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On Uniqueness of Meromorphic Functions
with Shared Values in Some Angular
Domains

Zheng Jian-Hua

Abstract. In this paper we investigate the uniqueness of transcendental meromorphic function dealing

with the shared values in some angular domains instead of the whole complex plane.

1 Introduction and Main Results

Let f : C → C be a transcendental meromorphic function, where C is the complex

plane and C = C∪{∞}. We assume that the readers are familiar with the Nevanlinna
theory of meromorphic functions and the standard notations such as Nevanlinna
deficiency δ(a, f ) of f (z) with respect to a ∈ C and Nevanlinna characteristic T(r, f )
of f (z). And the lower order µ and the order λ are in turn defined as follows:

µ = µ( f ) = lim inf
r→∞

log T(r, f )

log r
,

λ = λ( f ) = lim sup
r→∞

log T(r, f )

log r
.

For the references please see [9]. An a ∈ C is called an IM (ignoring multiplicities)
shared value in X ⊆ C of two meromorphic functions f (z) and g(z) if in X, f (z) = a

if and only if g(z) = a. R. Nevanlinna [12] proved that if two meromorphic functions

f (z) and g(z) have five distinct IM shared values in X = C, then f (z) ≡ g(z). After
his very fundamental work, the uniqueness of meromorphic functions with shared
values in the whole complex plane attracted many investigations. In this paper, we
consider the uniqueness dealing with shared values in a proper subset of C. It is

obvious that Nevanlinna’s result is true if X = C is replaced by X being the remaining
part removing a bounded set from C. We establish the following results.

We consider q pair of real numbers {α j , β j} such that

(1) −π ≤ α1 < β1 ≤ α2 < β2 ≤ · · · ≤ αq < βq ≤ π

and define

ω = max

{

π

β1 − α1
, . . . ,

π

βq − αq

}

.
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Uniqueness of Meromorphic Functions with Shared Values 153

Theorem 1 Let f (z) and g(z) be both transcendental meromorphic functions and let

f (z) be of the finite lower order µ and such that for some a ∈ C and an integer p ≥ 0,

δ = δ(a, f (p)) > 0. For q pair of real numbers {α j , β j} satisfying (1) and

(2)

q
∑

j=1

(α j+1 − β j) <
4

σ
arcsin

√

δ

2
,

where σ = max{ω, µ}, assume that f (z) and g(z) have five distinct IM shared values

in X =
⋃q

j=1{z : α j ≤ arg z ≤ β j}. If ω < λ( f ), then f (z) ≡ g(z).

If we remove the condition “µ( f ) < ∞” in Theorem 1, then we have the follow-
ing.

Theorem 2 Let f (z) and g(z) be both transcendental meromorphic functions and such

that for some a ∈ C and an integer p ≥ 0, δ = δ(a, f (p)) > 0. Assume that for q radii

arg z = α j , (1 ≤ j ≤ q), satisfying

−π ≤ α1 < α2 < · · · < αq < π, αq+1 = α1 + 2π,

f (z) and g(z) have five distinct IM shared values in X = C \
⋃q

j=1{z : arg z = α j}. If

(3) max

{

π

α j+1 − α j

: 1 ≤ j ≤ q

}

< λ( f ),

then f (z) ≡ g(z).

Remark A. Observe the functions

f (z) = z + 1 +

∞
∑

n=1

( 1

an − z
−

1

an

)

where an = n2/3, and g(z) is defined by replacing “an” with “−an” in the form of

f (z). It is easy to see λ( f ) = λ(g) = 3/2. From a result of Cebotarev [5] (see also
Levin [11], or [3]), there exist five distinct real numbers b j (1 ≤ j ≤ 5) such that all
the equations f (z) = b j and g(z) = b j have only real roots, and then all the b j are
IM shared values of f (z) and g(z) in C \ R. But f (z) 6≡ g(z). This implies that the

condition “δ(a, f (p)) > 0” cannot be removed in Theorem 1 and Theorem 2.
B. It is easy to see that for each real number a, 0 ≤ a ≤ 1, sin z and cos z can

take value a only on the real axis, and then they have five distinct IM shared values in
C \ R. Obviously λ(sin z) = λ(cos z) = 1 and δ(∞, sin z) = δ(∞, cos z) = 1. This

shows that the condition “ω < λ( f )” or (3) cannot be removed in Theorem 1 and
Theorem 2, respectively.

