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Abstract

Consider the quasi-variety D generated by a finite algebra D and assume that D yields a natural duality
on D based on D which is optimal modulo endomorphisms. We show that, provided D satisfies certain
minimality conditions, we can transfer this duality to a natural duality on D based on M, which is also
optimal modulo endomorphisms, for any finite algebra M in D that has a subalgebra isomorphic to D.
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1. Introduction and preliminaries

The theory of natural dualities deals with the topological representation of algebras.
The main idea is that, given a quasi-variety D := 0§P(D) generated by a finite algebra
D = (D; F), we seek a topological structure D = (D; G, H, R, 07) on the underlying
set D of D such that a dual equivalence exists between D and a suitable category X
of topological structures of the same type as D. (Here G, H and R are sets of finitary
operations, partial operations and relations on D and S? is the discrete topology.) As a
result, we obtain a uniform way of representing each algebra A in the quasi-variety D
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394 B. A. Davey and M. Haviar [2]

as an algebra, X(X, D), of continuous structure-preserving maps from a dual X € X
of the algebra A into D.

On the one hand, the theory of natural dualities strives to give us an insight into
the general structure of the quasi-variety D := ISP(D). At this level, we are asking
what it is about the algebra D and the quasi-variety D that will guarantee that there
is some structure D = (D; G, H, R, &) which yields a natural duality on T>. On
the other hand, once we have a dualising structure D, it is natural to ask how it may
be refined, by deleting members of G U H U R, to obtain an optimal duality. The
focus of the present paper is on the optimal-duality end of this spectrum. A number
of authors, notably H.A. Priestley and her students, have considered optimal dualities:
see Davey and Priestley [11-13], Davey, Haviar and Priestley [7,8], Saramago and
Priestley [24], Saramago [22], Wegener [25] and Clark and Davey [2, Chapter 8].

A reader who is well versed in the basics of the theory of natural dualities may like
to skip to the last four paragraphs of this section where we describe, in general terms,
the main results and applications to be found in Sections 2 to 4.

Let D = (D; G, H, R, &) be algebraic over D, meaning that all relations in R and
graphs of all (partial) operations in G U H are algebraic on D, that is, are subalgebras
of appropriate powers of D. Let X = D§CP(D) denote the class of all topological
structures that are isomorphic to closed substructures of powers D5 for non-empty
sets 5. For A e D, let D(A) := D(A, D) be the homset consisting of all D-
homomorphisms from A to D. A relation r c D" induces a relation rD(A) on the
dual D(A) as follows: for * , , . . . , xn e D(A) we write (xu ..., xn) e rD(A) if and
only if (xi(a), . . . ,xn(a)) e r for all a e A. We say that a map a : £>(A) -> D
preserves the relation r if (a(xi) , . . . , a(xn)) € r for all (xlt... ,xn) e rD(A). A map
a : D(A) —> D is an "X-morphism if it is continuous and preserves all relations in R and
the graphs of all (partial) operations in G U H. The dual D(A) is a substructure of DA

and hence as a member of X. Similarly, for all X € X, the homset £(X) := X(X, D)
of all X-morphisms from X into D is a subalgebra of D* and so is a member of D.

The maps D and E have natural extensions to the morphisms in D and X. The
resulting (hom-)functors D : D —> X and E : X -> D are contravariant and dually
adjoint. Moreover, for any A 6 D we have a natural homomorphism eA : A —>•
ED (A) given by evaluation,

eA(a)(x) -x{a) for all a 6 A and* e D(A),

which is an embedding. We say that D (or G U H U R) yields a natural duality on
an algebra A € D if the embedding eA is an isomorphism, that is, the evaluation
maps eA(a), for a 6 A, are the only morphisms from D(A) to D. We say that D
(or G U H U R) yields a natural duality on T> (based on D) if it yields a duality on
every A € D. If End(D) yields a duality on D, we say that D is endodualisable and
if End(D) U [s] yields a duality on D, we say that D is almost endodualisable (with
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extra relation s). If D = (D; G, H, R, 3T) yields a duality on T> and if the removal
of any element of G U H U R gives a structure which does not yield a duality on D,
then we say that D yields an optimal duality on D. If G U H U R is finite we may
remove one relation at a time until an optimal duality is obtained. We refer the reader
to Davey [4] for an introductory survey on the theory of natural dualities and to the
monograph Clark and Davey [2] for a full account.

