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1. Introduction and results

Let R be the <i-dimensional Euclidean space where each point is expressed

by a column vector. Let | x\ and (x, y) denote the norm and the inner product in

R . Let Q — (Qjk) be a real d x d-matrix of which all eigenvalues have positive

real parts. Let X be a process of Ornstein-Uhlenbeck type (OU type process) on

R associated with a Levy process {Zt: f > 0} and the matrix Q. Main purpose of

this paper is to give a recurrence-transience criterion for the process X when Q

is a Jordan cell matrix and to compare it with the case when Q is diagonalizable.

Here by a Levy process we mean a stochastically continuous process with station-

ary independent increments, starting at 0. By saying that Q is a Jordan cell matrix

(with eigenvalue a) we mean that

QJJ = a for 1 < j < d, Qjtj+ι = 1, for 1 < < d — 1, and Qjk = 0 otherwise.

This paper continues the work [1], where a recurrence-transience criterion is

established when Q is diagonalizable. In one dimension the criterion is given by

Shiga [5].

Precise definition of the process X by its infinitesimal generator is given in

[1] and [3]. It is a Markov process (Ω, OF, $Ft> P*, Xt) on R such that the process

{Xt: t > 0} under the probability measure P x is equivalent to the process {Xt}

defined by

(1.1) Xt = e x + I e dZr,
Jo
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where the stochastic integral with respect to the Levy process is defined by

stochastic convergence from integrals of simple functions. The process {X t} of

(1.1) is the unique solution of the equation

(1.2) Xt = x + Zt- f QXrdr.

This shows that — Q is the coefficient matrix in the linear drift terms in the in-

finitesimal generator. We do not impose any restriction on the Levy process

{Zt} on R in this paper. Let p and B be the Levy measure and the Gaussian

covariance matrix of {Zt}, respectively. That is, p is a measure on R satisfying

p({Q}) = 0 and J (| x \2 Λ l)p(dx) < °°, B is a symmetric nonnegative-definite

d x (i-matrix, and

(1.3) Eei<z'Zt> = exp [ - \ <z, Bz>\

f (ei<z'x> - 1 - i<z,

where b is a d-vector and l { |X |< 1 }Cr) is the indicator function of the unit disc.

Let {χt} be the dynamical system defined by

dxt

—TΓ = — Qxt with x0 = x,

that is xt — e x. As is seen from (1.1) and (1.2), the Markov process X is inter-

preted as the dynamical system with a time homogeneous random perturbation

added independently of the past history and the present position. If {Zt} is Brown-

ian, then X is the usual Ornstein-Uhlenbeck process and has a Gaussian limit dis-

tribution. In general, since xt tends to 0 as t—» oo (the origin is a sink), the pro-

cess X has a limit distribution unless the frequency of big jumps of the process

{Zt} is beyond a certain extent. A necessary and sufficient condition for X to

have a limit distribution is that

Γ \og\x\p(dx)

(see [2], [3], and papers cited in [1]). A necessary and sufficient condition for X to

be recurrent should be weaker than this.

From now on assume that d > 2. Let us denote

https://doi.org/10.1017/S0027763000005523 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005523


PROCESS OF ORNSTEIN-UHLENBECK TYPE 4 7

s2 sd~ι

(1.4) g(s x) = g(s xlf..., xd) = xλ + x2s + x3^γ + + xd ^ _ ι y .

Then a main result in this paper is as follows. Our definition of recurrence and

transience is given in [1].

THEOREM A. Suppose that Q is a Jordan cell matrix with eigenvalue a > 0. Fix

c > 0 arbitrarily. Then X is recurrent if and only if

ίΛ r x Γ 1 dυ Γ Γ 1 du Γ -u<*\g{\ogu;x)\ 1 Λ , , J
(1.5) I - r e x p I —- I (e - l)ρ(dx) = oo.

Note that the recurrence condition in the theorem above does not involve the

measure p on any compact set, nor B, nor b.

In Section 2 we will prove Theorem A. Our method of proof is

Fourier-analytic as in [1] and [4]. The idea includes a way how to handle nonsym-

metricity. In carrying through this method estimation of some integrals of

elementary functions is crucial. It is here that we have to overcome difficulty

caused by nondiagonalizability of Q. See Lemmas 2.1-2.4.

In Section 3 we will show the following theorem, which gives another form to

Theorem A and unifies it with the result of [1].

THEOREM B. Suppose that the eigenvalues of Q are real and that there is an in-

vertible matrix R such that RQR is either a diagonal matrix or a Jordan cell matrix.

Fix c > 0. Then, X is recurrent if and only if

χ\>c

, Q _ (log u)Q

where u — e

When Q is a general nondiagonalizable matrix, to find a recurrence-

transience criterion is still an open problem.

In Sections 4 and 5 we restrict our attention to the case d = 2. Let

With a Levy process {Zt} on R being fixed, we denote, for j = 0,1, the OU type

process on R associated with {Zt} and Q; by X ; . We tackle the problems whether

recurrence of Xo implies recurrence of X : and whether the converse implication is

true. It turns out that these problems are of delicate nature. The answers to both
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questions are negative. Thus the condition (1.6) on the Levy measure p with Q =

Qo is neither stronger nor weaker than the condition (1.6) with Q = Qv A prob-

abilistically deeper fact is contained in the following theorem. The words increase

and decrease are used in this paper in the wide sense allowing flatness. The res-

triction of p to a set E is denoted by [p]E.

THEOREM C. (i) There exists a right-continuous positive function h(r) on [e, °°),

decreasing to 0 as r—> °°, such that

Cι/e dυ Γ Γ1/v

(1.8) I l
dυΓ1/e d

(ii) Assume that the function h(r) defined from the Levy measure p by

(1.10) h(r) = ^ Γ p(dx) forr>e
a J\x2\>r

satisfies (1.8) and (1.9). Fix x0 = ί 0 1 ) u ί̂Λ xO2 ^ 0 and /gί

Ej = {χ= uQix0: u > 0} /or; = 0,1.

//, /or 5owe c > 0, [p] { |< r |> c } is concentrated on Eo, then Xo is recurrent and Xx is

transient. If for some c > 0, [ p ] { | x | > c } is concentrated on Ev then Xo is transient and

XL is recurrent

Note that the set Ej is identical with the trajectory of the dynamical system

It is remarkable that concentration of the Levy measure on Ej is relevant to re-

currence of the process X ; , although any jump from x in this case is to x + Ejf

not to the trajectory (of the dynamical system) that x belongs to.