C. We shall give an example to show that “µ( f ) < ∞” in Theorem 1 cannot
be removed by using the theory of complex dynamics. For the basic knowledge of

complex dynamics, please see [4]. We take into account the following function

g(z) = z − (1 + a) +
1

2πi

∫

L

eet

t − z
dt
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where L is the boundary of the region {Re z > 0,−π < Im z < π} described in a
clockwise direction. Then f (z) is an entire function with infinite lower order. From

the proof of Theorem 2 in Baker [2], the Julia set J(g) of g(z) lies in the region {Re z >
−a,−h < Im z < h} for suitable a and h. Since J(g) does not contain any isolated
Jordan arcs, there exists a horizontal straight line which intersects J( f ) at at least five
points. By a translation, we conjugate g(z) to an entire function f (z) such that the

Julia set J( f ) of f (z) contains at least five real points c j (1 ≤ j ≤ 5). Then all the
roots of f (z) = c j (1 ≤ j ≤ 5) lie in G = {Re z > −a,−2h < Im z < 2h}. It is
well-known that tan z = c j (1 ≤ j ≤ 5) have only real roots. Thus f (z) and tan z

have five distinct IM shared values in C \ (G ∪ R) and obviously δ(∞, f ) = 1, but

f (z) 6≡ tan z. This shows that “µ( f ) < ∞” in Theorem 1 is necessary.
The method in this paper was used to investigate the growth of transcendental

meromorphic functions with radially distributed values in Zheng [16].

2 Proofs of Theorems 1 and 2

First we need some auxiliary results for the proofs of the theorems. The following
result was proved in [13] (also see [7]).

Lemma 1 Let f (z) be transcendental and meromorphic in C with the lower order 0 ≤
µ < ∞ and the order 0 < λ ≤ ∞. Then for arbitrary positive number σ satisfying

µ ≤ σ ≤ λ and a set E with finite linear measure, there exist a sequence of positive

numbers {rn} such that

(1) rn /∈ E, limn→∞
rn

n
= ∞;

(2) lim infn→∞
log T(rn, f )

log rn
≥ σ;

(3) T(t, f ) <
(

1 + o(1)
)

( t
rn

)σT(rn, f ), t ∈ [rn/n, nrn].

A sequence {rn} satisfying (1), (2) and (3) in Lemma 1 is called a Polya peak of
order σ outside E in this paper. For r > 0 and a ∈ C define

(4) D(r, a) :=
{

θ ∈ [−π, π) : log+ 1

| f (reiθ) − a|
>

1

log r
T(r, f )

}

and

D(r,∞) :=
{

θ ∈ [−π, π) : log+ | f (reiθ)| >
1

log r
T(r, f )

}

.

The following result is a special version of the main result of Baernstein [1].

Lemma 2 Let f (z) be transcendental and meromorphic in C with the finite lower order

µ and the order 0 < λ ≤ ∞ and for some a ∈ C, δ = δ(a, f ) > 0. Then for arbitrary

Polya peak {rn} of order σ > 0, µ ≤ σ ≤ λ, we have

lim inf
n→∞

mes D(rn, a) ≥ min

{

2π,
4

σ
arcsin

√

δ

2

}

.

