J. Austral. Math. Soc. (Series A) 54 (1993), 80-85

PERIODIC AND FIXED POINT THEOREMS IN A QUASI-METRIC SPACE

LJUBOMIR ĆIRIĆ

(Received 6 November 1990)

Communicated by J. H. Rubinstein

Abstract

General periodic and fixed point theorems are proved for a class of self maps of a quasi-metric space which satisfy the contractive definition (A) below. Two examples are presented to show that the class of mappings which satisfy (A) is indeed wider than a class of selfmaps which satisfy Caristi's contractive definition (C) below. Also a common fixed point theorem for a pair of maps which satisfy a contractive condition (D) below is established.

1991 Mathematics subject classification (Amer. Math. Soc.): 54 H 25, 47 H 10.

1. Introduction

Let X be a non-void set and $T: X \to X$ a selfmap. A point $x \in X$ is called a periodic point for T iff there exists a positive integer k such that $T^k x = x$. If k = 1, then x is called a fixed point for T.

Caristi [4] proved the following very general contraction fixed point theorem.

THEOREM 1 (Caristi [4]). Suppose $T: X \to X$ and $\Phi: X \to [0, \infty)$, where X is a complete metric space and Φ is lower semicontinuous. If for each x in X

(C)
$$d(x, Tx) \leq \Phi(x) - \Phi(Tx),$$

then T has a fixed point.

© 1993 Australian Mathematical Society 0263-6115/93 \$A2.00 + 0.00

80

Caristi's proof, based on the work of Brondsted [3], is not elementary, as well as the other new proofs of Theorem 1 ([10, 13]). Bhakta and Basu [1] observed that the proof of Theorem 1 becomes much simpler by adding the hypotheses of orbital continuity of a selfmap T (compare [5]). Moreover, they pointed out that the hypotheses of the lower semi-continuity of a function Φ in that case may be dropped.

Recently Bollenbacher and Hicks [2] obtained a version of Caristi's Theorem 1 by using the concept of *T*-orbitally lower semi-continuity of a real function $G: X \to [0, \infty)$ (defined by G(x) = d(x, Tx)), which was introduced in [9] (compare [12]). Hicks [8] extended this version for a metric space to one for a quasi-metric space, which need not satisfy d(y, x) = d(x, y).

The purpose of this note is to relax Caristi's contractive definition (C), slightly relax the concept of *T*-orbital lower semi-continuity introduced in [9] and to obtain a periodic and a fixed point theorem which extend and generalize main results of [2], [7] and [8]. We shall also prove a common fixed point theorem having the fixed point theorems of [2, 7, 8] as corollaries.

2. Main results

Let (X, d) be a quasi-metric space and $T: X \to X$ a mapping of X. A set $0(x, \infty) = \{x, Tx, T^2x, \dots, \}$ is called the orbit of x.

DEFINITION 2.1. A real-valued function $G: X \to [0, \infty)$ is said to be *T*-orbitally weak lower semi-continuous (w.l.s.c.) relative to x iff $\{x_n\}$ is a sequence in $0(x, \infty)$ and

(1)
$$\lim_{n \to \infty} x_n = p \quad \text{implies} \quad G(p) \le \lim_{n \to \infty} \sup G(x_n).$$

Clearly, every function G that is T-orbitally lower semi-continuous (l.s.c.) relative to $x \in X$ (that is, $\{x_n\} \subseteq 0(x, \infty)$ and $\lim x_n = p$ imply $G(p) \leq \lim \inf G(x_n)$ (see [9, 2])) is also T-orbitally w.l.s.c. relative to x, but the implication is not reversible.

Note that the condition (1) was used in [6], but there it was supposed that (1) was true for every sequence $\{x_n\}$ in X.