Proof of Theorem C will be given in Section 4. The last theorem, which is to

be proved in Section 5, shows that, under a mild additional condition, recurrence

of Xo is equivalent to recurrence of Xx.

THEOREM D. Suppose that
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(1.11) Γ loglog] x\p(dx) < °°.
J\x\>e

Then Xo is recurrent if and only if Xj is recurrent

The examples in Section 5 of [1] satisfy the condition (1.11). They include

both recurrent and transient cases.

2. Recurrence criterion in the case where Q is a Jordan cell matrix

Proof of Theorem A needs several lemmas of analytic nature.

LEMMA 2.1. Let f(s) be a polynomial with real coefficients with d e g / ^ n. Let

a > 0 and 0 < M < N. Then

/ sin(«β

I Jjβ LI Ui

and

(2.2) I [cos(w /(logw)) - 0 ]—-<—-,

where Kλ and K2 are constants which depend only on n.

Proof By substitution ua = υ, we see that it suffices to prove the lemma for

a—I. Let c be the coefficient of sn in f(s). Since the integrals in (2.1) and (2.2)

are continuous in c, we may assume that c Φ 0. Further, we may assume that c >

0. By substitution cu = υ, we get

/ sin(uf (log u)) — = I sin(υ/(log υ)) — ,
j M w j c M υ

where / is a polynomial of degree n with coefficient 1 in the highest term, and

similarly for the integral in (2.2). Henceforth let

(2.3) f(s) = Π (s - ak) - Pΐl ((s - ak)
2 + q ) ,

where p > 0, q > 0, p + 2q = n, and ak and ^ are real, ck > 0. Denote by I(M, N)

and J(M, N) the integrals in (2.1) and (2.2), respectively, with a = 1 and /(s)

being of (2.3). In order to prove the lemma, it is enough to show that | I(M, N) \
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< Kx(p, q) and | / ( M , N) \ < K2(p, q), where K^p, q) and K2(pf q) depend only

on p and q. Let h(u) = ufilogu). If hf{u) Φ 0 on the interval (M, iV), then sub-

stitution v — h(u) gives

X
hiN)

-
sinz;

Let 5 = log u. We note that

f'is) p 1
( } f(s) ~ k%s-a.

J(M, N)= Γ

2js- ak)
I \2 i 2 '

(s — ak) + ck

cos v — e
uh'iu)

dv.

(2.6)
/ω

- Σ
*-i (5 - akY

*+« A is — ak)
2

k-p+ι ((s — akΫ + cl)

P+Q

+ Σ

(2.7)

(2.8)
d(uh'(u)) d(uh'(u)) du

dυ

Choose r? > 0 so that

(2.9)

du

n , n
n

*-#+> (s - β J 2 +

f'is)

If s ^ U*if(α t — η, ak + rj), then it follows from (2.5) and (2.6) that

(2.10)
f'is)
f(s)

f'is) , f'is)
fis) τ /(s)

Let £ = (0, oo)\ Όp

k

+

=\Veat'\ Λ + w ] and let (Alt Bx),..., iA^B^), iAm, Bm)

with Bm = °° be the connected components of £ . We have m < p + q + 1. Con-

sider two cases:

Case 1. M,N^ [/*"*, Λ+ 7 ?] for some k.

Case 2. M, N ^ (Alf Bt) for some /.

In Case 1 the estimate is easy. Namely

|/(ilf f JV)

and, similarly, | JiM, N) \ < Aη.

X
>exp(ak+η) rfu

v,xp(αΛ-τ?) M
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Let us consider Case 2. No zeros of h(u) exist in (Alf Bt). First we assume

that h(u) > 0 on (Alf Bt). By (2.5)-(2.10), h'{u) is positive on (Al9 Bt) and

- j - (uh'(u)) is positive for v ^ (A04,), h(B)). Hence we have

I / h(N)

,,Λ0| = J
I Jh{Aι)

sin 1/ I *{htAι)+π)Λh{Bί.

I m'((j+l)π)Λh(B,)

where is the nonnegative integer determined by jπ < h(A) < (j + l)π. There-

fore, using uhr(u) > v/2, we obtain

I I(Al9 IX sin v
v

dυ <2 X
π sin v ,
~ΊΓdυ'

Hence

I /(M, ΛO I = I I(Alf N) - I(Alf M) \ < 4 Γ ^^dv.
j0 v

If h(N) < π/2, then

' — V I fl /o I — ϋ I

"" e . ^ -. Γ cos υ — e ,
7S dυ^2\ ϋ dv

urn

UhiAi) ^ r̂/2 < h(N), then

"' 2 I c o s z; — ̂ "

π / 2 I c o s # — e v I

^ IX" COS
•rft;

dv + 2 \r cos
dv

r
+ 2

uh'(u)
dυ

If τr/2 < MAj), then, using the integer j determined by π/2 + jπ < h(A) < π/2

+ (j + l)π, we have

|/(Λ,ΛOI<|jΓM) ^

- I X COS
-dv + 2 I, •dυ

π/2+jπ
-vI Γ 3 7 Γ / 2 COS V f , Γ°° ^

<2 —^—dv + 2 I —-dι;.
IΛ/2 v Λ/2 ^

Hence | /(M, N) \ is bounded by an absolute constant. In the case where h(u) < 0

on (Al9 B,), we have h'(u) < 0 on (Alf Bι),0> h(M) > h(N), and - uh'(u) is

a decreasing function of v. Hence, also in this case, the same discussion applies to
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the majorization of | I(An N) | and \ J(Aly N) |. Thus | / (M, N) | and |/(Λf, ΛO I

are bounded by absolute constants in Case 2. As the integrals in general case are

sums of the integrals of Cases 1 and 2, the proof is complete. •

LEMMA 2.2. Let f(s) be a polynomial with complex coefficients with degf ^ n.

Let a > 0 and 0 < a < b. Then

( 2 . 1 1 ) J ( g - f l M f l r | / ( l o g M ) l - e-bua\f nog u)\^ < — ( K 3 l o g - + i

with constants K3 and K4 which depend only on n.