Assume that M is a finite algebra in D that has D as a subalgebra. It follows at
once that M also generates the quasi-variety T>. Given a structure D which yields
an optimal duality on "D based on D, we wish to convert it to a structure M which
yields an optimal duality on T> based on M. The idea of transferring a known duality
for a finite algebra D to a new duality for another finite algebra M originated in the
piggyback techniques developed in Davey and Werner [15,16]. A powerful method
for transferring dualities within the same quasi-variety of algebras via retractions,
known as the 'Siena method', was presented in Davey [5]. This was later generalised
to the Subalgebra Duality Transfer Theorem by Saramago [23]. In order to discuss
these results, we require some notation.

Let D be a finite algebra. Let M be a finite algebra in D := B§P(D) that has D as
a subalgebra. Thus, D = 0§P(M). Let r be an n-ary algebraic relation on D and let
r be the corresponding subalgebra of D". Note that, since r ^ D" and D" ^ M", we
may view r as an n-ary algebraic relation on M. Following the notation used in [5]
and [2], this relation on M is denoted by rD. Similarly, if g is an algebraic total (or
partial) operation on D then gD denotes g regarded as an algebraic partial operation
on M. If D = <£>; G, H, R, £f) is algebraic over D, then the corresponding sets of
algebraic partial operations and relations on M are denoted by

GD : = { g o \ge G},HD :={hD | h e H } a n d RD := {rD \ r e R}.

The ability to transfer a duality for D based on D to one based on M relies on the
existence of a set £2 = {cou ..., cok} of endomorphisms of M which satisfy:

(El) cOi(M) c D for all i, and
(E2) o)\,..., a>k separate the points of M.

These conditions guarantee that the product map u>i n • • • n cok : M ->• D* is an
embedding. Our assumptions that D is a subalgebra of M and that M belongs to D
guarantee the existence of such a set of endomorphisms. Indeed, if a> : M —»• D*
is an embedding and 7r, : D* —> D is the ith projection, then we can choose Q =
[JTI o co, ..., nk o a)}.

THEOREM 1.1 (Subalgebra Duality Transfer Theorem [23, Proposition 2.1]). Let
M be a finite algebra in D := 0§P(D). Assume that D is a subalgebra ofM and
that Q is a subset of End(M) that satisfies (El) and (E2). / / D = (D; G,H,R, &)
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yields a duality on D based on D, then M := (M; Q, GD U HD, RD U {D}, &) yields
a duality on D based on M.

REMARKS 1.2. Henceforth, given an algebraic relation r on D we shall drop the
subscript from rD when regarding r a s a relation on M. It will always be clear from
the context which hat r is wearing. Theorem 1.1 remains valid if we replace the
assumption that D is a subalgebra of M by the assumption that there is an embedding
v : D -> M. Simply replace D by v(D) throughout the statement of the theorem.
Similarly, all of our results that assume that M has D as a subalgebra remain valid
under the weaker assumption that M has a subalgebra isomorphic to D.

The Subalgebra Duality Transfer Theorem was first presented, under the assumption
that M has D as a subretract, in [5]. We recall that D is a retract of M if there are
homomorphisms u : D —• M and v : M —> D such that v o u = ido in which case v
is called a retraction and u is called a coretraction. In the case that D is a subalgebra
of M and u is simply the inclusion map, we say that D is a subretract of M and refer
to v as a subretraction. Retractions will play a vital role in our theory.