THEOREM 2. Suppose $T: X \to X$, $n: X \to N$ and $\Phi: X \to [0, \infty)$, where X is a complete quasi-metric space. If for some $x_0 \in X$ there exists a subsequence $S = \{x_n\}_{n=0}^{\infty}$ in $O(x_0, \infty)$ such that $T^{n(x_n)}x_n \in S$ and

(A)
$$d(y, T^{n(y)}y) \le \Phi(y) - \Phi(T^{n(y)}y)$$

holds for each $y \in S$, then we have

(a) $\lim x_n = p$ exists,

Ljubomir Ćirić

(b) $T^{n(p)}p = p$ if and only if $G(x) = d(x, T^{n(x)}x)$ is T-orbitally w.l.s.c. relative to x_0 ,

(c) $d(x_0, x_n) \le \Phi(x_0)$,

(d) If $y \to d(z, y)$ is T-orbitally w.l.s.c. relative to x_0 for $z \in S$ then $d(x_n, p) \leq \Phi(x_n)$ and $d(x_0, p) \leq \Phi(x_0)$.

PROOF. Without loss of generality we may suppose that $\{x_n\}$ has the property that $x_{n+1} = T^{n(x_n)}x_n$; n = 0, 1, 2, ... Then we have, for n = 0, 1, 2, ...,

$$d(x_n, x_{n+1}) = d(x_n, T^{n(x_n)}x_n) \le \Phi(x_n) - \Phi(x_{n+1}).$$

For $m \ge 0$,

$$\begin{split} \sigma_m &= \sum_{n=0}^m d(x_n, x_{n+1}) \leq \sum_{n=0}^m [\Phi(x_n) - \Phi(x_{n+1})] = [\Phi(x_0) - \Phi(x_1)] \\ &+ [\Phi(x_1) - \Phi(x_2)] + \dots + [\Phi(x_m) - \Phi(x_{m+1})] \\ &= \Phi(x_0) - \Phi(x_{m+1}) \leq \Phi(x_0) \,. \end{split}$$

The sequence $\{\sigma_m\}_{m=0}^{\infty}$ of partial sums of the infinite series $\sum d(x_n, x_{n+1})$ is a nondecreasing sequence bounded above by $\Phi(x_0)$ and therefore converges. This implies that $\{x_n\}_{n=0}^{\infty}$ is a Cauchy sequence in X. Since (X, d) is complete, we have (a).

Assume that $G(p) \leq \lim_{n \to \infty} \sup G(x_n)$. Then by definition of G(x) and x_{n+1} we have $G(x_n) = d(x_n, x_{n+1})$. So $G(x_n)$ is a general term of a convergent series $\sum d(x_n, x_{n+1})$, and hence $G(x_n) \to 0$, as $n \to \infty$. Therefore, $G(p) = d(p, T^{n(p)}p) = 0$. Hence p is a periodic point of T. This shows (b). Clearly (c) holds.

To prove (d), let $n \ge 0$. Then

$$\begin{aligned} d(x_n, x_{n+k}) &\leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{n+k-1}, x_{n+k}) \\ &= \sum_{m=n}^{n+k-1} d(x_m, x_{m+1}) \leq \sum_{m=n}^{n+k-1} [\Phi(x_m) - \Phi(x_{m+1})] \\ &= \Phi(x_n) - \Phi(x_{n+k}) \leq \Phi(x_n) \,. \end{aligned}$$

Assume that $y \to d(x_n, y)$ is *T*-orbitally w.l.s.c. relative to x_0 for each n = 0, 1, 2, ... Then

$$d(x_n, p) \leq \lim_{k \to \infty} \sup d(x_n, x_{n+k}) \leq \lim_{k \to \infty} \sup \Phi(x_n) = \Phi(x_n).$$

This shows (d).

REMARK 1. Example 1 shows that in (b) need not be n(p) = 1, that is, T need not have a fixed point.

THEOREM 3. Suppose $T: X \to X$, $n: X \to N$ and $\Phi: X \to [0, \infty)$, where X is a complete quasi-metric space. If T satisfies all hypotheses of Theorem 2 and in addition for all $y \in Cl[0(x_0, \infty)]$

(1)
$$y \neq Ty$$
 implies $\Phi(T^m y) < \Phi(y)$

for some positive integer m = m(y), then T has a fixed point.

PROOF. From Theorem 2, there is p in X such that $T^k p = p$. Then $0(p, \infty)$ is a finite set of points in X. Let $y \in 0(p, \infty)$ be such that

(2)
$$\Phi(y) = \min\{\Phi(z) \colon z \in 0(p, \infty)\}.$$

Assume that $y \neq Ty$. Then from (1) there is $m \in N$ such that $\Phi(T^m y) < \Phi(y)$. But, since $T^n y \in O(p, \infty)$ for all $n \in N$, it follows from (2) that $\Phi(y) \leq \Phi(T^m y)$, a contradiction. Therefore, y = Ty, which completes the proof.