Proof Substituting u = v, we see that it suffices to give the proof for a =

1/2. Further we may and do assume that the coefficient of sn in f(s) is 1. Let

F(s) = I f(s) I . Then, for real s, F(s) equals a polynomial of degree 2n with real

coefficients with coefficient 1 in the highest term. Factorize it as in the right-hand

side of (2.3) with p + 2q = 2n. Let v = h(u) = uF(log u). Choose η > 0 satis-

fying (2.9) with 2n in place of n. Consider

ΓB' ( -au1/2F(log u)1/2 -bu1/2F{\og u)1/2

λ du

j A u

If A = ea*~η and B = ea'+η, then / < 2η. Let A = At and B = Bh where Aι and

Bι are defined as in the proof of Lemma 2.1. Then, h(u) > 0 and uh'(u) > h(u)/2

on (A, B). Hence

I=f TTA dυ<2\
— _ ^ b

f \ dυ = 4log-.

Summing up these estimates, we get (2.11). D

LEMMA 2.3. Let c, alf..., an, blf..., bn be complex numbers and let

f(s) = c Π (5 - ak), f(s) = c Π ( s - bk).

k=i k=i

Then

-ua\f(logu)\(2.12) Γ\e
0

— e
u

n 2fi
- Σ log(l + \ak — bk\) +—Kι + 4»,

A = l a
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where K3 and KA are the constants in Lemma 2.2.

Proof Let h(s) = clΓk=2(s — ak) and consider the integral in (2.12) with

(s — bjhis) in place of /(s) . Let

E1= (u > 0 :1 log u — ax \ < | log u — bx |},

and let E2 be the complement of Eγ in (0, °°). Then

X / -wα|log w-β,| IA (log w)l -Mα|log M-6,1 |Λ(log «)k du

\e — e ) —

~~ JQ U

Partition the integral over (0, °°) into that over F = [e eai , e eai+ ] and that

over (0, °°)\F. The former is clearly less than 2. The latter is majorized by

X °° / -wαU(log u)\ _ -wα(l+|α 1-6 1 |) |Λ(log u)W

which is not greater than a \ff3log(l + | ax — bλ |) + a lKA by Lemma 2.2. Simi-

larly the integral over E2 is estimated. Repeating this procedure n times, we

obtain (2.12). D

LEMMA 2.4. For k = 1, . . . , d let xk and zk be real numbers with \ zk\ < 1.

Suppose that zγ Φ 0. Let g(s) be the function g(s x) of {I A). Let

(2.13) f(s)= Σzkg
(k-1}(s)t

k = l

(2.14) G(s) = Σ | t f ( * ~ " ω | f
fc = l

~ (s) is the (k ~ l)-th derivative ofg(s). Then, for any a> 0,

(2.15) I | « - e | — < — ( A 5 l o g τ — r + A6) + A7,
fc/Q ^ Ct \ I Zγ I /

/o i n Γ I -«αl/0og«)| -«αG(logw) ι du

(2.16) J |e - e \ —

where K5,..., K9 are constants that depend only on d.
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Proof. We may and do assume that xd Φ 0. Define f(s) and h(s) by f(s) =

~/(s) = g(s) + h(s). Let

Jo

* -r
Jo

Then the integral in (2.15) is bounded by /x + 72. By Lemma 2.2,

M)k du
) —,u

-ua\f(\ogu)\ _ -ua\g(logu)\

In order to estimate 72 by using Lemma 2.3, factorize g(s) as

'π (s-at),(217) g(s)= (rf-Di

where # ! , . . . , arf_! are in the complex plane C and depend on xlf..., xd. Denote A

= max2<*<rf I ̂ / ^ i l We claim that

(2.18) /ω = id^1){

dn^ (s - bk),

- 1,

with some bv. .., bd_ι ^ C satisfying

(2.19) \ak - bk\ <Kl0(A + D for /c = 1, . . . ,

where K10 is a constant depending only on d. Let

Z > = U , η = (d -

Then, for s on the boundary 3D of D,

his)
g(s)

i 21 ^ VV ^

,<*, (5 - ak) (s - ak)

+ ••• + (d- 1)!^-
2! (S — βj) (S — «„_!>

d - 1 \ 2 ! , Id- 1 \ 3 !

2 )^τ+( 3 )->

Let Z>! be a connected component of D. Suppose that the number of zeros (with
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multiplicity counted) of g(s) in D1 is m. Then Dx = Uf=1{s ^ C : | 5 — ak. \

< η} with some kv . . ., km and dDλ c 3D. Hence, by Rouche's theorem, f(s) has

exactly m zeros in Dv Denote them by δ Λ i , . . . , bkfn. Then, for j = 1 , . . . , m,

I **, ~ bkj I < (2m - Or? < (2rf - 3)ij < ϋΓ10(A + 1)

with some iΓ10. Making this procedure to all connected components, we get (2.18)

and (2.19). Since \zk\ < 1 for all k, we have A + l£2/\z1\. Now Lemma 2.3

yields

Hence (2.15) is proved.

In order to get (2.16) from (2.15), it is enough to show that

(2.20) r ( e -««l« io g «, i
•4)

with constants Kn and K12 depending only on d. Let I3 be the integral in (2.20).
s d-\

Using ak in (2.17), let E = ΠΛ = 1{5 e C : | 5 — ak\ > 1). By the same estimate as

above, we get

u

Therefore, letting E' = {u > 0 : log u ^ E}, we have

d—1 /*exp(Retffe+l) AΛ. r „ ~

J3 ^ ? / ΊΓ + /, {e~" ")l ~ e M>)

/ -Ua\g(l0g U)\ -K,*Ua\g(l0g U)\\ UM>

{e — e ) —

with K13 = 1 + (d — l)\(d — 1). Here we used Lemma 2.2. Hence we have

(2.20), completing the proof. Π

Now we can show that (1.5) is a recurrence criterion.

Proof of Theorem A. Let X be the OU type process associated with {Zt} and

Q of Theorem A. For c > 0 denote by pc the restriction of the Levy measure p of

{Zt} to the set {x : | x \ ^ c], and let {Zc

t} be the compound Poisson process hav-
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ing p as its Levy measure. Let Xc be the OU type process associated with

{Zc

t} and Q. Let pt(x, E) and pc

t(x, E) be the transition probabilities of X and

Xc, respectively. Let βt(x, z) and tft(x, z) be their characteristic functions. Shiga

[5] shows that transience of X is equivalent to that, for any x and any compact set

E,

(2.21) f pt(x,E)dt< oo.

It is equivalent also to that there is a point x such that, for any compact set E,

(2.21) holds.

First let us notice that, for any c' > c > 0,

f ae
U Jc<\x\<c'

is bounded in v ^ (0,1). In fact, it is increasing as υ j 0 and, for any ε ^ (0, α),

there is a constant K such that

I — I (1 - e )ρ(dx) < \ —- \ (1 - e )ρ(dx)
JQ M, JC<\x\<Cr J0 U JC<\X\<C'

I
Jc<\x\<c'

Therefore, if

(2.22) /^exp [f^j (,—")l - l)Pm] < co
Jo V Uv U J\x\>c J

for some c > 0, then it is true for any cr > 0 in place of c.