Although Lemma 2 was proved in [1] for the Polya peak of order µ, the same
argument of Baernstein [1] can derive Lemma 2 for the Polya peak of order σ,
µ ≤ σ ≤ λ.
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In order to prove our theorems, we need Nevanlinna theory on an angular do-
main. Let f (z) be a meromorphic function on the angular domain Ω(α, β) = {z :

α ≤ arg z ≤ β}, where 0 < β − α ≤ 2π. Following Nevanlinna (see [10]) define

(5)

Aα,β(r, f ) =
ω

π

∫ r

1

( 1

tω
−

tω

r2ω

)

{log+ | f (teiα)| + log+ | f (teiβ)|}
dt

t
,

Bα,β(r, f ) =
2ω

πrω

∫ β

α

log+ | f (reiθ)| sin ω(θ − α) dθ,

Cα,β(r, f ) = 2
∑

1<|bn|<r

( 1

|bn|ω
−

|bn|
ω

r2ω

)

sin ω(θn − α),

where ω =
π

β−α and bn = |bn|e
iθn are the poles of f (z) on Ω(α, β) appearing accord-

ing to their multiplicities. Cα,β(r, f ) is called the angular counting function of the
poles of f on Ω(α, β) and Nevanlinna’s angular characteristic is defined as follows:

Sα,β(r, f ) = Aα,β(r, f ) + Bα,β(r, f ) + Cα,β(r, f ).

Throughout, we denote by Rα,β(r, ∗) a quantity satisfying

Rα,β(r, ∗) = O
{

log
(

rSα,β(r, ∗)
)}

, r /∈ E,

where E denotes a set of positive real numbers with finite linear measure. It is not
necessarily the same for every occurrence in the context [14].

Lemma 3 Let f (z) be meromorphic on Ω(α, β). Then for arbitrary complex number

a, we have

(6) Sα,β

(

r,
1

f − a

)

= Sα,β(r, f ) + O(1)

and for an integer p ≥ 0,

Sα,β(r, f (p)) ≤ 2pSα,β(r, f ) + Rα,β(r, f ),

Aα,β

(

r,
f (p)

f

)

+ Bα,β

(

r,
f (p)

f

)

= Rα,β(r, f )

and Rα,β(r, f (p)) = Rα,β(r, f ).

Lemma 3 can be proved by induction and noting

S(r, f ′) ≤ C(r, f ′) + (A + B)(r, f ) + (A + B)
(

r,
f ′

f

)

≤ S(r, f ) + C(r, f ) + R(r, f ).
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But in general, we do not know if Rα,β(r, f ) = Rα,β(r, f (p)).

Lemma 4 Let f (z) be meromorphic on Ω(α, β). Then for arbitrary q distinct a j ∈ C

(1 ≤ j ≤ q), we have

(q − 2)Sα,β(r, f ) ≤

q
∑

j=1

Cα,β

(

r,
1

f − a j

)

+ R(r, f ),

where the term Cα,β(r, 1
f−a j

) will be replaced by Cα,β(r, f ) when some a j = ∞.

Lemma 4 can be proved by the same argument as in the proof of Nevanlinna’s
second fundamental theorem.

Proof of Theorem 1 Suppose f (z) 6≡ g(z). Let a j ∈ C (1 ≤ j ≤ 5) be the five
distinct IM shared values in X of f (z) and g(z). For convenience, below we omit the
subscript of all the notations, such as S(r, ∗) and C(r, ∗). By applying Lemma 4 to g

and (6), we have

3S(r, g) ≤

5
∑

j=1

C
(

r,
1

g − a j

)

+ R(r, g)

≤ C
(

r,
1

f − g

)

+ R(r, g)

≤ S(r, f − g) + R(r, g)

≤ S(r, f ) + S(r, g) + R(r, g),

so that

(7) 2S(r, g) − R(r, g) ≤ S(r, f ).

This implies that R(r, g) = R(r, f ). We have also (7) for alternation of f and g, and
combining (7) gives

2S(r, f ) − R(r, f ) ≤ S(r, g) ≤ S(r, f ) + R(r, f ).

Thus

(8) S(r, f ) = O(log r), r /∈ E.

We assume that a ∈ C. By the same argument we can show Theorem 1 for the
case when a = ∞. By applying Lemma 3 and (8), we estimate

B
(

r,
1

f (p) − a

)

≤ S(r, f (p)) + O(1)

= (A + B)
(

r,
f (p)

f

)

+ (A + B)(r, f ) + pC(r, f ) + C(r, f ) + O(1)

≤ (p + 1)S(r, f ) + R(r, f )

= O(log r), r /∈ E.