The concept of entailment is central to the process of obtaining an optimal duality
from a non-optimal one. We shall develop the theory of entailment based on the
algebra D, but in practice will also need the corresponding ideas and results based on
M. Let S U {s} be a set of finitary algebraic (partial) operations and relations on D
and let A belong to © := DSP(D). We say that S entails s on D(A) = D(A, D) if
every map a : D(A) —*• D that preserves the (partial) operations and relations in 5
also preserves s. We say that 5 entails s if 5 entails s on D(A) for all A 6 D . An
important fact connecting entailment with duality, which will be used often below, is
the following Test Algebra Lemma.

LEMMA 1.3 (Test Algebra Lemma, [13, Lemma 2.3, Proposition 2.5]). Let RU {s}
be a family of finitary algebraic (partial) operations and relations on a finite algebra
D and let D := 0SP(D).

(i) R entails s if and only if R entails s on D(s) = D(s, D).
(ii) If R yields a duality (based on D) on the algebra s, then R entails s.

(iii) Assume that R yields a duality on D (based on D) and let r 6 R. Then the
following are equivalent:

(a) R \ [r] yields a duality on D ;
(b) R \ [r] yields a duality on the algebra r;
(c) R \ {r} entails r on D(r) = D(r, D).

Hence, if G U H U R yields a duality on D , we may delete a relation or (partial)
operation s from GUHUR without destroying the duality if and only if (GUHUR)\[s}
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entails s. If h is an n-ary algebraic (partial) operation on D then graph(/i) is an (n+1)-
ary algebraic relation on D and the corresponding subalgebra of Dn+1 will be denoted
by h. (Since 5 entails s on D(A) if and only if 5 entails s on £>(B) for each algebra
B € D with B = A, we could just as well define h to be the subalgebra of D"
corresponding to dom(/i).)

Our aim in this paper is to provide a method for transferring optimal dualities.
Because of the important role played by the endomorphisms of M in the Subalgebra
Duality Transfer Theorem and because we are usually happy to include (a generating
set for) the endomorphism monoid on M in the dualising structure for M, we shall
concentrate here on dualities which are optimal modulo endomorphisms. That is, we
shall seek a set 5 of finitary algebraic relations on M such that End(M) U 5 yields a
duality on D based on M but if any member of 5 is removed the resulting structure
does not yield a duality on D.

After transferring an optimal duality from a (usually small) algebra D up to a
bigger algebra M e D b y the Duality Transfer Theorem 1.1, it has been far from clear
which reducts of a given dualising structure M yield optimal (modulo endomorphisms)
dualities on D based on M. Only one thing was known for sure: if End(M) U 5 yields
a duality on D based on M, then a relation s e S can be removed without destroying
the duality provided that the corresponding algebra s is a retract of M. This follows
from the following fact from [12, Lemmas 4.1, 4.2], which we state with respect to D
but use with respect to both D and M: the set End(D) yields a duality (based on D)
on every retract of the algebra D.

The set of all finitary algebraic relations on a fixed finite algebra is usually denoted
by 38 and is referred to as the brute force set of relations as it is the largest set of
relations that could be used to obtain a duality and, moreover, if any set of relations
yields a duality then 8) does. Since we need to distinguish the particular algebra on
which we are basing our duality, typically D or M, we define

<^(D) := {r | r is an n-ary algebraic relation on D for some n € N }.

We reiterate that if D is a subalgebra of M then 38(J>) c g?(M) since each subalgebra
of a power of D is a subalgebra of a power of M (see Remarks 1.2).

According to the Test Algebra Lemma, R does not entail s if and only if there exists
a map y' : D(s, D) -*• D such that the set

Fail^(>/') := {r e #(D) | y' : D(s, D) -> D fails to preserve r},

contains s but contains no member of R. We often work within some fixed subset £#,
of ^?(D). Then the set FaiiP(y') D 8Z is called afailset of s (within @) provided it
contains 5. We refer to U c <% as afailset (within 3$) if U is a failset of some s e ^ .
Let Jf be the set of all failsets of i (within &,) and let & := \J[ &s \ s e Sf.}. Order
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both &s and & by set inclusion. Minimal elements of &, are called locally minimal
failsets (within 3$) while minimal elements of & are called globally minimal faihets
(within 8R). When working simultaneously with algebras D and M we add a prefix
and refer to D-failsets and M-failsets. The following result, which will be required in
the final section of the paper, is extracted from a characterisation of globally minimal
failsets given in Davey and Priestley [13, Theorem 4.2].