Suppose that X is transient. Let us prove (2.22). Transience of X implies

transience of X c for every c > 0 ([5] p. 439 and [1] Lemma 2.1). Let h(x) =

Π ;

r f

=i((l - I Z I) VO). Let h(z) = fei<z'x>h(x)dx, the Fourier transform of h.

Then

h(z) = Π Az;2sin(2~1zJ)f h(x) = {2π)~d f e~i<z'x>h(z)dz.

Hence

oo > J dtf pc

t(0, dx)h{x) = (2π)~d J dt f h(z)tf(O, z)dz
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= (2τr) d J dt f h(z)Reift(Ot z)dz.

It follows from (1.1) that

(2.23) $ ( 0 , z) = exp [J dr J (e

i<z>e~rQχ> - l)p

c(dx)]

(see [3]). Hence

Re#(0, z) = (cos F(ty z))(exp G(t, z)),

where

Fit, z) = f dr f sin<z, e~rQx>pc(dx),
JQ J

Git, z) = j dr J (cos<z, e~rQx) - Dp'idx).

Let g(s x) be the function of (1.4) and let g(k)(s x) be its Λ -th derivative in 5.

Since Q is a Jordan cell matrix with eigenvalue a, we have u x — ̂ y^ι<j<

Vι = uag(log u x), y2 = uag'(\og u x), , yd = uagu~ι) (log u x).

Thus

by Lemma 2.1. Choose c so large that α ^ ^ ( R ^ ) < 7r/4. Then cos F(t, z) >

1 /\/2 and, therefore,

I Fit, z) I = I Γ ^ Γ sin<^, uQx>pc(dx)

J h(z)dz J exp G(ί, z)dt < oo.

Let C/(z) = I exp G(ί, >ε)<if. Then C/Oε) is finite for some (in fact almost every)

z = (Zj)i<zj^d satisfying | z} \ < 1 and zλ Φ 0. By e~r = u and ^~f = v we get

^(*) = / " ^ " e χ P / ~τr / (cos<z, wQx> - l)/OcWx) .

By virtue of Lemmas 2.1 and 2.4,

= I — e x p I p (dx)\ j (cosiz, u x) — e ) —
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, Γ 1 / -\<z,uQx>\ __ -ua\g(\wu;x)W du^ Γ 1 , -ua\g(\o%u;x)\ _ .x du\Λ

Jv U Jv U J J

d v \ ί c,j x Γ 1 / -u«\g(\ogu;χ)\ -v

where

Hence we get (2.22).

Conversely, suppose that (2.22) holds. We will prove transience of X. Use

ha(x) = Π i = 1 ((α — I Xj |) V 0) with a > 0. Its Fourier transform is /z ΛCε) =

Π;=14:Zj sin (2 α^ ). Hence, in order to show transience, it suffices to prove

f dtfpt(βf dx)ha{x)

for all small a > 0. But

f pt (0, dx)ha(x) = [pt(0, z)ha(z)dz < a f \βt(0, z) I dz.
J J J\z\<aVd

The function ^ ( 0 , z) has an explicit expression like (2.23). It follows from the ex-

pression that 1^,(0, z) I < 1^(0, z) I for any c > 0. Hence transience of X fol-

lows if we show that

f dt f \fi(0,z) \dz<™

for some c > 0. Use G(t, x) and U(z) above. Then | ^ ( 0 , z) \ = exp G(t, x).

Our task is to show that ί U(z)dz < °°. Rewriting U(z) as above and using

Lemmas 2.1 and 2.4 again, we obtain

U(z)dz<f
2K1 J M

= C, / I *, I -1"'«'>ώ Γ1 ̂  exp [/ p'to) Γ1 (^" n - - " - 1)

~with some constant C2. Now choose c so large that a~ K5p
c(R ) < 1 and use

(2.22). Then the last expression is finite. The proof is complete. •
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Remark. Let d = 2. The recurrence condition (1.5) reads as

(2.24) f^exp [Γ^f (Γ-*^-- - i)pWr)] = co.
J o V Uv U J\χ\>c J

Let us compare it with the condition

(2.25) Γ ^ e x p [ Γ 1 ^ f
\>C

Clearly (2.25) implies (2.24). However, (2.24) does not imply (2.25). Indeed, we

will prove in Section 4 the existence of a measure p such that (2.24) is fulfilled

but

(2.26) — exp — (e~"w -l)p(dx)\<°o

this p satisfies, a fortiori, the condtion (2.26) with e replaced by e Xl + X<1 ,

and so, does not satisfy (2.25).

3. A unified form of recurrence criteria

We prove Theorem B given in Section 1.

Proof of Theorem B. Our assumptions are that the eigenvalues of Q are posi-

tive reals and that, with some invertible matrix i?, one of the following two cases

takes place:

Case 1. RQR is diagonal.

Case 2. RQR is a Jordan cell matrix.

Our assertion is that (1.6) is a recurrence criterion of X.

Consider Case 1. Let alf...,an be the distinct eigenvalues of Q, and let Vj be

the eigenspace of α ; . Let / = 7\ + * * * + Tn be the decomposition of the identity

matrix / associated with the direct sum decomposition R = Vx® * * 0 Vn. Thus

Hence

Qkχ = Σ OLTJX and uQx = Σ uaiTjX.

Define a norm || x || by || x || = Σy= 11 TjX |. Then

u x I <
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Sato, Watanabe, and Yamazato [1] prove that X is recurrent if and only if

U J\x\>c

There is a constant K > 0 such that \x\ Ξ> K || x || for every x. Define the condi-

tion (3.1)' by replacing ||wQ<r|| in (3.1) by K\\ uQx ||. Obviously, (3.1) implies (1.6)

and (1.6) implies (3.1)'. Lemma 4.1 of [1] says that (3.1) and (3.1)' are equivalent.

This settles Case 1.

Next consider Case 2. Let G(s x) = Σk=ί I g ~ (s x) |. First we remark

that Theorem A remains valid if we replace \g(\ogu; x) | in (1.5) by G(logu;x).

