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Abstract. Jacobson said a a right ideal would be called bounded if it contained
a non-zero ideal, and Faith said a ring would be called strongly right bounded if every
non-zero right ideal were bounded. In this paper we introduce a condition that is a
generalisation of strongly bounded rings and insertion-of-factors-property (IFP) rings,
calling a ring strongly right AB if every non-zero right annihilator is bounded. We first
observe the structure of strongly right AB rings by analysing minimal non-commutative
strongly right AB rings up to isomorphism. We study properties of strongly right AB
rings, finding conditions for strongly right AB rings to be reduced or strongly right
bounded. Relating to Ramamurthi’s question (i.e. Are right and left SF rings von
Neumann regular?), we show that a ring is strongly regular if and only if it is strongly
right AB and right SF, from which we may generalise several known results. We also
construct more examples of strongly right AB rings and counterexamples to several
naturally raised situations in the process.

2000 Mathematics Subject Classification. 16D25, 16D40, 16E50.

1. Introduction. Throughout this paper all rings are associative with identity
unless otherwise stated, and all modules are unitary. Let R be a ring. The prime
radical, the set of all nilpotent elements and the Jacobson radical of R are denoted
by P(R), N(R) and J(R), respectively. For any non-empty subset X of R, rR(X) and
�R(X) denote the right annihilator and the left annihilator of X in R, respectively. If
X is singleton, say X = {a}, then we write rR(a) (�R(a)) in place of rR({a}) (�R({a})).
We use Matn(R) to denote the n × n matrix ring over R. An element c of R is called
right regular if rR(c) = 0, left regular if �R(c) = 0 and regular if rR(c) = 0 = �R(c). A
zero divisor means an element whose left and right annihilators are both non-zero. A
ring is called a domain if every non-zero element is regular. It is well known that for a
division ring D, a matrix in Matn(D) is regular if and only if it is invertible.

The notion of bounding a one-sided ideal by a two-sided ideal goes back at least
to Jacobson [21]. He said that a right ideal of R is bounded if it contains a non-zero
ideal of R. This concept has been extended in several ways. From Faith [13], a ring R
is called strongly right (resp. left) bounded if every non-zero right (resp. left) ideal of R
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contains a non-zero ideal. A ring is called strongly bounded if it is both strongly right
and strongly left bounded. The class of strongly one-sided bounded rings has been
observed by many authors [e.g. 7, 21, 34, 35, 37].

Due to Bell [6], a right (or left) ideal I of a ring R is said to have the insertion-of-
factors-property (simply, IFP) if ab ∈ I implies aRb ⊆ I for a, b ∈ R. So we shall call a
ring R an IFP ring if the zero ideal of R has the IFP. Shin [32] used the term SI for the
IFP, while Narbonne [11] called IFP rings semi-commutative. A ring is called reduced
if it has no non-zero nilpotent elements. A ring is called abelian if each idempotent
is central. Simple computations give that reduced rings are IFP, and IFP rings are
abelian. Note that a ring R is IFP if and only if any right annihilator is an ideal if and
only if any left annihilator is an ideal if and only if ab = 0 implies aRb = 0 for a, b ∈ R
[32, Lemma 1.2].

Due to Feller [14], a ring is right (resp. left) duo if every right (resp. left) ideal is an
ideal. Right (resp. left) duo rings are both strongly right (resp. left) bounded and IFP. A
ring is called duo if it is both right and left duo. Birkenmeier and Tucci [7, Proposition 6]
showed that a ring R is right duo if and only if R/T is strongly right bounded for all
ideals T of R. For IFP rings we have a similar result in the following.

REMARK. For a ring R the following conditions are equivalent:
(1) R is IFP;
(2) for any right annihilator A and any ideal I in R with I ⊆ A, A/I is bounded in

R/I whenever A/I �= 0;
(3) for any left annihilator B and any ideal J in R with J ⊆ B, B/J is bounded in

R/J whenever B/J �= 0.

Proof. (1)⇒(2) and (1)⇒(3) are obvious.
(2)⇒(1): Assume on the contrary that there is a right annihilator A with RA � A.

We apply the proving method of [7, Proposition 6]. Let H be the sum of all ideals
contained in A. Then A/H �= 0, and then A/H is bounded; hence there is a non-
zero ideal K/H of R/H contained in A/H, a contradiction. The proof of (3)⇒(1) is
similar. �

Based on this remark we introduce the following concepts which generalise strongly
one-sided bounded rings and IFP rings. A ring R is called right (resp. left) AB if every
essential right (resp. left) annihilator of R is bounded; i.e. it contains a non-zero ideal
of R. A ring R is called strongly right (resp. left) AB if every non-zero right (resp.
left) annihilator of R is bounded; R is called (strongly) AB if R is (strongly) right and
(strongly) left AB. Obviously strongly right bounded rings and IFP rings are both
strongly right AB, but the converses need not be true in either case as we see in the
next section. We in this paper concentrate on strongly one-sided AB rings.

We study the properties of strongly one-sided AB rings and the relationship
between strongly one-sided AB rings and related rings. As an application of strongly
one-sided AB rings, we observe the von Neumann regularity of SF rings. A ring R is
called von Neumann regular (simply regular) if for any a ∈ R, a = aba for some b ∈ R.
A ring R is called strongly regular if for any a ∈ R, a = a2b for some b ∈ R. A ring is
strongly regular if and only if it is abelian regular if and only if it is reduced regular if
and only if it is (one-sided) duo regular [15, Theorems 3.2 and 3.5]. A ring R is called a
right (resp. left) SF if every simple right (resp. left) R-module is flat. A ring R is regular
if and only if all right (left) R-modules are flat [15, Corollary 1.3].
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Ramamurthi [29] initiated the study of the von Neumann regularity of SF rings,
asking whether a right and left SF ring is necessarily von Neumann regular. This
question has drawn the attention of many authors [e.g. 9, 16, 30, 33, 37, 38]. For
example, Zhang and Du [38] proved that a ring is strongly regular if and only if it
is strongly right bounded and right SF. Also Ramamurthi [29] proved that a ring is
strongly regular if and only if it is IFP and right SF. Some affirmative situations have
been found, but the question remains open.

We lastly extend the class of strongly one-sided AB rings, concerning some
conditions and some ring extensions.

2. Basic forms of strongly one-sided AB rings. In this section we study basic
examples of strongly one-sided AB rings. We first construct a typical example of
strongly one-sided AB rings. Use Eij for the matrix with (i, j)-entry 1 and elsewhere 0.
Given any ring R we consider a ring extension

Rn =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a a12 a13 · · · a1(n−1) a1n

0 a a23 · · · a2(n−1) a2n

0 0 a · · · a3(n−1) a3n
...

...
...

. . .
...

...
0 0 0 · · · a a(n−1)n

0 0 0 · · · 0 a

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

| a, aij ∈ R

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

where n(≥ 2) is a positive integer.

LEMMA 2.1. Let R be a ring and 0 �= a ∈ R. Then a is right (resp. left) regular if
and only if

⎛
⎜⎜⎜⎝

a a12 · · · a1n

0 a · · · a2n
...

...
. . .

...
0 0 · · · a

⎞
⎟⎟⎟⎠ ∈ Rn

is right (resp. left) regular.

Proof. Suppose that a ∈ R is right regular, and let

A =

⎛
⎜⎜⎜⎝

a a12 · · · a1n

0 a · · · a2n
...

...
. . .

...
0 0 · · · a

⎞
⎟⎟⎟⎠ ∈ Rn.

We proceed by induction on n. Put
(a a12

0 a

)(b b12
0 b

) = 0 for some
(b b12

0 b

) ∈ R2. Then ab = 0
and ab12 + a12b = 0. Since a is right regular, b = 0, and so b12 = 0; hence

(a a12
0 a

)
is right

regular. Next let

AB = 0 for B =

⎛
⎜⎜⎜⎝

b b12 · · · b1n

0 b · · · b2n
...

...
. . .

...
0 0 · · · b

⎞
⎟⎟⎟⎠ ∈ Rn.
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Then we get

⎛
⎜⎜⎜⎝

a a12 · · · a1(n−1)

0 a · · · a2(n−1)
...

