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PERIODIC AND FIXED POINT THEOREMS
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Abstract

General periodic and fixed point theorems are proved for a class of self maps of a quasi-metric
space which satisfy the contractive definition (A) below. Two examples are presented to show
that the class of mappings which satisfy (A) is indeed wider than a class of selfmaps which
satisfy Caristi's contractive definition (C) below. Also a common fixed point theorem for a pair
of maps which satisfy a contractive condition (D) below is established.

1991 Mathematics subject classification (Amer. Math. Soc.): 54 H 25, 47 H 10.

1. Introduction

Let X be a non-void set and T: X —• X a selfmap. A point x € X is
called a periodic point for T iff there exists a positive integer k such that
Tkx = x. If k = 1, then x is called a fixed point for T.

Caristi [4] proved the following very general contraction fixed point theo-
rem.

THEOREM 1 (Caristi [4]). Suppose T: X -> X and O: X — [0, oo), where
X is a complete metric space and <J> is lower semicontinuous. If for each x
in X

(C) d{x,Tx)<<b(x)-<b(Tx),

then T has a fixed point.
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Caristi's proof, based on the work of Brondsted [3], is not elementary,
as well as the other new proofs of Theorem 1 ([10, 13]). Bhakta and Basu
[1] observed that the proof of Theorem 1 becomes much simpler by adding
the hypotheses of orbital continuity of a selfmap T (compare [5]). More-
over, they pointed out that the hypotheses of the lower semi-continuity of a
function O in that case may be dropped.

Recently BoUenbacher and Hicks [2] obtained a version of Caristi's Theo-
rem 1 by using the concept of r-orbitally lower semi-continuity of a real func-
tion G: X -+ [0, oo) (defined by G(x) = d(x, Tx)), which was introduced
in [9] (compare [12]). Hicks [8] extended this version for a metric space to
one for a quasi-metric space, which need not satisfy d(y, x) = d{x, y).

The purpose of this note is to relax Caristi's contractive definition (C),
slightly relax the concept of T-orbital lower semi-continuity introduced in
[9] and to obtain a periodic and a fixed point theorem which extend and
generalize main results of [2], [7] and [8]. We shall also prove a common
fixed point theorem having the fixed point theorems of [2, 7, 8] as corollaries.

2. Main results

Let (X, d) be a quasi-metric space and T: X —» X a mapping of X. A
set 0(x, oo) = {x, Tx, T2x,...,} is called the orbit of x.

DEFINITION 2.1. A real-valued function G: X —> [0, oo) is said to be
r-orbitally weak lower semi-continuous (w.l.s.c.) relative to x iff {xn} is a
sequence in 0(x, oo) and

(1) lim xn — p implies G(p) < lim supG(x,).
n—>oo " n—>oo ™

Clearly, every function G that is r-orbitally lower semi-continuous (l.s.c.)
relative to x e X (that is, {xn} C 0(x, oo) and limxn = p imply G{p) <
liminfG(xn) (see [9, 2])) is also T-orbitally w.l.s.c. relative to x, but the
implication is not reversible.

Note that the condition (1) was used in [6], but there it was supposed that
(1) was true for every sequence {xn} in X.

THEOREM 2. Suppose T: X -> X, n: X -» N and O: X -> [0, oo), where
X is a complete quasi-metric space. If for some x0 e X there exists a subse-
quence S = {*n}^0 in O(JCO, oo) such that Tn(x-]xn e S and

(A) d(y,Tn{y)y)<^(y)-<t>(Tn{y)y)

holds for each y e S, then we have
(a) limjc =p exists,
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(b) Tn{p)p = p if and only if G(x) = d(x, Tn(x)x) is T-orbitally w.l.s.c.
relative to x0,

(c) d(xo,xn)<Q>(xo),
(d) If y —> d(z, y) is T-orbitally w.l.s.c. relative to x0 for z e S then

d(xn, p) < *(*„) and d(x0, p) < <D(x0).

PROOF. Without loss of generality we may suppose that {xn} has the
property that xn+1 = Tn(x«]xn; n = 0, 1, 2, ... . Then we have, for n =
0, 1 , 2 , . . . ,

' ( * . ' xn+i) = d{xH, Tn^xn) < O(xn) - *(xn+l).

For m > 0,
m m

n=0 n=0

) - <D(x2)] + •

The sequence {ffm}^=0 of partial sums of the infinite series X)^(xn, xn+1)
is a nondecreasing sequence bounded above by O(x0) and therefore con-
verges. This implies that {*n}^l0 is a Cauchy sequence in X. Since (X, d)
is complete, we have (a).

Assume that G{p) < l i m ^ ^ supG(xn). Then by definition of G{x) and
xn+x we have G(xn) = d(xn , xn+l). So G(xn) is a general term of a con-
vergent series J2d(xn, xn+l), and hence G(xn) —> 0, as n —> oo. Therefore,

G(p) = rf(p, T"^p) = 0. Hence p is a periodic point of T. This shows
(b). Clearly (c) holds.

To prove (d), let n > 0 . Then

d ( x n , x n + k ) < d ( x n , x n + l ) + d ( x n + l , x n + 2 ) + ••• + d ( x n + k _ x , x n + k )
n+k-l n+k-l

Assume that y —> ^(xn , >>) is T-orbitally w.l.s.c. relative to x0 for each
n = 0,l,2, ... . Then

fi?(^ , P) < lim suprf(xn, xn+k) < lim sup<D(xJ = *(*„).