THEOREM 1.4. Let D be a finite algebra and let T> :— 0§P(D). Assume that
3$ C @(V) yields a duality on T> (based on D) and let U C SH. Then the following
are equivalent:

(a) U is a globally minimal failset within £%;
(b) U is a locally minimal failset of r within S%, for all r e U;
(c) SH \ U does not yield a duality on D but (M\ U)U{r] yields a duality on D

for all reU;
(d) for all r e U,

(i) 3#.\U does not yield a duality on r, and
(ii) (3$\U)\J{r) yields a duality on U.

For discussion of the theory of entailment, failsets and optimal dualities beyond the
bare details given here we refer to [8,11,13,22,24] and to [2, Chapters 2, 8 and 9].

The Test Algebra Lemma 1.3 says that a relation r can be removed from a dualising
set R of relations without destroying the duality provided R \ {r} yields a duality on
the single algebra r, which therefore has been called a test algebra. Modifying the
concept slightly, throughout this paper an algebra s, corresponding to an algebraic
relation s will be said to be a test algebra (for showing that R does not yield a duality
on D) if R does not yield a duality on the algebra s. The Retraction Test Algebra
Lemma from Haviar and Priestley ([20, Lemma 4]; see also [4, Lemma 6.3] and [13,
Lemma 4.2]) tells us that a known test algebra s can be replaced by any algebra t
that retracts onto s. Its corollary ([20, Corollary 5]) says that if s is a test algebra
showing non-endodualisability of M and if s is a retract of the ̂ -generated free algebra
FD(&) (or equivalently, if s is a jfc-generated projective algebra in Dj , then M is not
£-endoprimal.

In Section 2 we present our main result, the Optimal Duality Transfer Theorem,
which can be described as follows. Assume that an optimal duality for D based on
D is given by some 'minimal' relations and that this structure has been transferred
to a duality for D based on M. Using the Test Algebra Lemma we may remove
from the transferred duality all the relations r such that r is a retract of M. Our
theorem states that the resulting duality for D based on M is already optimal modulo
endomorphisms. Hence a 'minimal' test algebra with respect to D can be transferred
to a test algebra with respect to M provided it is not a retract of M.
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In Section 3 we assume that the algebra D we start with is almost endodualisable
but not endodualisable. Hence the duality transferred onto any M having D as a
subretract is given by End(M) plus one extra relation. We show that this extra
relation determines the unique globally minimal M-failset disjoint from End(M)
within &. := End(M) U ^(D).

In Section 4 we present some applications of the results of Section 2 and Sec-
tion 3. We first apply the results of Section 2 to transfer optimal dualities from the
three-element Kleene algebra to derive new optimal dualities for finite Kleene alge-
bras having fixpoints. Then we illustrate the results of Section 3 in the varieties of
semilattices, bounded distributive lattices and Stone algebras.

The final section of the paper contains the proofs of the technical lemmas required
in Section 2 to establish our Optimal Duality Transfer Theorem.

2. Transferring optimal dualities: theory

Let D be a finite algebra and assume that the topological structure

D = (£>;End(D), 5, ST)

yields a duality on D = i§IP(D) which is optimal modulo endomorphisms. In
practice, we would like our dualising structure D to be optimally optimal. For example,
we might want the relations s e S to have minimum cardinality (or minimum arity or
both). In order to understand these ideas better, we shall now discuss optimal sets of
relations and their interaction with failsets in more detail.

