) +f =M,

that is,

— [ +1oglog naH,» = M

Define
H(r) = H,(r)a(db).
[0,2m)
Then
(5.14) ao + [ HD 4=
Since

I, = Oe_lg‘exp [ fe " du f a1—-e" ')dH(r)]

and since the proof of Lemma 4.1 shows that (4.12) holds for any F,(v) satisfying
(4.14), the recurrence condition I, = o for X is equivalent to

(5.15) jo‘e_m%exp [~ jew_a@dr] = o0,

Let
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G(@, 0) = af _C_lé{f (e-ru“)cos 6+sin 6 log ul __ l)dHe(r)

Then
v
(5.16) I, —j; ~, €XP [— f{;’zm G, v)a(dﬁ)].
We have
e du [, _oru®liog u
G(8, v) Safv 7fe @ _ 1) dH, ().
Hence )G(ﬁ, v)0(d6) also has a bound of the same form with dH(#) in place

(0,2
of dH,(7). Now use Lemma 2.2 as in the beginning of the proof of Lemma 5.2.
Then we get, as v | 0,

« du —ru®{log ul
< au _
S, c0 0@ <af [ DAH®) + 0(1).

Since (4.13) holds for any F,(v) satisfying (4.15), we get

H

@ 4+ o),

v~ %|log v|™!
66, Vod) < [ :

[0,27)

using (5.14). Notice that

f H@) dr < Hw *|logv| Hlog|logv| < Mlo%llogvl ——=0Q).
v iog ot ¥ loglog(v™*|logv|™)
Then
(5.17) G0, v)odh) < f Hy) dr + 0Q1).
0,2m) e

In order to have estimation from below, fix 0 such that 0 < § < #/2 and tan d
< @/2 and let

E=10,0)Ulr,n+d, E,=1[0,m) Ulx+9,2n.

Denote H' (Y = | H,(r)o(db) for j=1,2. 1f 6 € [x/2, 7) U [37/2, 27) and
Ey

# € (0, "), then

lcos(?—l—sin@logulZlcosﬁ—sinﬁl=x/§|cos<0+%f—)|21.

https://doi.org/10.1017/50027763000005523 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005523

PROCESS OF ORNSTEIN-UHLENBECK TYPE 77

fO€ s, n/2) Ulr+8,37/2) and u € (0, ¢ *"°), then
| cos 8 + sin flog u| = (sind) |logu| — 1 > 1.

Hence, if 6 € E,, then

e—Z/smé

6O v 2a d—:fm @™ = DdH,®).

Therefore

—2/sind

¢ @ ® —ru® 2
fEZ 68, v)o(d6) > afv - f C DdH ().

Using (4.12) again, we get

va Hz(r)
(5.18) fE G0, v)o(db) > f =+ 0q).
If @ € E|, then, letting a'tan 0 = ¢ and u* = y, we have 0 < ¢ <1/2 and

e @_ “ —yr(cos §)|1+¢ log y| __
co.0z [ L[ 1) dH,(#).

Now let us use Lemma 5.2 here. Then, for 6 € E,

G, 0= [ H”T(r)dr—K

with a constant K independent of & by virtue of (5.13). Hence

P 1
(5.19) [ 6, vt = O 4t 0q).
£, A 7
Combining (5.17)-(5.19), we see that
G(6, v)o(df) = Hi’) dr + 0(1)
[0,2m) e

as v | 0. Consequently it follows from (5.16) that I, = oo is also equivalent to
(5.15). The proof is complete. il
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