To see this, we have only to repeat the proof of Theorem A using (2.16) in the

place where we used (2.15). Let RQR~ι = 5. Since (aR)Q(aR)'1 = S for every a

> 0, we may assume that either \ R\ or | i?"11 equals a preassigned positive num-

ber (here the norm | T | of a matrix T is the norm as a linear operator). Since

u = RuQR~\ it follows from (1.1) that

RXt = e~tsRx + Γ e~(t~r)sd(RZr).

Hence the process i?X defined by {RXt} is the OU type process associated with

{RZt} and S. The Levy process {RZt} has Levy measure pi? defined by

(pR ) (E) = p{χ : Rx ̂  E). The process X is recurrent if and only if i?X is re-

current. So, the condition for recurrence is

/o ON f1 d v \ Γ1 du Γ -uaG(logu;x)
(3.2) I — exp I — I (e

J o f IJV U J\χχ\>c

sDenote | | | x | | | = Σ^= 11 x ; I for x = (x)ι<j<d. Then ^ α G(logw;x) = | | | usχ\\\. If

we assume that \ R \ = 1, then

Γ ( e-" l Λ l" - iXpΛ-1)^) < Γ ( Γ | Λ | - l)(pi?-l)(rfr)
J\x\>c J\x\>c

= f (e~M - l)p(dx) < f ( e - | Λ l - Dpidx).

Hence (3.2) implies (1.6). If we assume that | R \ = 1/yfd, then

Γ ( Γ ι ι iΛi ι ι _ 1)(pR-iHdx)> f ( ,-^ιΛι _ 1 ) ( p Λ - i ) { d x )

J\x\>c J\x\>c

(e - Dpidx) > I (β - l ) p ( d i r ) .
|i?x|>c ^Ixl >Vdc
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Let a be the eigenvalue of Q. For any ε e (0, a) there is a constant K such that

\uQx I < ift*α~ε U I for 0 < it < 1 and x e Rd.

Therefore the condition (1.6) does not depend on the choice of c this is shown by

an argument similar to that given in the proof of Theorem A. It follows that (1.6)

implies (3.2). The proof is complete. EH

4 . Compar ison of t h e c a s e s w i t h diagΌnalizable and nondiagΌnal izable m a t r i c e s

in linear drift terms. Proof of Theorem C

Let d — 2 and let Qo and Qλ be defined by (1.7). We compare OU type pro-

cesses associated with Qo and Qx combined with a common Levy preocess. First

we prove (i) of Theorem C. Then, after two important lemmas, we establish (ii) of

Theorem C.

Proof of (i) of Theorem C. We can choose a sequence aι = e < a2 < a3 <

such that if we write bn = log an, then the following are satisfied:

(4.1) [:zf=λ) b2n < e~" for n > 1,
ι2n

(4.2) ( W S *-**»* 1,

,4.3,
U2n

where, for n = 1, ΐlj=1 is understood to be 1. Indeed, if av a2, . . . , a2n_1 are

found, we can find a2n satisfying (4.1) and (4.2) and determine a2n+1 by (4.3).

Clearly an tends to infinity. Define h(r) as follows:

(4.4) h(r) = 1 /b^-i for a2n_γ <r< a2ni

(4.5) h(r) = 1 /log r for a2n < r < a2n+1.

Then h{r) decreases to 0 as r—• oo. We claim that it satisfies (1.8) and (1.9). Let

cn = 1 /an. If c2n < v < c2n_v then

,4.6,

^ C 2« + l ^ ^ —
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(4.7,
U2j-1

X 1/v

h

i n £ ( 1 M i 1 \

Let n > 2. It follows from (4.1) and (4.6) that

It follows from (4.7) that

-1 / y h(r)rc2« rfz; r r1

J Ί Γ e x p ~ J

since the left-hand side of the above equals that of (4.3). Hence, using (4.2) and

(4.8), we get

dv_ Γ Γ1/v h(r) / 1 \ I < Γ_ Γa™ h(r)

r in / ί» \ 1/AΛ. I-» Λ *I 1 / Λ Λ \ \ / 1% \ l/^o/I—1

= fπ (^plfffexp (^- - f)}
l J = 1 \ b2j 1 J l i = 1

 H \ 6 2 i + 1 b2jn b2n

Therefore h(r) satisfies (1.8) and (1.9). D

LEMMA 4.1 Suppose that p is a finite measure on ί r ^ R : | x2 \ > e). Let a >

0. Define H(r), F0(v), and F.iv) by

(4.9) H(r)=^f p{dx),
a J\x2\>r

(4.10) F0(v) = Γ ' ̂  Γ (1 - e-"aw)p(dx),

(4.11) FM = Γ ^ i d -
Jv U J\χ\>e
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Assume that p is concentrated on the set Eo in Theorem C. Then, as v I 0,

v'a H(r)
(4.12)

(4.13)

F0(v) = f

F1(υ)=f

dr+ 0(1),

-αllog vΓ1
-ίΓα |log v

Proof. Denote c — x01/'xQ2 where xQl and x02 are given in Theorem C. Since

Eo = \x = ί ) : (sgnxO2)r> 0|, we have

(4.14)

(4.15)

Since

we have

rw x Γ du r

X
6'1 du

—
u

' -DdHir),

!ul - DdHir).

Γ'1 {e-ru°a+cψ» __ e-ru

F0(v) = a Γ ^ Γ (e-r"a - l)dH(r) + 0(1)

= Γ — Γ (e~ru ~ l)dH(r) + 0(1) = Γ du Γ e~ruH(r)dr + 0(1)
Jυa U Je Jυoc Je

by integration by parts. Below we will use the inequality 1 — e ^ w several

times. We get

0(υ) = J
Jp

H(r) -rv«

——e dr+ 0(1)

= J —e dr+θω=J dr+ 0(1),

which proves (4.12).

In order to show (4.13), denote by Fx (v) the function F^v) with c — 0. Then

f *» Γ
U Je
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= 7: Γ \logu\du Γe~runogul/aH(r)dr+ 0(1) = G0(υ) + G^v) + 0(1),

G i \ Γ ττί \ 1 Γ —ru\lθgu\/(X/\ 1 I 1 \ r

oM = ~z \ H(r)dr \ e (| log u \ — Όdu,
a je jva

! « = — I H(r)dr I e du.
1 α Λ Λ«

We have

We claim that

(416)

-rva\logv\ , . , Γ
e dr + const = I

Jp.
dr+ 0(1).

G,{v) = f
rlog r

dr+ 0(1).