Let R be a set of finitary algebraic relations on D and let s e R . A relation
si e @(D) is a substitute for s relative to R if (R \ {s}) U {$,} entails s. Thus, if R
yields a duality on D and jj is a substitute for s e R, then (R \ {s}) U [s\} also yields
a duality on D. Nevertheless, the duality given by (R \ {s}) U {s\} may not be optimal
even when the duality given by R is. We shall say that s is needed in R if R \ {s} does
not entail s and that a subset 5 of R is optimal in R if every relation s e S is needed
in R. If every relation s € R is needed in R, we say that R is optimal. Thus R yields
an optimal duality on D if and only if R yields a duality on D and R is optimal. Note
that if s is needed in R and S\ is a substitute for s relative to R, then si is needed in
(R \ {s}) U {•$]}. By the Test Algebra Lemma 1.3, the relation s is needed in R if and
only if R \ [s] does not entail s on D(s), that is, there exists a map y' : D(s, D) ->• D
such that

(Nl) y' does not preserve s, that is, s € Fail^(y').
(N2) y' preserves each relation r e R \ [s], that is, Fail^(y') n (R \ {s}) = 0 .

Let M be a finite algebra in D. We shall say that the relation s avoids M relative to
R if there exists a map y' : D(s, D) -+ D which satisfies (Nl), (N2) and
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(A) y' preserves every finitary algebraic relation r e ^ ( D ) such that r = M, that
is, Fail^(y') (l[r€ # ( D ) | r = M} = 0 .

If 5 c R and each s e S avoids M relative to R then we say that S avoids M relative
to R. In the case that S = R, we say simply that R avoids M. We often prove that 5
avoids M relative to R by establishing a stronger minimality condition on s. We say
that s is as small as possible relative to R if there exists a map y' : D(s , D) —> D
which satisfies (Nl), (N2) and

(S) y' preserves every relation s, e BS(D) such that s is not a retract of Si, that is,
Fail&(y') c {sx e ^ ( D ) | s is a retract of s ,} .

The following lemma collects together some simple but useful connections between
the concepts introduced above.

LEMMA 2.1. LetDbe a finite algebra andletM be a finite algebra in T> := DSP(D).
Assume that R is a set of finitary algebraic relations on D and let s e R.

(i) If s is as small as possible relative to R and s^ is a substitute for s relative
to R, then s is a retract of Si and therefore, in particular, \s\ ^ |ji |.

(ii) If s is as small as possible relative to R and s is not a retract o /M, then s
avoids M relative to R.

(iii) If s avoids M relative to R, then no substitute for s relative to R can be
isomorphic qua algebra to M.

(iv) Ifs is as small as possible relative to R or if s avoids M relative to R, then s
is needed in R.

By (i), one way to guarantee that the set R is optimally optimal is to ensure that
every relation 5 in R is as small as possible relative to R.

The following two results, which are proved in Section 5, provide sufficient condi-
tions under which a D-failset of an algebraic relation s on D may be transferred to a
very closely related M-failset of the relation s on M.

LEMMA 2.2. Let D be a finite algebra, letD := B§P(D) and assume that M e D
is finite and has D a s a subalgebra. Let s and t be finitary algebraic relations on D
and assume that neither D nor M has t as a retract. If{re. £8(D) | t is a retract ofr]
contains a D-failset U of s, then there exists an M-failset Vofs such that

(i) V contains no (graphs of) endomorphisms o/M, and
(ii) V n #(D) = U.

LEMMA 2.3. Let D be a finite algebra, let D := 0§P(D) and assume that M e D
is finite and has D_as a subalgebra. Let S be a set of finitary algebraic relations on D
and let s e S. The following conditions are related by (1) =>• (2) => (3):

(1) s (as a relation on D) avoids M relative to End(D) U S;
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(2) s (as a relation on M) is needed in End(M) USD {D};
(3) s is not a retract o/M.

With this technical lemma in hand we are ready to prove the main result of this
section.

THEOREM 2.4 (Optimal Duality Transfer Theorem). Let D be a finite algebra, let
"D := 0§P(D) and assume that M € "D is finite and has D as a subalgebra.
Let S be a set of finitary algebraic relations on D and assume that the structure
D = (D;End(D), 5, 2?) yields a duality on D based on D which is optimal modulo
endomorphisms. Define S° := {s € 5 | s is not a retract o/M}. If S" avoids M
relative to End(D) U 5°, then, with the possible exception that D may not be needed,
M :— {M; End(M), 5° U {£>}, &) yields a duality on D based on M which is optimal
modulo endomorphisms. Moreover, z/D is a subretract o/M, then D is not needed and
consequently M := (M;End(M), 5°, &) yields a duality on D based on M which is
optimal modulo endomorphisms.