...
. . .

...
0 0 · · · a

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

b b12 · · · b1(n−1)

0 b · · · b2(n−1)
...

...
. . .

...
0 0 · · · b

⎞
⎟⎟⎟⎠ = 0.

By the induction hypothesis we obtain b = 0 and bij = 0 for 1 ≤ i, j ≤ n −
1; hence ab1n + a12b2n + · · · + a1(n−1)b(n−1)n = 0, ab2n + a23b3n + · · · + a2(n−2)b(n−2)n +
a2(n−1)b(n−1)n = 0, . . . , ab(n−3)n + a(n−3)(n−2)b(n−2)n + a(n−3)(n−1)b(n−1)n = 0, ab(n−2)n +
a(n−2)(n−1)b(n−1)n = 0, ab(n−1)n = 0. From ab(n−1)n = 0 we get b(n−1)n = 0, and then from
ab(n−2)n + a(n−2)(n−1)b(n−1)n = 0 we also get b(n−2)n = 0. Inductively we obtain bin = 0
for i = 1, 2, . . . , n − 1, concluding that A is right regular. Conversely assume that A is
right regular, and let ab = 0 for some b ∈ R. Then from A(bE1n) = 0 we have b = 0.
Thus a is regular. The proof of left case is similar. �

With the help of Lemma 2.1 we construct a typical example of strongly one-sided
AB rings in the following.

THEOREM 2.2. A ring R is strongly right (resp. left) AB if and only if Rn is strongly
right (resp. left) AB for any n ≥ 2.

Proof. Suppose that R is strongly right AB and X ⊆ Rn with rRn (X) �= 0. Then any
diagonal in matrices in X is not right regular by Lemma 2.1. Let Y be the set of all
elements in R, which occur as diagonal entries of elements in X . If Y = 0, then rRn (X)
contains a non-zero ideal RE1n of Rn. Next we suppose Y �= 0 and let a be any in Y .
Take

0 �=

⎛
⎜⎜⎜⎝

b b12 · · · b1n

0 b · · · b2n
...

...
. . .

...
0 0 · · · b

⎞
⎟⎟⎟⎠ in rRn (X).

We will show rR(Y ) �= 0.
(Case 1) If b �= 0, then rR(Y ) �= 0;

(Case 2) Assume b = 0, and proceed by induction on n.
Set n = 2. Then clearly 0 �= b12 ∈ rR(Y ).
Set n = 3. If b23 �= 0, then we are done. If b23 = 0, then we get ab13 = 0. Here if

b13 �= 0, then we are done; otherwise we get 0 �= b12 ∈ rR(Y ). Consequently rR(Y ) �= 0.
Set

⎛
⎜⎜⎜⎝

a a12 · · · a1n

0 a · · · a2n
...

...
. . .

...
0 0 · · · a

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

b b12 · · · b1n

0 b · · · b2n
...

...
. . .

...
0 0 · · · b

⎞
⎟⎟⎟⎠ = 0 for

⎛
⎜⎜⎜⎝

a a12 · · · a1n

0 a · · · a2n
...

...
. . .

...
0 0 · · · a

⎞
⎟⎟⎟⎠ ∈ X.

If b(n−1)n �= 0, then we are done; otherwise we have ab(n−2)n = 0. Check whether
b(n−2)n = 0. Inductively we can check whether there is a non-zero bin ∈ rR(Y ) for
some i ∈ {1, 2, . . . , n − 1}; if every bin is zero, then there is a non-zero bij ∈ rR(Y )
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for i ∈ {1, 2, . . . , n − 2} and j ∈ {1, 2, . . . , n − 1}, by the induction hypothesis. Thus
rR(Y ) �= 0.

Now since R is strongly right AB, there is a non-zero ideal I of R with I ⊆ rR(Y ).
Then rRn (X) contains a non-zero ideal IE1n of Rn. Thus Rn is strongly right AB.

Conversely suppose that Rn is strongly right AB and V ⊆ R with rR(V ) �= 0.
Let W = {aIn | a ∈ V} ⊆ Rn, where In is the n × n identity matrix. Then rRn (W ) �=
0 because WU = 0 for any non-zero matrix U in Rn with entries in rR(V ). Since
Rn is strongly right AB, there exists a non-zero ideal J of Rn such that rRn (W ) ⊇
J. Set K = {c ∈ R | c is an entry of a matrix in J}. Then K is a non-zero ideal of R
from the computations (aIn)(rIn)C = 0 and (aIn)C(rIn) = 0 for a ∈ V , r ∈ R and C ∈
J. Moreover aK = 0 for all a ∈ V from (aIn)J = 0, entailing rR(X) ⊇ K . Thus R is
strongly right AB. The proof of the left case is similar. �

REMARK. Let U and L be the n × n upper and lower triangular matrix rings
over a ring, respectively; U and L are isomorphic, via the correspondence (aij) 
→
(bst) with bst = a(n−s+1)(n−t+1); Rn and R′

n are also isomorphic under the preceding
correspondence, where R′

n is the image of Rn. Thus every property obtained for U
(resp. Rn) is also true for L (resp. R′

n).

We use GF(pn) to denote the Galois field of order pn. Given a ring R we denote the
order of R and the characteristic of R by |R| and Ch(R), respectively. Strongly right
bounded rings and IFP rings are both strongly right AB, but the converse need not be
true as we see in the following.

EXAMPLE 2.3. (1) Let R be any ring and M be the 2 × 2 matrix ring over R. Each of
rM(E11) = RE21 = RE22 and �M(E11) = RE12 + RE22 cannot contain a non-zero ideal
of M. So M is neither strongly right nor strongly left AB. Let U be the 2 × 2 upper
triangular matrix ring over R. Each of rU (E11) = RE22 and �U (E22) = RE11 cannot
contain a non-zero ideal of U . So U is neither strongly right nor strongly left AB.
By similar computations, any n × n (upper or lower triangular) matrix ring is neither
strongly right nor strongly left AB.

(2) There exists a strongly right AB ring that is not strongly right bounded. Let
R be a strongly right AB ring and consider R3 over R; R3 is strongly right AB by
Theorem 2.2, but it is not strongly right bounded by the following: E23R3 = RE23

and R3E12 = RE12 cannot contain any non-zero ideal of R3. By this computation, Rn

(n ≥ 3), over any ring R, is neither strongly right nor strongly left bounded.
(3) There exists a strongly right AB ring that is not IFP. Let R be a strongly right

AB ring and consider R4 over R; R4 is strongly right AB by Theorem 2.2, but it is not
IFP by [23, Example 1.3].

(4) There are no containing relations between the classes of strongly right bounded
rings and IFP rings. Let R be a reduced ring, and consider R3 over R; R3 is IFP by [23,
Proposition 1.2], but it is not strongly right bounded by the computation in (2).

Next let R = (GF(2) GF(2)
0 �

)
, where � is the ring of integers. Note that each non-zero

right ideal of R is one of the following:
(GF(2) GF(2)

0 n�

)
,

(GF(2) GF(2)
0 0

)
,
(0 GF(2)

0 n�

)
,
(0 GF(2)

0 0

)
and

(0 0
0 n�

)
for n = 1, 2, . . . . Since n�E22 contains an ideal 2n�E22 of R and remainders

are two-sided, R is strongly right bounded. However �E22 = rR(E11) is not two-sided,
and thus R is not IFP.

(5) There is a domain that is neither strongly right nor strongly left bounded ring.
Let R be the first Weyl algebra over a field F of characteristic zero. Then R is a simple
right Noetherian domain which is not a division ring. Thus R is reduced, and so R
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is strongly AB. There is 0 �= a ∈ R such that aR �= R, since R is not a division ring.
Assume that there exists a non-zero ideal I of R such that I ⊆ bR. Then we have
R = I ⊆ bR, a contradiction; hence R is not strongly right bounded. Similarly R is
also not strongly left bounded.

We next observe the basic structure of strongly one-sided AB rings in the following
several results.

The following results are obtained from Eldridge [12].