Make substitution u \ log w | = w for 0 < u < e e. Note that -j- = \ log u \ — 1 >

— 1. Let a = e e Λ ae . Then

α Λ^uogt i I log w I - 1 Je

Je

+ const

t;«|log t

Here we employed that

1
log u I — 1 I log

= log 1 log u \ - 1

(I log u I - 1) I log w I'

log I log u I — 1 < log I log w I, I log u \ — 1 > | log w |/2,

lβ log I log w I ^ Γ ^ ^ - r / B , ^ . . r r / ^ fα log 1 log w 1 J w

2ί;(log w;)2

rf^ J H(r)e~rw/adr < aH(e) f
J» (log i

Next, using integration by parts, we get

-rυa\\og υ\
I' ΓΊ I VI iΛ

G» =
H{r)

r I log(m;α I log v \
dr

dw+ 0(1).
Y Java\\og υ\ w(lθg w)

The first term of the right-hand side is bounded, as is seen by splitting the inte-
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gral at υ a | log υ \ . Since

\ ——-(1 - e~rwa)dr< — I -j H(r)dr,
Java\log υ\ w(\θg W) J e r a J° (log W) J e

I - I —r-e dr<H(e) - I —-ds9

Java\\og v\ w(lθg W) J(X/w T J° w(lθgw) ι

we get

,* , \ Γ dw Γa/W H{r) J . _ / 1 λG ẑ;) = I I — - d r + 0(1)
^αι;α|logι;| ^ ( l o g w) J<i T

d w r H(r)

w(\og(w/a))2je r

By integration by parts again,

which gives (4.16) since

1
log(w/a) logw

const

(logw)2

Therefore (4.13) is obtained for Fι (v). Now consider the case c Φ 0. Let b = e .

Then, from (4.15),

s»b/e ΛΛI / °° _,

F t(i;) = α | — I ( e - ' ^ " " 1 1 0 " 1 - l)rfjy(r).

Since

UΓ ^ / -r(«/6)α|log M| -r«α|logMk dtί . \ f . . .

1 (e - e ) — < — (K3a \c\+K4)
bv U CX

by Lemma 2.2, we get

Fi(v) = a fb/t'*L Γ ie-™°n°** _ 1)dH(r) + 0 ( 1 )
Jbv M Je

Γ {e-ru«\^u\ _ 1)dH(r) + 0 ( 1 ) = Fo(v) + 0 ( 1 ) )

Jp.v U Je

using I —— = c. Hence (4.13). D
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Lemma 4.2. Let H(r)9 F0(v)9 Fx(v) be defined by (4.9)-(4.11). Assume that p

is concentrated on the set Eλ in Theorem C. Then, as v I 0,

(4.17)

(4.18)

0(v)=fe

υ-«\\og t/l"1

Je

= —— — oΓProof. Denote c = —— — oΓ log | x021. Then
^ 02

Eχ = ( x = α-Vlog| r| ) . ( s g n ^ ) r > 0 } .

Hence

X
e~ι A*, ^oo^ r (,-« ί"-^^«- I^'-»2»'2_1 ) d / ί W )

Fx{v) = a I — ί (e rc+logur } _
Jv u Je

Let us show (4.17). We have

I Γβ _ M α r ( 1 + ( c + α - l l o g r)2)l/2 log rx jrf«

log
(1 + (c + α logf))

2x1/2

α x log

for r > e with a constant K independent of v and r. Therefore

(e-"-1"''10*'- i)dH(r) + 0(1)

= f ua~ιdu f H(r) (I + log r)e'a'lu"r tog r dr + 0(1)

Let s — a~ varlog r and sυ = a~ | log v \~ log(t;~" | log v \~ ) . We have s~ ds =

(1 + (log rΓι)r~ιdr, and

r" H(r) (Λ , 1
I , - 7 - U + yr

. a - . Λ t a ! f sds

rfr= I /ί(r)« — = 0 ( 1 ) ,
J S
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^ l l o g . r MIV1 , , , _β-v. r l o β lrtΓ"|loβ t Γ* ττ(

ί "

since sv —* 1 as f 1 0. Hence we get (4.17).

In order to prove (4.18) in case c = 0, denote by i*\ (#) the function

F^v) with c = 0. Write

F?(υ) = G0(v) + G^v) + const,

where we define, with a — e

G0(i;) = or / —— / (e - l)dH(r),

( . Γa du Γ°° -uar\og{ur1/a) 1 U I 7 / x

Gx(z;) = a I — I (e — l)dH(r).

We have

Go(«) = a fj ua~ιdu £ " H{r) (- \og(urι/a) - ±) eu"r «*^dr + 0(1)

= r α ^w ( ^-o g < w -,_ 1 ) ί / r + 0 ( 1 ) )
Je Y

and hence

I G0(v) I < aH(e) f (1 - /"log s) ̂  + 0(1)

< aH(e) C 5α-11 log s \ds + 0(1) = 0(1).

On the other hand,

Giίv) = a I M ώ #M(log(wr ) + —) e dr

X -ί^(^) /-, -(αβ)~V lQg(e~V)N ,

— Γ — U ~ e )arr

Γ°° H(r) ( -var \og(vr1/a) -(aeΓλr logίίΓVk ,

+ I — — (e — e )dr
Jv-a r

Jo -c* r
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The second term of the last line is bounded, as is seen from substitution υr a =

5. Hence we obtain (4.18) for F®(v). To handle F^v) in case c Φ 0, let b = e\

Then

Fι(v) = f ' du Γ (e-β->»-««rlk*«rl _ 1 ) d i / ( r )

= Γ W " ά i p (e-α-Wl,og«rι _ 1 ) d H ( r ) + 0 ( 1 ) (

since

+(b/e)aU f ib/e)

(bv)a

/ - α 16"αwr|log ur\

\e — e
<K3a\c\+K,

by Lemma 2.2. Hence

re~a du Γ°° -i
FΛυ) = I — I (e'a ur{ogur{ — l)dH(r) + 0(1) = Fί(v) + 0(1),

completing the proof. Π

Proof of (ii) of Theorem C. We assume that the restriction [p]{\x\>c} of the

Levy measure p is concentrated on Eo or Ev It follows from the criteria in

Theorems A and B that, for any bounded set E, the measure [p]E is irrelevant to

recurrence and transience. Hence we may and do assume that p itself is concen-

trated on Eo or Eλ and that ip\{\X2\<e}
 = 0. Denote

(4.19) /0 =

(4.20) j - l — exp I — 1 (e -\)p(dx)\,

where a is an arbitrarily fixed positive real. The recurrence conditions of Xo and

Xx are, respectively, 70 = °° and 7X = °°. Define H(r) by (4.9) and denote

1 dυ Γ r~ι H(r)

'x dv

τex
r f"

-Je

To prove the first assertion in (ii), assume that p is concentrated on Eo. Then

we claim that
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(4.21) 70 = oo if and only if/0 = oo,

(4.22) Iλ = oo jf and only if Jx = oo.