PROOF. From Theorem 1.1, it follows thatM' = (M;End(M), SU {D}, S) yields
a duality on D§P(M) = D . For each .y € S\S°, the algebra sis a retract of M, whence
End(M) entails s. Hence the relations s e S \ S° can be removed from M' without
destroying the duality. Thus, M = (M;End(M), 5° U {£>}, &) yields a duality on
DSP(M). If u : M -> D is a subretraction, then u e End(M) with fix(«) = D,
whence u entails D. The result now follows from the previous lemma. •

We now give some natural conditions on failsets that will ensure that s avoids
M relative to End(D) U 5. We almost always use these lemmas when applying the
Optimal Duality Transfer Theorem. Recall that a subset U of ^ ( D ) is a D-failset ofs
ifseU and there exists a map y' : D(s, D) -> D such that FailB(y') = U.

LEMMA 2.5. Let D be a finite algebra, let D := D§P(D) and assume that M is a
finite algebra in D. Let S be a set of finitary algebraic relations on D, let s € 5 and
consider the following conditions:

(1) {s\ e <^(D) | s is a retract o / s j contains a D-failset ofs;
(2) s is as small as possible relative to S;
(3) s is as small as possible relative to End(D) U 5;
(4) s avoids M relative to End(D) U 5.

Ifs is not a retract o/M, then (3) =* (4). Ifs is not a retract o/D, then (2) => (3). Ifs
is not a retract of r for all r e S\ {s}, then (1) => (2).

PROOF. Ifs is not a retract of M, then (3) implies (4) by Lemma 2.1 (ii). Assume
that s is not a retract of D. If (2) holds, then there exists y1 : D(s, D) -*• D
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satisfying (Nl), (N2) and (S) with respect to R :— S. Since s is not a retract of D,
by (S) the map y' preserves every relation isomorphic qua algebra to D. Thus, y'
preserves graph(e) and consequently preserves e, for all e e End(D). It follows at
once that y' satisfies (Nl), (N2) and (S) with respect to R := End(D) U 5, whence s
is as small as possible relative to End(D) U 5. Hence, (2) implies (3). Finally, assume
that s is not a retract of r for all r € 5 \ {s}. It then follows from (1) that there is a
map y' : D(s, D) - • D such that (Nl), (N2) and (S) hold with respect to R := S,
whence s is as small as possible relative to 5. Hence, (1) implies (2). •

The lemma above is typically applied to algebraic relations s that have a subalgebra
isomorphic to D. Our next lemma applies to 'small' algebraic relations that do not
have a subalgebra isomorphic to D.

LEMMA 2.6. Let D be a finite algebra, letT) := D§P(D) and assume that M € D
is finite and has D_as a subalgebra. Let S be a set of finitary algebraic relations
on D and let s € 5. Assume that s has no subalgebra isomorphic to D and r has a
subalgebra isomorphic to I) for all r e S \ {s}. If

[r e &(D) | r has no subalgebra isomorphic to D}

contains a D-failset ofs, then s avoids M relative to End(D) U S.

PROOF. Let U be a D-failset of s and assume that r has no subalgebra isomorphic
to D for all r e U. Hence, U D S = {s) and so (Nl) and (N2) hold with respect to
R := S. If r 6 33(D) with r = M, then r has a subalgebra isomorphic to D and hence
r £ U. Thus, s avoids M relative to S. Since D £ U and since, for all e e End(D),
the relation graph(e) is isomorphic qua algebra to D, the failset U contains no (graphs
of) endomorphisms of D. Consequently, the D-failset U also shows that 5 avoids M
relative to End(D) US. D

3. Almost endodualisability

There are many finite algebras D that are dualised by some endomorphisms of
D plus one extra relation s; we recall that in this situation D is said to be almost
endodualisable. Moreover, in many examples (as we shall see in Section 4 below)
the extra relation s satisfies Condition (1) of Lemma 2.5. In this case we obtain the
following transfer theorem.