LEMMA 2.4. (1) [12, Proposition] Let R be a finite non-commutative ring. If the
order of R is p3, with p being a prime, then R is isomorphic to the 2 × 2 upper triangular
matrix ring over GF(p).

(2) [12, Theorem] Let R be a finite ring of order m. If m has a cube-free factorisation,
then R is a commutative ring.

EXAMPLE 2.5. (1) By Lemma 2.4(1, 2) every minimal non-commutative ring is
isomorphic to the 2 × 2 upper triangular matrix ring over GF(2). So by Theorem 2.2
and Example 2.3(1, 2), R3 over GF(2) is a minimal non-commutative strongly AB ring
that is neither strongly right nor strongly left bounded.

(2) There is a strongly right bounded ring but not right duo. We refer to the ring
in [34, Remark 4]. Let S and T be the 2 × 2 upper and lower triangular matrix rings
over GF(p) respectively. Set R be the subring of S ⊕ T consisting of all the elements
of the form

((a c
0 b

)
,
(a 0

d b

))
. Then R is strongly right bounded but not right duo as can

be seen by the right ideal of R generated by (E11, E11). Note that R is a minimal non-
commutative strongly right (hence left by [34, Proposition 2]) bounded ring of order
16 when p = 2, with the help of Example 2.3(1) and Lemma 2.4.

(3) We refer to the three rings in [35, Example 2] as follows: Let S{x, y} be the free
algebra generated by x, y over a ring S.

Set B1 = GF(2){x, y}/(x3, y3, yx, x2 − xy, y2 − xy), where (x3, y3, yx, x2 −
xy, y2 − xy) is the ideal of GF(2){x, y} generated by x3, y3, yx, x2 − xy, y2 − xy.

Let �4 = {0̄, 1̄, 2̄, 3̄} be the ring of integers modulo 4 and

B2 = �4{x, y}/(x3, y3, yx, x2 − xy, x2 − 2̄, y2 − 2̄, 2̄x, 2̄y),

where (x3, y3, yx, x2 − xy, x2 − 2̄, y2 − 2̄, 2̄x, 2̄y) is the ideal of �4{x, y} generated by
x3, y3, yx, x2 − xy, x2 − 2̄, y2 − 2̄, 2̄x, 2̄y.

Let B3 be the ring of all matrices of the form
( a b

0 a2

)
over GF(22).

Then each Bi is a non-commutative duo ring of order 16 by [34, Proposition 3].
Note that Ch(B1) = 2 = Ch(B3), Ch(B2) = 4 and |J(B1)| = 8, |J(B3)| = 4. Thus B1 �
B2, B1 � B3 and B2 � B3. Any minimal non-commutative duo ring is isomorphic to
Bi for some i = 1, 2, 3 by [35, Theorem 3].

(4) Consider two subrings of the 4 × 4 matrix ring over GF(pn). Define

C1 =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

a 0 0 c
0 a 0 0
0 0 b d
0 0 0 b

⎞
⎟⎟⎠ | a, b, c, d ∈ GF(pn)

⎫⎪⎪⎬
⎪⎪⎭
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and

C2 =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

a 0 0 0
0 a 0 0
0 0 b 0
c 0 d b

⎞
⎟⎟⎠ | a, b, c, d ∈ GF(pn)

⎫⎪⎪⎬
⎪⎪⎭

;

⎛
⎜⎜⎝

0 0 0 GF(pn)
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 GF(pn)
0 0 0 0

⎞
⎟⎟⎠

are non-zero ideals of C1; hence every non-zero right annihilator contains at least one
of them, and so C1 is strongly right AB. However

�C1

⎛
⎜⎜⎝

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎞
⎟⎟⎠ =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

a 0 0 0
0 a 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ | a ∈ GF(pn)

⎫⎪⎪⎬
⎪⎪⎭

is a minimal left ideal of C1 that is not an ideal, and so it is not strongly left AB.
Moreover C1 is not strongly right bounded, since

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ C1

is a minimal right ideal of C1 that is not an ideal.
By a similar computation we get that C2 is strongly left AB but neither strongly

right AB nor strongly left bounded.

In the next theorem we see all minimal non-commutative strongly right AB rings
up to isomorphism, with the help of [35, Theorem 3].

THEOREM 2.6. (1) If R is a minimal non-commutative strongly right AB ring, then
R is isomorphic to Ak for some k ∈ {1, 2, 3, 4, 5, 6}, where Ai is the ring Bi in Example
2.5(3) for i = 1, 2, 3; A4 is R3 over GF(2); A5 is the ring R in Example 2.5(2); A6 = C1

with pn = 2 in Example 2.5(4).
(2) If R is a minimal non-commutative strongly left AB ring, then R is isomorphic to

Ak for some k ∈ {1, 2, 3, 4, 5, 6}, where Ai is the ring Bi in Example 2.5(3) for i = 1, 2, 3;
A4 is R3 over GF(2); A5 is the ring R in Example 2.5(2); A6 = C2 with pn = 2 in Example
2.5(4).

Proof. (1) Any minimal non-commutative strongly right AB ring must be of order
16 by Theorem 2.2 (consider R3 over GF(2)), Example 2.3(1) and Lemma 2.4(1, 2).
Let R be a minimal non-commutative strongly right AB ring.

(The case of local rings) We have three cases of |J(R)| = 2, |J(R)| = 4 or |J(R)| = 8.
Then R/J(R) is clearly a field, and by the argument in [35, Theorem 3], J(R) is a
vector space over R/J(R). If |J(R)| = 2, then R

J(R)
∼= GF(23), and so |J(R)| ≥ 8, a

contradiction. So have two cases of |J(R)| = 4 and |J(R)| = 8.
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Suppose |J(R)| = 8. Then R
J(R)

∼= GF(2), and by [25, Theorem 2.3.6], J(R) has a

basis {a, b, c} over GF(2) such that a2 = ab = c, ba = 0, b2 = 0, or a2 = ab = c, ba = 0,
b2 = c.

Assume that a2 = ab = c, ba = 0, b2 = c. Then [35, Theorem 3] implies that R ∼=
A1 if Ch(R) = 2 and R ∼= A2 if Ch(R) = 4.

Assume that a2 = ab = c, ba = 0, b2 = 0. Then bR is a minimal right ideal but not
an ideal, and so R is not strongly right bounded. Consider A4. Then

J(A4) =
⎛
⎝ 0 GF(2) GF(2)

0 0 GF(2)
0 0 0

⎞
⎠

and R ∼= A4, letting

a =
⎛
⎝ 0 1 0

0 0 1
0 0 0

⎞
⎠ , b =

⎛
⎝ 0 0 0

0 0 1
0 0 0

⎞
⎠ and c =

⎛
⎝ 0 0 1

0 0 0
0 0 0

⎞
⎠ .

Suppose |J(R)| = 4. Then R
J(R)

∼= GF(22), and by [35, Theorem 3] R ∼= A3.
(The case of non-local rings) We apply in part the proof of [34, Proposition 2].

First assume R = A ⊕ B; then |A| = 23 or |B| = 23 by Lemma 2.4(2), since R is non-
commutative. But by Lemma 2.4(1) and Example 2.3(1), any case is impossible; hence R
is indecomposable. Since R is finite and non-local, R contains a non-trivial idempotent
e (i.e. e �= 0 and e �= 1). Put f = 1 − e and consider the Pierce decomposition R =( eRe eR f

f Re f R f

)
.

Suppose that eR f �= 0 and f Re �= 0. Then |eRe| = |eR f | = |f Re| = |f R f | = 2. If
eR f Re �= 0, then eR f Re = eRe and rR

((0 eR f
0 0

)) = (eRe eR f
0 0

)
cannot contain a non-zero

ideal of R, a contradiction to the strong right ABness of R. If f ReR f �= 0, then we
also have a contradiction by a similar method. Consequently eR f Re = 0 = f ReR f .
Then

(0 eR f
0 0

)
and

( 0 0
f Re 0

)
are ideals of R; hence R is strongly right bounded. In this

case R ∼= A5 when p = 2 with e = ((1 0
0 0

)
,
(1 0

0 0

))
and f = ((0 0

0 1

)
,
(0 0

0 1

))
.