It follows from (4.12) of Lemma 4.1 that 70 = °° is equivalent to

dυ_ Γ_ Cυ~a H(r) 1 =

V L Je Y J

Hence (4.21) follows. Likewise, using (4.13) of Lemma 4.1, we see that ^ = oo is

equivalent to

(4.23)

Choose a so small that va | log υ | is strictly increasing on (0, a]. Let va | log υ \

= w. Since (a | log v | — 1) | log υ \~ιυ~ιdυ = w~λdw, (4.23) is equivalent to Jx =

oo. This shows (4.22). Now, if (1.8) and (1.9) are satisfied with H(r) in place of

h(r), then Xo is recurrent and Xx is transient.

To prove the second assertion in (ii), we assume that p is concentrated on Ev

Then, using Lemma 4.2 instead of Lemma 4.1, the same argument shows that

(4.24) 70 = oo if and only if Jx = °°,

(4.25) 7j = oo if and only if Jo = oo.

If we have (1.8) and (1.9) with H(r) in place of h(r), then (4.24) and (4.25) show

that Xo is transient and Xj is recurrent. The proof is complete. CH

5. Comparison of the cases with diagonalizable and nondiagΌnalizable matrices

in linear drift terms. Proof of Theorem D

We continue to assume that d = 2, Qo and Q± are given by (1.7), and Xo and

X : are the OU type processes associated with Qo and Qv respectively, combined

with a common Levy process {Zt}. We will prove Theorem D, using Lemma 5.2.

The proof of Lemma 5.2 needs Lemma 5.1. Delicate estimate of integrals is re-

quired.

In the following two lemmas let M be a positive real and H(r) be a function

which is defined on [e, oo), nonnegative, right-continuous, and decreasing, and

which satisfies

(5.1)
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that is,

(5.2) - Γ (1 + loglogr)dH(r) < M.

It follows that

M

Let us denote by Klf K2,... constants that depend only on M.

LEMMA 5.1. Let 0 < ε < 1/2. If 0 < υ < e~2 and | 1 + ε log v | > ε,

(5.4)

Proo/. Denote by / the integral in the left-hand side of (5.4). Cosider three

cases.

Case 1: ε < | 1 + ε log z; | < 1/2.

Case 2: 1 /2 < | 1 + ε log i; | < 1.

Cαs£ 3: | 1 + εlog υ \ > 1.

In Case 1, note that (1/2) | log υ I"1 < ε < (3/2) | log υ I"1 and obtain

2 log t> |IΓKHGΓ1) Γ d r < <

l / l ^ ^ )J,-1 T - l o g | l o g H - log I log t; I - ^ 2

using (5.3). In Case 2 we get

l / l < # ω Γ" ^<M\og2 = κ3.

In Case 3, note that | 1 + ε log υ \ = ε | log v \ — 1 < | log v\, and

i ^ ΛΠog I log v \
d r

These together prove (5.4). •

LEMMA 5.2. Let c > 0 and 0 < ε < 1 /2. De/in«, /or t; e (0, e~ι),

(5.5) F ω = Γ ^ Γ ( e - c r u l l + ε l o g u l

/ u j
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Then, for all v and ε,

(5.6) F(v) - I
H(r)

dr Ke\logc\.

Proof. Since F(v) is continuous in ε, we may and do assume that 0 < ε < 1/2.

Denote F(v) with c = 1 by F (v). First notice that

I F(v) - F\υ) I = I Γ ~ Γ (e

< - Γ dH(r) I Γ (e~c

-cru\ί+ε log u\ -ru\l+ε log u\\ •, jj/ \

—cru\l+ε log u\ — ru\l+ε log u\

<H(e)(Cι\logc\ + C2)

with absolute constants Cλ and C2 by Lemma 2.2. Thus it is enough to consider

only F . Notice also that we may assume that v ^ (0, e ), because (5.6) is evi-

dent if υ G [e~ , e~ ). Let a(ε) = e~ ε. We split the proof into three cases.

Case 1: e~ > υ > a(ε)e.

Case 2: a{ε)e > υ > a(ε)e~\

Case 3: a(ε)e~ι > v > 0.

Cαs<? 1. We have 1 + ε log υ > ε. Use integration by parts. We get F (v) =

Gx + G2~ G3 with

1 —9
U

Gi= Γ1 a-e-
ua

Jυ

G2 = Γ ' (1 + ε log u + ε)du Γ e~rua+ε l o g u)H(r)dr,

X e~ι (+°°

G j I —ru(l+ε log u) τr/ \ j
du I e H(r)dr.

Je

First,

(5.7) 0 < G, < f (1 + εlog u)eH(e)du < Kv

Secondly, by Lemma 5.1,
(5.8)

•'•' H(r)
dr

since
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X
°° H(*λ /»ϋ~1(l+ε log v)~ι JJίJ\

ti\Y) , -rυil+ε log υ) -il-ε)r/e\ , / ΓL\T) .

— — ( e —e )dr= I ———dr+Ry
π I ^ Γ* n\T) -a-ε)r/ej , / n \rj -rυa+ε log v) ,

R I < I — — e dr+ \ —τ~ e drlog v)'

log υ)~ιX t;"1(l+e log υ)~ι ZJ(J\

— — (1 - e )dr< K9.
r

Thirdly, let us handle G3. Let y = u/a(ε). Write εa(ε) = A for brevity. Since G3

is greatest when v — a(ε)e,

dy f e-ArylogBH(r)dr.

Let w = y log y and note that —r- = log y + 1 > -y log M;. Then

where

dUJ Γ -Awr

ί
Now

—Awr
9

dwI w
-Awr n o o Λ O O -Awr

HWrfH k - f - I -dw\
Arwilogw)

-AT*
e dr.

i~AWrdr=2fe -§1^ e'Aw2 dw < 2M.

Hence 0 < G3 < AM. Combined with (5.7) and (5.8), this shows (5.6) in Case 1.

Case 2. Since a(έ)e > v > a(ε)/e, we have

0 < F\υ) - F\a(ε)e) < H(e) j " " ^ < 2M, f

Therefore (5.6) in this case follows from (5.6) for υ = a(ε)e.