(9)
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The following method comes from [16]. Note that λ( f ) > ω. We need to treat
two cases.

(I) λ( f ) > µ Then λ( f (p)) = λ( f ) > σ ≥ µ = µ( f (p)). And by the inequality (2),
we can take a real number ε > 0 such that

(10)

q
∑

j=1

(α j+1 − β j + 2ε) + 2ε <
4

σ + 2ε
arcsin

√

δ

2
,

where αq+1 = 2π + α1, and

λ( f (p)) > σ + 2ε > µ.

Applying Lemma 1 to f (p)(z) gives the existence of the Polya peak {rn} of order σ+2ε
of f (p) such that rn /∈ E, and then from Lemma 2 for sufficiently large n we have

(11) mes D(rn, a) >
4

σ + 2ε
arcsin

√

δ

2
− ε,

since σ + 2ε > 1/2. We can assume for all the n, (11) holds. Set

K := mes
(

D(rn, a) ∩

q
⋃

j=1

(α j + ε, β j − ε)
)

.

Then from (10) and (11) it follows that

K ≥ mes
(

D(rn, a)
)

− mes
(

[0, 2π) \

q
⋃

j=1

(α j + ε, β j − ε)
)

= mes
(

D(rn, a)
)

− mes
(

q
⋃

j=1

(β j − ε, α j+1 + ε)
)

= mes
(

D(rn, a)
)

−

q
∑

j=1

(α j+1 − β j + 2ε) > ε > 0.

It is easy to see that there exists a j0 such that for infinitely many n, we have

(12) mes
(

D(rn, a) ∩ (α j0
+ ε, β j0

− ε)
)

>
K

q
.

We can assume for all the n, (12) holds. Set En = D(rn, a) ∩ (α j0
+ ε, β j0

− ε). Thus
from the definition (4) of D(r, a) it follows that

∫ β j0
−ε

α j0
+ε

log+ 1

| f (p)(rneiθ) − a|
dθ ≥

∫

En

log+ 1

| f (p)(rneiθ) − a|
dθ

≥ mes(En)
T(rn, f (p))

log rn

>
K

q

T(rn, f (p))

log rn

.

(13)
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On the other hand, by the definition (5) of Bα,β(r, ∗) and (9), we have

∫ β j0
−ε

α j0
+ε

log+ 1

| f (p)(reiθ) − a|
dθ ≤

π

2ω j0
sin(εω j0

)
rω j0 Bα j0

,β j0

(

r,
1

f (p) − a

)

< K̃ j0
rω j0 log r, r /∈ E.

(14)

Combining (13) with (14) gives

T(rn, f (p)) ≤
qK̃ j0

K
r
ω j0
n log2 rn.

Thus from (2) in Lemma 1 for σ + 2ε, we have

σ + 2ε ≤ lim sup
n→∞

log T(rn, f (p))

log rn

≤ ω j0
≤ σ + ε.

This is impossible.

(II) λ( f ) = µ Then σ = µ = λ( f ) = λ( f (p)) = µ( f (p)). By the same argument as
in (I) with all the σ + 2ε replaced by σ = µ, we can derive

max{ω, µ} = σ ≤ ω < λ( f ).

This is impossible.
Theorem 1 follows.

In order to prove Theorem 2, we need a result of Edrei [6].

Lemma 5 Let f (z) be a meromorphic function with δ = δ(∞, f ) > 0. Then given

ε > 0, we have

mes E(r, f ) >
1

Tε(r, f )[log r]1+ε
, r /∈ F,

where

E(r, f ) =

{

θ ∈ [−π, π) : log+ | f (reiθ)| >
δ

4
T(r, f )

}

and F is a set of positive real numbers with finite logarithmic measure depending on ε.