Suppose that eR f �= 0 and f Re = 0, i.e. R = (eRe eR f
0 f R f

)
. If |f R f | = 2, then

rR
(( e 0

0 0

)) = ( 0 0
0 f R f

)
, but this is a minimal right ideal of R that does not contain a

non-zero ideal of R, a contradiction to the strong right ABness of R. So we must
assume |f R f | = 22. If f R f is decomposable, say f R f = D1 ⊕ D2, then eR f Di �= 0
for some i = 1, 2 because eR f �= 0, say eR f D1 �= 0. Hence R has a minimal right
ideal rR

(( e 0
0 D2

)) = ( 0 0
0 D1

)
that is not an ideal, and thus R is not strongly right AB.

Consequently f R f is a local ring. But |J(f R f )| = 2. For, if J(f R f ) = 0, then f R f is
a field and |eR f | ≥ 4, since eR f is a vector space over f R f , a contradiction. Note
J(f R f )2 = 0. For if J(f R f )2 �= 0, then J(f R f )2 = J(f R f ), and so J(f R f ) is non-
nilpotent, a contradiction. Since

( 0 x
0 y

)
R is a minimal right ideal of R but not ideal, R

is not strongly right bounded, where 0 �= x ∈ eR f and 0 �= y ∈ J(f R f ). In this case
R ∼= A6 with

e =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ and f =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .
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(2) The proof is similar to that of (1). �

REMARK. The proof of the case of non-local rings in Theorem 2.6 is applicable for
any prime p in place of 2.

COROLLARY 2.7. If R is a minimal non-commutative strongly right bounded ring,
then R is isomorphic to Ai for some i ∈ {1, 2, 3, 5}, where Ai denotes the rings in Theorem
2.6.

Proof. In the proof of Theorem 2.6, Ai is right duo for i ∈ {1, 2, 3}; A5 is strongly
right bounded; and the rings A4, A6 are not strongly right bounded. �

3. Properties of strongly one-sided AB rings and related rings. In this sections
we study the properties of strongly one-sided AB rings and the relationship between
strongly one-sided AB rings and related rings. As an application of strongly one-sided
AB rings, we observe the von Neumann regularity of right SF rings under some specific
conditions (e.g. strong right ABness).

LEMMA 3.1. Let Ri be a ring for i ∈ I and D be the direct product of Ri’s.
(1) Every Ri is strongly right (resp. left) AB if and only if D is strongly right (resp.

left) AB. This result also holds for direct sums (possibly without identity).
(2) Every Ri is strongly right (resp. left) bounded if and only if D is strongly right

(resp. left) bounded. This result also holds for direct sums (possibly without identity).

Proof. (1) Suppose that Ri is strongly right AB for each i ∈ I . Let X ⊆ D with
rD(X) �= 0 and Yi be the set of all the ith compontents of the sequences in X . From
rD(X) �= 0 there is j ∈ I such that rRj (Yj) �= 0. Since Rj is strongly right AB there is a
non-zero ideal K of Rj with K ⊆ rRj (Yj). Set H be the subset of D such that ejH = K
and ekH = 0 for k �= j, where ei is the sequence in D with ith component 1Ri and
elsewhere zero. Since H is a non-zero ideal of D with XH = 0, D is strongly right AB.
Conversely suppose that D is strongly right AB and Rj is not strongly right AB for
some j ∈ I . Take X ⊆ Rj such that rRj (X) is non-zero, and this does not contain any
non-zero ideal of Rj. Consider Y ⊆ D such that ejY = X and ekY = {1Rk} for k �= j.
Then ejrD(Y ) = rRj (X) and ekrD(Y ) = 0 for k �= j; hence rD(Y ) does not contain any
non-zero ideal of D, a contradiction. The direct sum case and the left case can be
proved similarly. The proof of (2) is similar to (1). �

From Lemma 3.1 it is natural to ask whether the class of strongly one-sided AB
rings is closed under subrings and factor rings. However the answer is negative by the
following.

EXAMPLE 3.2. Let R be the strongly right AB ring C1 in Example 2.5(4), and
consider the subring

S =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

a 0 0 c
0 a 0 0
0 0 b 0
0 0 0 b

⎞
⎟⎟⎠ | a, b, c ∈ GF(pn)

⎫⎪⎪⎬
⎪⎪⎭
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of R. Then S is not strongly right AB because

rS

⎛
⎜⎜⎝

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

⎞
⎟⎟⎠ =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 b 0
0 0 0 b

⎞
⎟⎟⎠ | b ∈ GF(pn)

⎫⎪⎪⎬
⎪⎪⎭

is a minimal right ideal of S that is not an ideal. Next consider the factor ring R/I by
the ideal

I =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 d
0 0 0 0

⎞
⎟⎟⎠ | d ∈ GF(pn)

⎫⎪⎪⎬
⎪⎪⎭

;

R/I is isomorphic to the preceding ring S and so is not strongly right AB. The left
cases can be shown similarly.

The IFPness is left–right symmetric, but the strong ABness is not left–right
symmetric by Example 2.5(4) in spite of being finite rings. The strong boundedness
and duoness are also not left–right symmetric by the following.

EXAMPLE 3.3 (1) Let R be the ring in Example 2.3(4). Then R is strongly right
bounded. But �R

((0 0
0 1

)) = (GF(2) 0
0 0

)
cannot contain a right ideal of R, concluding that

R is not strongly left AB (hence not strongly left bounded).
(2) Let F be a field and F(x) be the field of rational functions over F . Due

to Chatters and Xue [8], set R = F(x) ⊕ F(x) to be an additive group with the
multiplication (f1(x), g1(x))(f2(x), g2(x)) = (f1(x)f2(x), f1(x2)g2(x) + g1(x)f2(x)). Then
R is right duo but not left duo by the computation in the example in [8].

In the following lemma we check some conditions, obtained by Chatters, Courter
and Xue, under which the strong boundedness and duoness can be left–right symmetric.
We denote by c(M) the composition length of a module M over a ring R.

LEMMA 3.4 (1) [34, Proposition 3] A finite right duo ring is left duo.
(2) [10, Theorem 2.2] A right Artinian right duo ring R is left duo if c(RR) = c(RR).
(3) [10, Corollary 2.3] A right duo ring is left duo when it is a finite-dimensional

algebra over a field.
(4) [34, Theorem] If R is a strongly right bounded finite ring and |R| has no factors

of the form p5, then R is strongly left bounded.
(5) [34, Proposition 2] Let R be a strongly right bounded ring with |R| = p4, p a

prime. If R is non-local, then R is strongly left bounded.
(6) If R is a local ring with nilpotent J(R), then R is strongly AB.

Proof. (6) Let R be a local ring such that J(R)k = 0 and J(R)k−1 �= 0. Let X ⊂ R
with rR(X) �= 0. Then X ⊆ J(R), and so XJ(R)k−1 = 0; hence R is strongly right AB.
Similarly R is strongly left AB. �

Local rings (especially of order 24) with nilpotent Jacobson radical need not be
strongly one-sided bounded as can be seen by the ring R3 over GF(2) in Example
2.3(2). But in the following we see situations for which finite strongly one-sided AB
rings can be two-sided.
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THEOREM 3.5 (1) In Theorem 2.6, every Ai is left–right symmetric for i ∈
{1, 2, 3, 4, 5}.

(2) Let R be a finite non-local strongly right AB ring such that |R| has no factors of
the form p5. Then R is strongly right bounded if and only if R is strongly left AB.

Proof. (1) By Lemma 3.4(1) Ai is duo for i = 1, 2, 3; A4 is strongly AB by Lemma
3.4(6); and A5 is strongly bounded by Lemma 3.4(4) or Lemma 3.4(5).

(2) It is well known that R is a finite direct product of rings each of which has
prime power order. Through Lemmas 2.4 and 3.1, we can assume R is of order p4 with
p a prime. If R is strongly right bounded, then it is strongly left bounded by Lemma
3.4(5). Conversely if R is strongly left AB, then R is strongly AB, and so by Theorem
2.6(2) R is isomorphic to the ring R in Example 2.5(2); hence R is strongly (right)
bounded. �

We next find more conditions under which the strong ABness or strong
boundedness can be left–right symmetric.