Case 3. In this case we have 1 + ε log υ < — ε and
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Hence

X
a(ε)/e Λj. /»

—

X a(ε)/e Λ;,

U

Γ°°
+ u\l + εlogu\ I e

(υ) = F (a(ε)/e) + Gγ + G2 + G3,

G x = H ( β ) Γ" £ ^ (1 ~ ^" e w l l + ε l o g w l ) ^ ,

G2— \ {— ε log u — 1 — ε)du I e
Jυ Je

X
a(ε)/e /*«»

, / -ru\l+ε log M| r r / \ ,
du e H(r)dr.

^e

F1(a(ε)/e) - Γ^

It follows from Case 2 that

(5.9)

Obviously

X
a(ε)/e

e I 1 + ε log u \ du < Kr

Concerning G2 and G3 let us show that

(5.11)

(5.12)

We have

-Ie/a(ε)

r1 H(r) H(r)

'1 H(r) H(r)

https://doi.org/10.1017/S0027763000005523 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005523


7 4 KEN-ITI SATO, TOSHIRO WATANABE, KOUJI YAMAMURO AND MAKOTO YAMAZATO

with I i?! I and | R2 | bounded by some K12. Here we applied Lemma 5.1 twice: to v

directly and to a(ε)e~ , noting that a(ε)εe~ = a(ε)e~ \l + εlog(a(ε)e~ ) \.

Thus (5.11) was proved. Write A = a(ε)ε. Let y — u/a(ε). Then

0<G3<A Γ dy Γ e-Arynogy]H(r)dr =U,+ U2,

U, = A fl dyΓ e-Aryltog!AH{r)dr,

U2 = A f ' dy Γ e-ΛrynosylH(r)dr.

Now

Let y I log y \ — w for 0 < y < e~ . Then -r— = | log y \ — 1 > | log w \ /2. Hence

where

; * dw

Notice that

V,<2A I TΊ r I H(r)dr= 2A I — d w I
1 J o I log w I Je Jo W2 Jo

- - X'
Then (5.12) follows. Now (5.9)-(5.12) together imply (5.6) in Case 3. D

Proof of Theorem D. We assume (1.11) for the Levy measure p of {Zt}. Define

Io and Ix by (4.19) and (4.20) replacing the domain of integration {| x2 \ > e)
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with {\x\ > e} and letting a = e'1. Then, by Theorems A and B, Io = °° and lλ

= °° are recurrence conditions of Xo and X1? respectively. Define M by

M=a~ι f (l+loglog|*|)p(<te).
J\x\>e

Make polar decomposition of ίp]{\x\>e} in such a way that

p(E) = - a f σidθ) f lE(rcos θ,rsin θ)dHθ(r)

for every Borel set E in {x : \ x\ > e), where σ is a probability measure on

[0, 2τr), Hθ(r) is a nonnegative function right-continuous and decreasing in r €=

[̂ , °°) and Borel measurable in θ ^ [0, 2τr), and

(5.13) He{e)

that is,

- Γ (1 + log log r)dHβ(r) = M.

Define

H(r) = f Hθ(r)σ(dθ).

Then

(5.14)

Since

ΊΓJ. a~e )dH{r)\

and since the proof of Lemma 4.1 shows that (4.12) holds for any F0(v) satisfying

(4.14), the recurrence condition IQ — °° for Xo is equivalent to

(5.15)

Let
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r^/n \ I &U C , -rua\cos 0+sin θ log u\ +\ JTT / \G(θ, υ) = a I — I (e — ΌdHθ(r).
jυ u Je

Then

X
e~ι dυ Γ C 1

— exp - I G(θ, v)σ(dθ) .
^ L J[0,2π) J

We have

G(θ, υ)<afel^Γ {e-2rua^u{ - l)dH,{r).

Hence ί G(θ, v)σ(dθ) also has a bound of the same form with dH(r) in place

of dHθ{r). Now use Lemma 2.2 as in the beginning of the proof of Lemma 5.2.

Then we get, as υ I 0,

Γ G(0, tOσWfl < α f — Γ (<Γ r M* l l o g M l - ϊ)dH(r) + 0 ( 1 ) .

Since (4.13) holds for any F^v) satisfying (4.15), we get

Γ G(θ,v)σ(dθ)< Γ "°g ^ r - d r + 0 ( l ) ,
*^tθ,2π) *̂ e '

using (5.14). Notice that

Γ ^ rfr < mv- I log , l^ log I log v I < M l 0 g ! 1 , 0 g * ; ' t = 0(1).
^""Itogt l J A l θ g l θ g ( f I log f I )

Then

(5.17) Γ G(θ,v)σ(dθ) < Γ ^-dr+O(l).
%)\0 O jr) %)p r

In order to have estimation from below, fix δ such that 0 < δ < τr/2 and tan <5

< α / 2 and let

# ! = [0, δ) U [π, 7Γ + <5), E2 = [δ, TΓ) U [TΓ + δ, 2π).

Denote Hj(r) = f Hθ(r)σ(dθ) for j = 1,2. If θ e [τr/2, TΓ) U [3TΓ/2, 2TΓ) and

w e (0, έf1), then

|cos<9 + sin<91ogw| > | cos θ - sin θ \ =
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If θ e [δ, π/2) U [π + δ, 3τr/2) and u e (0, * r 2 / s i n 5 ) , then

I cos 5 + sin θ log w I > (sin <5) | log u \ — 1 > 1.

Hence, if θ ^ £ 2 , then

"V I OΓ™ - DdHd(r).
u Je

Therefore

X /*β du Γ°° -rua 2

G(θ> υ)σ(dθ) > a I — / (e — DdH (r).
~ 2 **v M Je

Using (4.12) again, we get

r rv~a H2(r)
(5.18) / G(θ, v)σ(dθ) > I — ^ - L d r + 0(1).

"En **e '

If θ G £Ί, then, letting oΓ tan ̂  = ε and ua = y, we have 0 < ε < 1 /2 and

Now let us use Lemma 5.2 here. Then, for θ ^ £ υ

G(0, *;) > Γ ^p-dr-K
Je Y

with a constant i£ independent of θ by virtue of (5.13). Hence

r rυ~a Hι(r)
(5.19) / G(θ, v)σ(dθ) > \ dr+O(l).

JEi Je r

Combining (5.17)-(5.19), we see that

Γ G(θ,v)σ(dθ)= Γ ^-dr+O{\)
J[0,2π) Je '

as v i 0. Consequently it follows from (5.16) that I1= °° is also equivalent to

(5.15). The proof is complete. Π
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