COROLLARY 1 (Hicks [8, Theorem 2]). Let X and Y be quasi-metric spaces with X complete. Suppose $T: X \to X$, $f: X \to Y$ and $\Phi: fX \to [0, \infty)$. If there exists $x_0 \in X$ and c > 0 such that

(B)
$$\max\{d(y, Ty), c \cdot d(fy, fTy)\} \le \Phi(fy) - \Phi(fTy)$$

for all $y \in O(x_0, \infty)$, then

(a') $\lim T^n x_0 = p$ exists,

(b') Tp = p if and only if G(x) = d(x, Tx) is T-orbitally l.s.c. relative to x_0 ,

 $(c') d(x_0, T''x_0) \le \Phi(fx_0),$

(d') If $y \to d(z, y)$ is continuous for $z \in 0(x_0, \infty)$, then $d(T^n x_0, p) \le \Phi(fT^n x_0)$ and $d(x_0, p) \le \Phi(fx_0)$.

PROOF. It is clear that (B) implies that $d(y, Ty) \leq \Phi(fy) - \Phi(fTy)$. Put $\Phi_1 = \Phi f$. Then $\Phi_1: X \to [0, \infty)$ and

$$d(y, Ty) \leq \Phi_1(y) - \Phi_1(Ty).$$

Therefore, if T satisfies (B), then T satisfies (A) and (1) with $\Phi = \Phi_1$, n(y) = 1 and m(y) = 1 for all $y \in S = O(x_0, \infty)$.

REMARK 2. Example 2 shows that Theorem 3 is a proper generalization of Hick's theorem [8], which is an extension of corresponding theorems for metric spaces given in [2, 7].

REMARK 3. The proof of Corollary 1 shows that the condition $cd(fx, fTx) \le \Phi(fx) - \Phi(fTx)$ in Theorems 2 and 3 in [7] and in Theorem 2 in [8] (that

is, in our Corollary 1), which is included in (B), can be dropped. Theorem 2 and its Corollary 1 in [8] are equivalent.

Now we shall prove a common fixed point theorem for two maps.

THEOREM 4. Suppose $S, T: X \to X$ and $\Phi: X \to [0, \infty)$, where X is a complete quasi-metric space. If there is $x_0 \in X$ such that

(D)
$$d(y, Ty) + d(Ty, STy) \le \Phi(y) - \Phi(STy)$$

for all $y \in O_{ST}(x_0, \infty) = \{x_0, Tx_0, STx_0, T(ST)x_0, \dots, (ST)^n x_0, T(ST)^n x_0, \dots\}$, then we have

(a'') $\lim_{n\to\infty} (ST)^n x_0 = \lim_{n\to\infty} T(ST)^n x_0 = p$ exists.

(b") Tp = p, if $G_1(x) = d(x, Tx)$ is (S, T)-orbitally w.l.s.c. relative to x_0 (that is, (1) is true if $\{x_n\} \subseteq 0_{ST}(x_0, \infty)$).

(c") Tp = p = Sp, if $G_1(x) = d(x, Tx)$ and $G_2(x) = d(x, Sx)$ are (S, T)-orbitally w.l.s.c. relative to x_0 .

PROOF. Put $z_{2k} = (ST)^k x_0$, $z_{2k+1} = Tz_{2k}$ (k = 0, 1, 2, ...,) and consider the sequence $\{z_n\}_{n=0}^{\infty}$. Just as in the proof of (a) of Theorem 2, by (D) we obtain $\sum_{n=0}^{\infty} d(z_n, z_{n+1}) \leq \Phi(x_0)$. Hence $\lim_{n\to\infty} z_n = p$ exists. Hence $\lim_{k\to\infty} z_{2k} = \lim_{k\to\infty} (ST)^k x_0 = p$ and $\lim_{k\to\infty} z_{2k+1} = \lim_{k\to\infty} T(ST)^k x_0 = p$. This shows (a"). Since $z_{2k} \to p$ and $G_1(z_{2k}) = d(z_{2k}, z_{2k+1}) \to 0$ as $k \to +\infty$, we have $G_1(p) = 0$. Hence Tp = p. This shows (b"). Statement (c") clearly holds.