PROPOSITION 3.6. For a ring R the following conditions are equivalent:
(1) R is reduced;
(2) R is semiprime and strongly right AB;
(3) R is semiprime and strongly left AB;
(4) R is semiprime and IFP.

Proof. (1)⇒(4), (4)⇒(2) and (4)⇒(3) are clear.
(2)⇒(1): Assume on the contrary that there exists 0 �= a ∈ R satisfying a2 = 0.

Then rR(�R(a)) is a non-zero right annihilator in R. Since R is strongly right AB,
there exists a non-zero ideal I of R such that I ⊆ rR(�R(a)), i.e. �R(a)I = 0. We claim
that �R(a) ∩ I �= 0. If Ia = 0, then we are done. If Ia �= 0, then we also have 0 �= Ia ⊆
�R(a) ∩ I because (Ia)a = 0. However (�R(a) ∩ I)2 ⊆ �R(a)I = 0, and so �R(a) ∩ I = 0,
since R is semiprime, a contradiction. Thus R is reduced. The proof of (3)⇒(1) is
similar. �

A ring is called PI if it satisfies a polynomial identity with coefficients in the ring
of integers.

PROPOSITION 3.7. For a PI ring R the following conditions are equivalent:
(1) R is reduced;
(2) R is semiprime and strongly right AB;
(3) R is semiprime and strongly left AB;
(4) R is semiprime and IFP;
(5) R is semiprime and strongly right bounded;
(5) R is semiprime and strongly left bounded.

Proof. The equivalences of (1)–(4) come from Proposition 3.6; (1)⇒(5) and (1)⇒(6)
are obtained by [4, Theorem C]; (5)⇒(2) and (6)⇒(3) are obvious. �

The PI condition in Proposition 3.7 is not superfluous. The non-PI ring R in
Example 2.3(5) is a domain (hence reduced) which is neither strongly right nor strongly
left bounded.

Due to Marks [27], a ring R is called NI if N(R) = N∗(R), where N∗(R) is the
upper nilradical of R. It is obvious that a ring R is NI if and only if R/N∗(R) is
reduced and that IFP rings are NI. A prime ideal P of R is called completely prime
if R/P is a domain. Hong and Kwak [18, Corollary 13] proved that a ring R is NI if
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and only if every minimal strongly prime ideal of R is completely prime. According to
Köthe [24], a ring R is called an I-ring if every non-nil right ideal of R contains a non-
zero idempotent. Algebraic algebras and π -regular rings are I-rings by [22, Proposi-
tion 9.4.1]. It is easy to check that Jacobson radicals of I-rings are nil.

LEMMA 3.8 (1) The definition of I-ring is left–right symmetric.
(2) A ring R is an I-ring if and only if for each non-nilpotent element x ∈ R there

exists 0 �= y ∈ R satisfying yxy = y.
(3) Let R be an I-ring. If R is strongly one-sided AB, then N(R) = J(R).
(4) Strongly one-sided AB I-rings are NI.

Proof. (1) Let R be an I-ring and J be a non-nil left ideal of R. Let a ∈ J be
non-nilpotent. Then aR is a non-nil right ideal, and so there is 0 �= ab = abab for some
b ∈ R, since R is an I-ring. Consider baba ∈ Ra ⊆ J; then baba �= 0 and (baba)(baba) =
b(ababab)a = baba.

(2) Let R be an I-ring and x = a, y = bab, where a, b are the elements in (1). Then
y �= 0 and yxy = (bab)a(bab) = bab = y. The converse is obvious.

(3) Let R be an I-ring; then J(R) is nil. Assume that there is a ∈ N(R), say an = 0
for some positive integer n, with a /∈ J(R). Then aR is a non-nil right ideal of R. But
R is an I-ring; so e ∈ aR for some non-zero e2 = e ∈ R. Since R is strongly right AB,
there exists a non-zero ideal I of R such that I ⊆ rR(1 − e) = eR ⊆ aR. Let ar ∈ I and
e = as for some r, s ∈ R. Then ar = ear and sar = esar, since I is two-sided. Thus ar =
ear = asar = aesar = a2s2ar = a2es2ar = · · · = ansnar = 0, which is a contradiction.
Thus N(R) ⊆ J(R), entailing N(R) = J(R). The proof of the left case is similar.

(4) If R is strongly one-sided AB I-ring, then R/N(R) is reduced by (3) with
N(R) = J(R). �

Lemma 3.8(3, 4) is similar to [17, Proposition 3]. The converse of Lemma 3.8(3)
need not be true as can be seen by the 2 × 2 upper triangular matrix ring over a division
ring. The condition ‘I-ring’ in Lemma 3.8(3, 4) is not superfluous by the following.

EXAMPLE 3.9. There is a strongly AB ring that is neither an I-ring nor NI. Let K
be a field and Dn = K{xn} with relation xn+2

n = 0, where n is any non-negative integer
and K{xn} is the free algebra generated by xn over K . Note Dn ∼= K [x]/(xn+2), where
(xn+2) is the ideal of K [x] generated by xn+2, with K [x] the polynomial ring with an
indeterminate x over K . We use the ring in [18, Example 1.6]. Define Sn = (Dn Dnxn

Dnxn Dn

)
.

Notice that J(Sn) = (Dnxn Dnxn
Dnxn Dnxn

)
and Sn

J(Sn)
∼= ( K 0

0 K

)
; hence

( f1 f2,

f3 f4

) ∈ Sn is invertible when
the constant terms of f1 and f4 are both non-zero.

We first claim that Sn is strongly AB. Notice that I1 = K
( xn+1

n 0
0 0

)
, I2 =

K
( 0 xn+1

n
0 0

)
, I3 = K

( 0 0
xn+1

n 0

)
and I4 = K

( 0 0
0 xn+1

n

)
are non-zero ideals in Sn.

Take X ⊆ Sn such that rSn (X) �= 0. Then X is contained in one of the following
three kinds of subsets:

Y1 =
{(

f1 f2

f3 f4

)
∈ Sn | fi ∈ Dnxn for i = 1, 2, 3, 4

}
,

Y2 =
{(

f1 f2

f3 f4

)
∈ Sn | f1 ∈ Dn and fi ∈ Dnxn for i = 2, 3, 4

}
,

Y3 =
{(

f1 f2

f3 f4

)
∈ Sn | f4 ∈ Dn and fi ∈ Dnxn for i = 1, 2, 3

}
.
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If X ⊆ Y1, then rSn (X) contains all Ij’s; if X ⊆ Y2, then rSn (X) contains I3 and I4; if
X ⊆ Y3, then rSn (X) contains I1 and I2. Consequently Sn is strongly right AB, and
similarly we can conclude that Sn is strongly left AB.

Next let R = ∏∞
i=0 Sn. Then R is strongly AB by Lemma 3.1(1), and so is

every Sn.
Consider two sequences (an), (bn) ∈ R such that an = (0 xn

0 0

)
and bn = ( 0 0

xn 0

)
for all

n. Then (an), (bn) ∈ N(R), since (an)2 = 0 = (bn)2; but each component of (an) + (bn) is( 0 xn
xn 0

)
, and so (an) + (bn) is non-nilpotent. Thus R is not NI.

The following lemma is due to Ramamurthi [29].

LEMMA 3.10. (1) [29, Proposition 3.2] An IFP ring R is strongly regular if and only
if R is right SF.

(2) A ring R is strongly regular if and only if R is reduced and right SF if and only if
R is reduced and left SF.

Proof. (2) is proved by the left version of (1), [15, Theorem 3.2], [15, Coro-
llary 1.13] and the fact that reduced rings are IFP. �

Zhang and Du [38, Theorem 3] proved that a ring R is strongly regular if and
only if R is strongly right bounded and right SF. In the following theorems we give
partial answers to Ramamurthi’s question, extending the result of Zhang and Du and
Lemma 3.10(1). Strongly regular rings are I-rings by Lemma 3.8(2) or [22, Proposi-
tion 9.4.1].