Proof of Theorem 2 As in the proof of Theorem 1, we have for each j,

(15) Bα j ,α j+1

(

r,
1

f (p) − a

)

= O(log r), r /∈ E.

Applying Lemma 5 to f (p)(z) implies the existence of a sequence {rn} of positive
numbers such that rn → ∞ (n → ∞) and rn /∈ E and

(16) mes E
(

rn,
1

f (p) − a

)

≥
1

Tε(rn, f (p))[log rn]1+ε
.
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Set

εn =
1

2q + 1

1

Tε(rn, f )[log rn]1+ε
.

Then from (16) it follows that

mes

(

E
(

rn,
1

f (p) − a

)

∩

q
⋃

j=1

(α j + εn, α j+1 − εn)

)

≥ mes E
(

rn,
1

f (p) − a

)

− mes
(

q
⋃

j=1

(α j − εn, α j + εn)
)

> (2q + 1)εn − 2qεn = εn > 0,

so that there exists a j such that for infinitely many n, we have

(17) mes En >
εn

q
,

where En = E(rn,
1

f (p)−a
) ∩ (α j + εn, α j+1 − εn). We can assume that (17) holds for

all the n. Thus from the definition of E(r, f ) it follows that

∫ α j+1−εn

α j +εn

log+ 1

| f (p)(rneiθ) − a|
dθ ≥

∫

En

log+ 1

| f (p)(rneiθ) − a|
dθ

≥ mes(En)
δ

4
T(rn, f (p))

>
δεn

4q
T(rn, f (p)).

(18)

On the other hand, by the definition of Bα,β(r, ∗) and (15), we have

∫ α j+1−εn

α j +εn

log+ 1

| f (p)(reiθ) − a|
dθ ≤

π

2ω j sin(εnω j)
rω j Bα j ,α j+1

(

r,
1

f (p) − a

)

<
π2

4ω2
j εn

O(rω j log r), r /∈ E,

(19)

where ω j =
π

α j+1−α j
. Combining (18) with (19) gives

ε2
nT(rn, f (p)) ≤ O(r

ω j
n log rn),

so that
T1−2ε(rn, f (p)) ≤ O(r

ω j
n [log rn]3+2ε).

Thus µ( f ) = µ( f (p)) ≤ ω/(1 − 2ε) < ∞.
Theorem 2 follows from Theorem 1.
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3 Conclusion

For many uniqueness theorems established for meromorphic functions with shared
values in the complex plane, we can establish their counterparts for meromorphic
functions with shared values in angular domains. For example, by the arguments of

Frank and Schwick [8] and this paper, and noting the fact that the zeros of non-zero
analytic functions are isolated, we can prove the following

Theorem 3 Let f (z) be a transcendental meromorphic function of finite lower order µ
and such that for some a ∈ C and an integer p ≥ 0, δ = δ(a, f (p)) > 0. For q pairs of

real numbers {α j , β j} satisfying (1) and (2), assume that f (z) and f (k)(z) have three

distinct IM shared values in X =
⋃q

j=1{z : α j ≤ arg z ≤ β j}. If ω < λ( f ), then

f (z) ≡ f (k)(z).

We can also establish the result similar to Theorem 3 corresponding to Theorem 2.
Finally, what the author emphasizes is that the topic on the uniqueness of mero-
morphic functions dealing with shared values in an unbounded proper subset of the

whole complex plane is interesting and deserves to be investigated.
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[13] L. Yang, Borel directions of meromorphic functions in an angular domain. Sci. Sinica 1979, 149–163.
[14] L. Yang and C.-C. Yang Angular distribution of values of f f ′. Science in China, 37(1994), 284–294.
[15] J. H. Zheng, On the growth of meromorphic functions with two radially distributed values. J. Math.

Anal. Appl. 206(1997), 140–154.
[16] , On transcendental meromorphic functions with radially distributed values. Science in China,

to appear.

Department of Mathematical Sciences

Tsinghua University

Beijing 100084

China

email: jzheng@math.tsinghua.edu.cn

https://doi.org/10.4153/CMB-2004-016-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-016-1