3. Examples

1. Let $X = [-2, -1] \cup [1, 2]$ with the usual metric. Define $T: X \to X$ by Tx = -x and $\Phi: X \to [0, \infty)$ by $\Phi(x) = |x|$, for example. Then T satisfies (A) for all $y \in X$ with n(y) = 2 and $G(x) = d(x, T^2x)$ is continuous on X.

2. Let $X = \{0\} \cup \{\pm 1/n : n = 1, 2, ...\}$ with the usual metric. Define $T: X \to X$ by T(1/n) = -1/(n+1), T(-1/n) = 1/(n+1) and T(0) = 0. Define $\Phi: X \to [0, \infty)$ by $\Phi(x) = d(x, Tx)$. Then for $x = \pm 1/n$ we have

$$d(x, Tx) = 1/n + 1/(n+1);$$
 $d(x, T^2x) = 1/n - 1/(n+2).$

Hence

$$d(x, T^{2}x) = 1/n - 1/(n+2) < 1/n + 1/(n+1) - [1/(n+2) + 1/(n+3)]$$

= $\Phi(x) - \Phi(T^{2}x)$.

Therefore, T satisfies (A) on X with n(x) = 2 for all $x \in X$. Since X is a complete metric space, there exists p (p = 0) such that (a) holds. Since $G(x) = d(x, T^2x) = 2x^2(1+2|x|)^{-1}$ is continuous and T satisfies (1) with m(y) = 2 for all $y \in X$, Theorem 3 can be applied.

We point out that Caristi's contractive condition (C), and hence (B), implies that $\sum_{n=0}^{\infty} d(T^n x, TT^n x)$ must be a convergent series. Since in our example, for any fixed $x = \pm 1/m_0$, we have

$$d(T^{n}x, T^{n+1}x) = 1/(n+m_{0}) + 1/(n+1+m_{0}) > 2/(n+m_{0}+1),$$

we conclude that the series diverges and so there is no functions $f: X \to Y$ and $\Phi: fX \to [0, \infty)$ such that (B) holds for any $x = \pm 1/n \in X$.

References

- P. S. Bhakta and T. Basu, 'Some fixed point theorems on metric spaces', J. Indian Math. Soc. 45 (1981), 399-404.
- [2] A. Bollenbacher and T. L. Hicks, 'A fixed-point theorem revisited', Proc. Amer. Mat. Soc. 102 (1988), 898-900.
- [3] A. Brondsted, 'On a lemma of Bishop and Phelps', Pacific J. Math. 55 (1974), 335-341.
- [4] J. Caristi, 'Fixed point theorems for mappings satisfying inwardness conditions', Trans. Amer. Math. Soc. 215 (1976), 241-251.
- [5] Lj. Ćirić, 'On contraction type mappings', Math. Balkanica 1 (1971), 52-57.
- [6] Lj. Ćirić, 'On mappings with a contractive iterate', Publ. Inst. Math. (Beograd), 26 (40) (1979), 79-82.
- [7] A. Harder and T. L. Hicks, 'Fixed point theory and iteration procedures', Indian J. Math. 19 (1988), 17-26.
- [8] T. L. Hicks, 'Fixed point theorems for quasi-metric spaces', Math. Japon. 33 (1988), 231-236.
- [9] T. Hicks and B. Rhoades, 'A Banach type fixed point theorem', Math. Japon. 24 (1979), 327-330.
- [10] J. Siegel, 'A new proof of Caristi's fixed point theorem', Proc. Amer. Math. Soc. 66 (1977), 54-56.
- [11] R. A. Stoltenberg, 'On quasi-metric spaces', Duke Math. J. 36 (1969), 65-71.
- [12] C. S. Wong, 'Fixed point theorems for non-expansive mappings', J. Math. Anal. Appl. 37 (1972), 142-150.
- [13] C. S. Wong, 'On a fixed point theorem of contractive type', Proc. Amer. Math. Soc. 57 (1976), 283-284.

Matematički Institut Kneza Mihaila 35 11000 Beograd Yugoslavia