THEOREM 3.11. For a ring R the following conditions are equivalent:
(1) R is strongly regular;
(2) R is strongly right AB and right SF;
(3) R is a strongly right AB and left SF I-ring.

Proof. (1)⇒(2) and (1)⇒(3) are obtained from [15, Theorem 3.2], [15, Coro-
llary 1.13] and Lemma 3.8(2).

(2)⇒(1): Let 0 �= a ∈ R with a2 = 0. Then rR(�R(a)) is non-zero right annihilator,
and so there exists a non-zero ideal I of R such that I ⊆ rR(�R(a)). So �R(a) =
�R(rR(�R(a))) ⊆ �R(I). Here we claim that �R(I) = R. Suppose not; then there exists a
maximal right ideal M containing �R(I). Since R is right SF and a ∈ M, we can get
b ∈ M with a = ba by the right version of [26, Proposition 5.4.3] (i.e. Ra ∩ M = Ma).
This implies that 1 − b ∈ �R(a) ⊆ �R(I) ⊆ M, and so 1 ∈ M, a contradiction. Thus
�R(I) = R, and so I = 0, which is also a contradiction, concluding that R is reduced.
Moreover R is strongly regular by Lemma 3.10(1).

(3)⇒(1): First we have that R/J(R) is strongly regular by Lemmas 3.8(3) and
3.10(1). Here we claim that aR + rR(a) = R for any element a ∈ R. Suppose not;
then there exists a maximal right ideal M containing aR + rR(a). But M is also a
maximal left ideal of R by [15, Theorem 3.2], since R/J(R) is strongly regular and
M ⊇ J(R). Now since R is left SF and a ∈ M, there exists b ∈ M such that a = ab by
[26, Proposition 5.4.3] (i.e. aR ∩ M = aM). This implies that 1 − b ∈ rR(a) ⊆ M, and
so 1 ∈ M, a contradiction. Thus R is strongly regular from aR + rR(a) = R. �

In the following we get the same result as Theorem 3.11 with the NIness in place
of the strong one-sided ABness. Strongly regular rings are reduced (hence NI) by [15,
Theorem 3.2].
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THEOREM 3.12. For a ring R, the following conditions are equivalent:
(1) R is strongly regular;
(2) R is right SF and NI;
(3) R is left SF and NI.

Proof. It suffices to show (2)⇒(1) and (3)⇒(1) by [15, Corollary 1.13]. Let R
be a right SF and NI ring. Then R/N(R) is reduced and right SF; hence R/N(R)
is strongly regular by Lemma 3.10(1). Since J(R/N(R)) = 0, we get J(R) ⊆ N(R),
entailing J(R) = N(R). Then every maximal right or left ideal is two-sided because
R/J(R) is duo by [15, Theorem 3.2]. Here we will show N(R) = 0. Assume on the
contrary that there exists 0 �= a ∈ N(R) such that a2 = 0. Then there exists a maximal
left ideal M of R containing �R(a). But M is also a maximal right ideal of R because
R/N(R) is duo, and so R/M is a flat right R-module. Since R is right SF, there
exists b ∈ M such that a = ba by the right version of [26, Proposition 5.4.3]. Hence
1 − b ∈ �R(a) ⊆ M, obtaining 1 ∈ M, a contradiction. Consequently N(R) = 0, and
hence R is strongly regular. The proof of (3)⇒(1) is similar. �

Recall that a ring R is NI if and only if every minimal strongly prime ideal of
R is completely prime [18, Corollary 13]. Thus we can obtain the following from
Theorem 3.12 and note that the condition ‘R is fully idempotent’ is superfluous.

COROLLARY 3.13. [37, Theorem 4] A ring R is strongly regular if and only if R is a
fully idempotent (i.e. every ideal is idempotent) right SF ring such that every prime ideal
is completely prime.

Strongly AB rings need not be abelian by Example 2.5(2), and abelain rings are
also need not be strongly one-sided AB by the following.

EXAMPLE 3.14. Consider Rn over GF(2) as in the starting position of Section 2.
Let Sn = R2n−1 for n = 1, 2, . . . , and define a map σ : Sn → Sn+1 by A 
→ ( A 0

0 A

)
; then

Sn can be embedded into Sn+1 via σ (i.e. A = σ (A) in Sn+1 for A ∈ Sn). Then {Sn, σnm},
with σnm = σ m−n whenever n ≤ m, is a direct system over I = {1, 2, . . .}. Set R be the
direct limit of {Sn, σnm}. Then R = ⋃∞

n=1 Sn. We first claim that R is semiprime. Take
0 �= A ∈ R such that A is nilpotent. Then A ∈ Sn for some n such that the diagonal of
A is zero, and every non-zero entry of A is 1, say A = (ast).

Let i be the smallest such that the ith row of A contains a non-zero entry and j be the
smallest such that aij �= 0 in the ith row. Note that i < j and (i + 2k, j + 2k)-entry of A in
Sk+1 is also 1 for k = n, n + 1, n + 2, . . . . Use euv to denote the square matrix in which
(u, v)-entry is 1 and zero elsewhere. Let A0 = A and A1 = A0B0A0 ∈ A0RA0, where A0

is considered in Sn+1 and B0 = ej(i+2n) ∈ Sn+1. Say A1 = (bst). Then i is the smallest such
that the ith row of A1 contains a non-zero entry and j + 2n is the smallest such that
bi(j+2n) �= 0, actually bi(j+2n) = 1, in the ith row; hence (i + 2n+1, j + 2n + 2n+1)-entry of
A1 in Sn+2 is also 1. Let A2 = A1B1A1 ∈ A1RA1, where B1 = e(j+2n)(i+2n+1) ∈ Rn+2. Say
A2 = (cst). Then i is the smallest such that the ith row of A2 contains a non-zero entry,
and j + 2n + 2n+1 is the smallest such that bi(j+2n+2n+1) �= 0, actually bi(j+2n+2n+1) = 1,
in the ith row; hence (i + 2n+2, j + 2n + 2n+1 + 2n+2)-entry of A2 in Sn+3 is also 1.
Proceeding in this manner, we can show that the (i, j + 2n + 2n+1 + · · · + 2n+(k−1))-
entry of Ak is also 1 for any k; hence we can obtain inductively a sequence (Ak)∞k=0 each
term of which is non-zero with Ak+1 ∈ AkRAk. Thus A is not strongly nilpotent and
A /∈ P(R), concluding that R is semiprime.
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Assume that R is strongly one-sided AB. Then R is reduced by Proposition 3.6,
since R is semiprime, a contradiction. Thus R is neither strongly right nor strongly left
AB.

While every Sn is abelian and every non-zero idempotent in Sn is such that the
diagonal is 1 and zero elsewhere (i.e. the identity is the only non-zero idempotent), by
[19, Lemma 2]. Thus R is also abelian.

A ring R is called directly finite if xy = 1 implies yx = 1 for x, y ∈ R. It is trivial
to check that abelian rings are directly finite, whence the following proposition shows
that directly finite rings unify the classes of strongly one-sided rings and abelian rings.

PROPOSITION 3.15. Strongly one-sided AB rings are directly finite.

Proof. Let R be a strongly right AB ring, and assume on the contrary that xy = 1
but yx �= 1 for some x, y ∈ R. Then yx is a non-identity idempotent and yx(1 − yx) = 0
with 1 − yx �= 0. Since R is strongly right AB, we have yxRa = 0 for some non-zero
a ∈ R; but xRa = xyxRa = 0 implies 0 �= a = xya ∈ xRa = 0, a contradiction. Thus
R is directly finite. The proof for strongly left AB rings is similar. �

Due to Anderson and Camillo [2], a ring R satisfies ZC2 if ab = 0 implies ba = 0
for a, b ∈ R. Rings satisfying ZC2 are clearly IFP, but the converse need not hold by
[23, Example 1.5].

COROLLARY 3.16. [2, Theorem 2.1] If a ring R satisfies ZC2, then R is directly finite.

A one-sided Artinian ring R is π -regular (i.e. for any x ∈ R there are y ∈ R and a
positive integer n such that xn = xnyxn) by a simple computation.