This shows (d).
REMARK l. Example 1 shows that in (b) need not be n(p) = 1, that is, T

need not have a fixed point.
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THEOREM 3. Suppose T: X -> X, n: X -» N and O: X ->• [0, oo), where
X is a complete quasi-metric space. If T satisfies all hypotheses of Theorem
2 and in addition for all y e C7[0(x0, oo)]

(1) y^Ty implies ®(Tmy) < <D(y)

for some positive integer m — m(y), then T has a fixed point.

PROOF. From Theorem 2, there is p in X such that Tkp = p. Then
0(p, oo) is a finite set of points in X. Let y e 0(p, oo) be such that

(2) *(y) = min{O(z): z e 0(p, oo)}.

Assume that y ^ Ty. Then from (1) there is m € N such that <&(Tmy) <
. But, since Tny e 0{p, oo) for all n 6 N, it follows from (2) that
< 3>(7'm>;)» a contradiction. Therefore, )> = Ty , which completes the

proof.

COROLLARY 1 (Hicks [8, Theorem 2]). Let X and Y be quasi-metric
spaces with X complete. Suppose T: X —> X, f: X —> Y and O: fX —>
[0, oo). If there exists xQe X and c > 0 such that

(B) m&x{d(y ,Ty),c.d(fy, fTy)} < O ( / y ) -<t>(fTy)

for all y 6 0(x0, oo), then
(a') lim Tnx0=p exists,
(b') Tp = p if and only if G(x) = d(x, Tx) is T-orbitally l.s.c. relative

to x0,
(c') d(xo,T

nxo)<9{fxo),
(d') If y -> rf(z, y) « continuous for z € 0(x0, oo), ^e« d(Tnx0, p) <

%

PROOF. It is clear that (B) implies that d(y, Ty) < <P(fy)-Q>{fTy). Put
O, = O / . Then <J>,: X -> [0, oo) and

Therefore, if T satisfies (B), then T satisfies (A) and (1) with O = O j ,
n(y) = 1 and m(y) = 1 for all y G 5 = O(JCO , oo).

REMARK 2. Example 2 shows that Theorem 3 is a proper generalization
of Hick's theorem [8], which is an extension of corresponding theorems for
metric spaces given in [2, 7].

REMARK 3. The proof of Corollary 1 shows that the condition cd[fx, fTx)
< <b(fx)-<b{fTx) in Theorems 2 and 3 in [7] and in Theorem 2 in [8] (that
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is, in our Corollary 1), which is included in (B), can be dropped. Theorem 2
and its Corollary 1 in [8] are equivalent.

Now we shall prove a common fixed point theorem for two maps.

THEOREM 4. Suppose S, T: X —> X and O: X —* [0, oo), where X is a
complete quasi-metric space. If there is xQ e X such that

(D) d(y, Ty) + d{Ty, STy) < ®(y) - Q>(STy)

for all y e 05 r (x0 ,oo) = {x0, Tx0, STx0, T(ST)x0, ... , (ST)"x0,
T(ST)nx0,...}, then we have

(a") Mmn_too(ST)nx0 = limn_tooT(ST)Hx0=p exists.
(b") Tp = p, if G,(x) = d(x, Tx) is (S, T)-orbitally w.l.s.c. relative to

x0 (that is, (1) is true if {xn} c 05.r(x0, oo)).
(c") Tp = p = Sp, if G,(JC) = d(x, Tx) and G2(x) = d(x, Sx) are

(S, T)-orbitally w.l.s.c. relative to x0.

PROOF. Put z2k = (ST)kx0, z2k+l = Tz2k (k = 0, 1 , 2 , . . . , ) and con-
sider the sequence {zn}^=0. Just as in the proof of (a) of Theorem 2, by (D)
we obtain J2^Lo^(zn, zn+l) < 4>(x0). Hence litn^^^ zw =p exists. Hence
l i m ^ o o zik = l«nfc (57-)*x0 = p and l i m ^ ^ z2k+l = l i m ^ T(ST)kx0

= p . This shows (a"). Since z2k -* p and Gx(zlk) = d(z2k, z2k+{) —> 0 as
k —> +oo, we have Gx(p) = 0. Hence Tp = p . This shows (b"). Statement
c"(c") clearly holds.

3. Examples

1. Let X = [-2, -1 ] U [1, 2] with the usual metric. Define T: X ->• X
by Tx = -x and O: X —> [0, oo) by <b(x) = \x\, for example. Then
T satisfies (A) for all y e X with n(y) = 2 and G(x) = d(x, T2x) is
continuous on X.

2. Let X = {0} U {± l /« : n = 1, 2, . . . } with the usual metric. Define
T:X->X by T(l/n) = - l / ( n + 1), T(~l/n) = l/(/i + 1) and T(0) = 0.
Define O: X -* [0, oo) by O(x) = i/(x, Tx). Then for x = ±l/n we have

d(x, Tx) = l / / i+ l / ( « + l ) ; «/(x

Hence

rf(x, T2x) = 1 / n - l/(/i + 2) < l / « + l / (
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Therefore, T satisfies (A) on X with n(x) = 2 for all x e X. Since X is
a complete metric space, there exists p [p = 0) such that (a) holds. Since
G(x) = d{x, T2x) = 2x2(l + 2\x\)~l is continuous and T satisfies (1) with
m(y) = 2 for all y € X, Theorem 3 can be applied.

We point out that Caristi's contractive condition (C), and hence (B), im-
plies that Y^=od{Tnx, TTnx) must be a convergent series. Since in our
example, for any fixed x = ± l / m 0 , we have

d(Tnx, T"+lx) = l/(n + m0) + l/(« + 1 + m0) > 2/(« + m0 + 1),

we conclude that the series diverges and so there is no functions / : I - > 7
and <D: fX -»[0, oo) such that (B) holds for any x = ± l / « € X.
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