LEMMA 3.17. Let R be a strongly one-sided AB ring. If R is one-sided Artinian, then
R/J(R) is a finite direct product of division rings, and especially each maximal one-sided
ideal of R is two-sided.

Proof. Let R be one-sided Artinian. Then R is an I-ring by [22, Proposition
9.4.1], and so R/J(R) is reduced by Lemma 3.8(3). Thus R/J(R) is a finite direct
product of division rings, and it is immediate that each maximal one-sided ideal of R is
two-sided. �

A quasi-Frobenius ring, introduced by Nakayama in 1939 [28], is defined to be
right Artinian and right self-injective. A ring R is quasi-Frobenius if and only if for
each left ideal I and right ideal J in R, �R(rR(I)) = I and rR(�R(J)) = J [3, Theorem
30.7].

PROPOSITION 3.18. Let R be a quasi-Frobenius ring. If R is strongly one-sided AB,
then R is strongly bounded.

Proof. Since R is right Artinian, every right ideal of R contains a minimal right
ideal. To prove that R is strongly right bounded it suffices to show that every minimal
right ideal is two-sided. Let I be a minimal right ideal of R. Then since R is quasi-
Frobenius, J = �(I) is a maximal left ideal of R with I = rR(J). But J is two-sided by
Lemma 3.17, and then we have I = rR(J) is two-sided. The proof for the left case is
similar. �

Denote the right (resp. left) socle – i.e. the intersection of all essential right (resp.
left) ideals – of a ring R by Soc(RR) (resp. Soc(RR)). The simple right Noetherian
domain in Example 2.3(5) is neither strongly right nor strongly left bounded. But
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reduced rings are strongly bounded when they satisfy descending chain condition
(DCC) on essential right ideals as follows.

PROPOSITION 3.19. Let R be a reduced ring satisfying DCC on essential right ideals.
Then R is a strongly bounded ring such that R is a subdirect product of division rings, and
every proper one-sided ideal consists of zero divisors.

Proof. We use freely the fact that reduced rings are non-singular, semiprime and
abelian. Note that Soc(RR) is itself an essential right ideal of R, since a finite intersection
of essential submodules is also essential and R satisfies DCC on essential right
ideals.

Let I be a non-zero right ideal of R. Then Soc(RR) ∩ I �= 0, and since R is
semiprime and abelian, Soc(RR) ∩ I contains a non-zero central idempotent. Thus
R is strongly right bounded.

To prove that R is strongly left bounded it is enough to show that Soc(RR) is
essential left ideal of R, using a similar manner to the preceding one. First we get
Soc(RR) = Soc(RR), since R is semiprime and abelian. Assume that Soc(RR) ∩ J = 0
for a left ideal J of R. Then Soc(RR)J = 0 and since R is semiprime, we have
JSoc(RR) = 0; consequently 0 = JSoc(RR) = JSoc(RR). But R is right non-singular
and Soc(RR) is an essential right ideal of R, inducing J = 0. Thus R is strongly left
bounded.

Every minimal prime ideal of R is completely prime by [32, Proposition 1.11],
since R is reduced. So R is a subdirect product of domains each of which satisfies DCC
on essential right ideals by [5, Proposition 1.2(a)]. But a domain, satisfying DCC on
essential right ideals, is a division ring by [5, Proposition 1.6]. Thus R is a subdirect
product of division rings. Every regular element of a semiprime ring is invertible by [5,
Proposition 1.6] when it satisfies DCC on essential right ideals, and hence each proper
right or left ideal of R consists of zero divisors. �

Note that the simple right Noetherian domain in Example 2.3(5) does not satisfy
DCC on essential right ideals. Due to Yu [36], a ring is called right (resp. left) quasi-
duo if every maximal right (resp. left) ideal is two-sided. Right duo rings are clearly
right quasi-duo, and it is straightforward that a right quasi-duo right primitive ring
is a division ring. Yu [36, Lemma 2.3] showed that R/J(R) is reduced for a right or
left quasi-duo ring R. By Lemma 3.17, strongly one-sided AB rings are quasi-duo
when they are one-sided Artinian. But quasi-duo rings need not be strongly one-
sided AB as can be seen by the 2 × 2 upper triangular matrix ring over a simple
ring.

COROLLARY 3.20. Let R be a one-sided quasi-duo ring satisfying DCC on essential
right ideals. Then R/J(R) has the properties as in Proposition 3.19.

Proof. Since R is one-sided quasi-duo and satisfies DCC on essential right ideals,
R/J(R) is a reduced ring satisfying DCC on essential right ideals by [36, Lemma 2.3]
and [5, Proposition 1.2(a)]. Then Proposition 3.19 gives the result. �

4. More examples of strongly one-sided AB rings. In this section we study some
conditions and some ring extensions to extend the class of strongly one-sided AB rings.
Let R be a ring; R[x] (resp. R[[x]]) denotes the polynomial ring (resp. power series ring)
over R with an indeterminate x over R.
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The class of strongly one-sided AB rings is not closed under subrings by
Example 3.2. In the following we see a kind of subring that inherits the strong ABness.

PROPOSITION 4.1. Let R be a ring and 0 �= e = e2 ∈ R such that eIe �= 0 for any
non-zero ideal I of R. If R is strongly right AB, then so is eRe.

Proof. Let R be a strongly right AB ring and S = eRe. Suppose that rS(X) �= 0
for X ⊆ S. Then since R is strongly right AB there is a non-zero ideal I of R such
that I ⊆ rR(X). Moreover rS(X) = rR(X) ∩ S ⊇ I ∩ S = eIe. By the condition eIe is a
non-zero ideal of S, concluding that S is strongly right AB. �

We next consider polynomial rings over a strongly right AB ring. By [17], there
exists a strongly right bounded ring R whose polynomial ring R[x] is not strongly
right bounded. By [20, Example 2], there exists an IFP ring R whose polynomial ring
R[x] is not IFP. So it is natural to ask whether R[x] is strongly right AB if a ring R
also is. We do not know the answer, but we find some conditions under which it is
affirmative.

PROPOSITION 4.2. Let R be a ring and J be an ideal of R such that every element in
R\J is regular and J2 = 0. Then R, R[x] and R[[x]] are strongly AB.

Proof. Set K = R\J. Let A ⊂ R with rR(A) �= 0. Then A ⊆ J, and so AJ = 0; hence
R is strongly right AB. Similarly R is strongly left AB.

Let B ⊂ R[x] with rR[x](B) �= 0, and suppose that f (x)g(x) = 0 for 0 �= f (x) =∑m
i=0 aixi ∈ B and 0 �= g(x) = ∑n

j=0 bjxj ∈ rR[x](B). We can let a0 and b0 be both non-
zero and m = n. Since R/J is a domain, [4, Lemma 1] implies that aibj ∈ J for all i
and j; a0b0 = 0 gives a0, b0 ∈ J. Assume f (x) /∈ J[x]. Then g(x) ∈ J[x] because each
aibj is in J. Say that k is smallest such that ak ∈ K . Then k ≥ 1. From J2 = 0 we
get 0 = a0bk + a1bk−1 + · · · + ak−1b1 + akb0 = akb0, entailing b0 = 0, a contradiction.
Thus f (x) ∈ J[x], and we get B ⊂ J[x]. Consider the non-zero ideal J[x] of R[x]. From
J[x]2 = 0 we have BJ[x] = 0, concluding that R[x] is strongly right AB. Similarly R[x]
is strongly left AB. The proof for R[[x]] is similar. �

Given a ring R and a bimodule RMR, the trivial extension of R by M, denoted
by T(R, M), is the ring R ⊕ M with the usual addition and the multiplication
(r1, m1)(r2, m2) = (r1r2, r1m2 + m1r2). This is isomorphic to the ring of all matrices( r m

0 r

)
, where r ∈ R and m ∈ M and the usual matrix operations are used.

Let R be a commutative ring and h be a ring endomorphism of R. For an R-module
M, the multiplication (a, m)(b, n) = (ab, h(a)n + bm) gives a ring structure to R ⊕ M,
denoted by R(+)hM.

COROLLARY 4.3. (1) Let R be a commutative domain and M be an R-module. If M
is torsion-free, then T(R, M) and T(R, M)x] are both strongly AB.

(2) Let K be a field, h be a non-zero ring endomorphism of K and V be a K-vector
space. Then K(+)hV and (K(+)hV )[x] are both strongly AB.

(3) Let R be a local ring with J(R)2 = 0. Then R and R[x] are both strongly AB.

Proof. (1) Let J = {(a, m) ∈ T(R, M) | a = 0}; then J2 = 0 and R\J is the set of
all regular elements in T(R, M). (2) Let J = {(k, v) ∈ K(+)hV | k = 0}; then J2 = 0
and R\J is the set of all regular elements in K(+)hV . (3) Let R be a local ring. Then
R\J(R) is clearly the set of all regular elements in R. Thus we get the results from
Proposition 4.2. �
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The following is similar to Proposition 4.2.

PROPOSITION 4.4. If R is a local ring with nilpotent J(R), then R and R[[x]] are
strongly AB.

Proof. Let R be a local ring such that J(R)k = 0 and J(R)k−1 �= 0. Then R
is strongly AB by Lemma 3.4(6), and R[[x]]

J(R)[[x]]
∼= R

J(R) [[x]] is a domain such that

(J(R)[[x]])k−1 is a non-zero nilpotent ideal of R[[x]]. Let A ⊂ R[[x]] with rR[[x]](A) �= 0,
say f (x)g(x) = 0 for 0 �= f (x) ∈ B and 0 �= g(x) ∈ rR[x](B). Here we can suppose that a0

and b0 are both non-zero. Put T = R[[x]]
J(R)[[x]] , and use h(x) in place of h(x) + J(R)[[x]] for

simplicity. Assume f (x) /∈ J(R)[[x]]. Then f (x) = xnf0(x) = f0(x)xn in T for some non-
negative integer n and f0(x) ∈ T with invertible constant term. So f0(x) is invertible,
say f0(x)h(x) = h(x)f0(x) = 1; hence h(x)f0(x)xn = xn and (1 − h(x)f0(x))xn ∈ J(R)[[x]].
But J(R)[[x]]k = 0, and so we get (1 − h0(x)f0(x))xnk = 0 (hence 1 − h0(x)f0(x) = 0) for
some h0(x) ∈ R[[x]]. Now we have 0 = h0(x)f (x)g(x) = h0(x)f0(x)g(x)xn = g(x)xn, and
so g(x) = 0, a contradiction. Thus f (x) ∈ J(R)[[x]] and A(J(R)[[x]])k−1 = 0, entailing
that R[[x]] is strongly right AB. Similarly R[[x]] is strongly left AB. �

Consider Rn as in Section 2 over a a local ring with nilpotent Jacobson radical.
Then Rn and Rn[[x]] are both strongly AB by Theorem 2.2, Lemma 3.4(6) and
Proposition 4.4.

PROPOSITION 4.5. Let R be a ring and n any positive integer. Then R is strongly right
AB if and only if so is R[x]/(xn), where (xn) is the ideal of R[x] generated by xn.

Proof. Put S = R[x]/(xn), and use h(x) in place of h(x) + (xn) for simplicity.
Suppose that R is strongly right AB. Let A ⊂ S with rS(A) �= 0, and take non-zero
g(x) = ∑n

j=0 bjxj in rS(A). Here we can assume b0 �= 0. Consider the subset B = {a ∈
R | a = am for 0 �= f (x) = ∑n

i=m aixi ∈ A} of R. Then rR(B) �= 0, since b0 ∈ rR(B). But
R is strongly right AB, and so there is a non-zero ideal of R such that I ⊆ rR(B). Now
we have A(I [x])n−1 = 0, concluding that S is strongly right AB.

Conversely suppose that S is strongly right AB. Let A ⊆ R with rR(A) �= 0. Note
that rR(A) = rS(A) ∩ R. Since rR(A) �= 0, we get rS(A) �= 0. But S is strongly right
AB, so there is a non-zero ideal L of S such that rS(A) ⊇ L. Let L0 be the set of all
coefficients of all polynomials in L. Then clearly L0 is a non-zero ideal of R. Now
AL0 = 0, and so R is strongly right AB. �

Due to Rege and Chhawchharia [31], a ring R is called Armendariz if aibj = 0 for
all i and j whenever polynomials f (x) = ∑m

i=0 aixi and g(x) = ∑n
j=0 bjxj in R[x] satisfy

f (x)g(x) = 0. Reduced rings are Armendariz by [4, Lemma 1], and Armendariz rings
are abelian by the proof of [1, Theorem 6]. Commutative (hence strongly AB) rings
need not be Armendariz by [31, Example 3.2].

PROPOSITION 4.6. Let R be an Armendariz ring. Then R is strongly right AB if and
only if so is R[x].

Proof. Suppose that R is strongly right AB. Let A ⊆ R[x] with rR[x](A) �= 0 and B
be the set of all coefficients of polynomials in A. Take non-zero f (x) = a0 + a1x + · · · +
anxn in rR[x](A). Then for any g(x) = b0 + b1x + · · · + bmxm ∈ A, g(x)f (x) = 0. Since
R is Armendariz, biaj = 0 for all i, j. Thus aj ∈ rR(B) for any j = 1, 2, . . . , n, entailing
rR(Y ) �= 0. Since R is strongly right AB, there exists a non-zero ideal I of R such that
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rR(B) ⊇ I . Then I [x] is a non-zero ideal of R[x] such that rR[x](A) ⊇ I [x]. Thus R[x] is
strongly right AB. The proof of the converse is similar to the second part of the proof
of Proposition 4.5. �

PROPOSITION 4.7. Let R be a ring and � be a multiplicatively closed subset of R
consisting of central regular elements. Then R is strongly right AB if and only if so is
�−1R.

Proof. Suppose that R is strongly right AB, and let A ⊆ �−1R such that r�−1R(A) �=
0. Let B = {a ∈ R | u−1a ∈ A} ⊆ R.

Take 0 �= v−1b ∈ r�−1R(A); then Bb = 0, and so rR(B) �= 0. Since R is strongly right
AB, there exists a non-zero ideal I of R such that rR(B) ⊇ I . Then for any u−1a ∈ A,
u−1aI = 0, since a ∈ B and AI = 0. Note that �−1I is a non-zero ideal of �−1R. Since
I ⊆ r�−1R(A), we have �−1I ⊆ r�−1R(X). Thus �−1R is strongly right AB.

Conversely, suppose that �−1R is strongly right AB, and let A ⊆ R such that
rR(A) �= 0. Then r�−1R(A) �= 0. Since �−1R is strongly right AB, there exists a non-
zero ideal L of �−1R such that r�−1R(A) ⊇ L. Take 0 �= v−1b ∈ L. Since v−1 is central,
we have v−1RbR = Rv−1bR ⊆ L. Thus Av−1RbR = v−1ARbR = 0, and so ARbR = 0.
Thus R is strongly right AB. �

The ring of Laurent polynomials in x, coefficients in a ring R, consists of all formal
sums

∑n
i=k mixi with obvious addition and multiplication, where mi ∈ R and k, n are

(possibly negative) integers; denote it by R[x; x−1].

COROLLARY 4.8. Let R be an Armendariz ring. Then the following conditions are
equivalent:

(1) R is strongly right AB;
(2) R[x] is strongly right AB;
(3) R[x; x−1] is strongly right AB.

Proof. (1)⇔(2) is Proposition 4.6. (2)⇔(3): Let � = {1, x, x2, . . .}. Then � is a
multiplicatively closed subset of R[x] consisting of central regular elements. Note that
R[x; x−1] = �−1R[x]. So the equivalence is obtained from Proposition 4.7. �

Let R, S be rings and f : R → S be an isomorphism. R ⊕ S, denoted by R(+)f S,
is a ring with the usual addition and the multiplication (r1, s1)(r2, s2) = (r1r2, f (r1)s2 +
s1f (r2)).

PROPOSITION 4.9. Let R, S be rings and f : R → S be an isomorphism. Then R is
strongly right AB if and only if so is R(+)f S.

Proof. Apply the proof of Theorem 2.2. �
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