THEOREM 3.1 (Almost Endodualisability Transfer Theorem). Let D be a finite al-
gebra, let T> := 0§P(D) and assume that M e D is finite and has Das a subretract.
Assume that D is almost endodualisable with extra relation s.
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(0) M is almost endodualisable with extra relation s.

If, moreover, D is not endodualisable and {s\ e &(D) | s is a retract of Si} contains a
J)-failsetofs, then s is as small as possible relative to End(D) U {5} and the following
hold

(1) M is endodualisable if and only ifs is a retract of M,
(2) if M is non-endodualisable then s, and any finite t e D that has s as a retract,

serves as a test algebra showing that M is not endodualisable,
(3) if s is a retract of the k-generated free algebra FD(Jk), then M is k-endoprimal

if and only ifs is a retract of M.

PROOF. It follows from Theorem 1.1 thatM = (M;End(M), s, 3?) yields a duality
on D based on M. If s is a retract of M, then s can be removed from M without
destroying the duality and so M is endodualisable. The non-endodualisability of
D implies that s is needed in End(D) U {5}, so that s is not a retract of D. By
Lemma 2.5, s is as small as possible relative to End(D) U [s], and, if s is not a retract
of M, then s avoids M relative to End(D) U {s}. The rest of the proof follows from
Theorem 2.4, and from the Retraction Test Algebra Lemma and its corollary ([20,
Lemma 4, Corollary 5]), which we discussed near the end of Section 1. •

For the remainder of the this section we shall assume that D is a finite almost
endodualisable but not endodualisable algebra with extra relation s (whence s is not
a retract of D). Moreover, we shall assume that s is binary. We let M be a finite
algebra in D := 0§P(D) and assume that M has D as a subretract and does not
have s as a retract. We say that s is a retractive projection of an m-ary relation
s\ e 38(jy> (m ^ 2) if there exist i ^ j with 1 ^ i, j ^ m such that the projection
Ptj : Mm —y M2 satisfies Pij(s\) = s and, moreover, there exists a homomorphism
q : s -> S] such that p(J \Si o q = ids (see [2, page 275]). It is easy to see that if 5 is a
retractive projection ofs\, then si entails s. Consider the set

Us := {r 6 BS{U) \ r has s as a retractive projection}.

This set occasionally turns out to be a failset of J.

LEMMA 3.2. Lets e @(D). The following are equivalent:

(a) U' is a locally minimal failset ofs within
(b) Us is a failset ofs within <^(D
(c) Us contains a failset ofs within

PROOF. Clearly, (a) =» (b) => (c), so assume (c). Let V be any failset of s with
V c Us. To prove that U1 is a locally minimal failset of s it suffices to show that
Us C V. Let r € Us. Since r has s as a retractive projection, r entails s. As s belongs
to the failset V, it follows that r € V and consequently Us C V, as required. •
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Obviously, Us is a subset of {si e ^(D) | Si has s as a retract}. So if Us is a failset,
the Almost Endodualisability Transfer Theorem can be applied; but in this case even
more can be said. If V c <%(M), we write V DEnd(M) = 0 and say that V is disjoint
from End(M) provided V contains no graph of an endomorphism of M.

THEOREM 3.3. Let D be a finite almost endodualisable but not endodualisable
algebra with s c D2 as the extra relation and assume that Us is a D-failset of s
within 3&(D). Let M be a finite algebra in D := DSP(D) that has Das a subretract
but does not have s as a retract.

(1) The algebra M is almost endodualisable: let r e ^(D), then

M = (Af;End(M),r, &)

yields a duality on D based on M if and only ifre Us.
(2) For every r € Us, the algebra r serves as a test algebra showing that M is not

endodualisable.
(3) Let&, := End(M) U &(B). Then

(i) Us is a globally minimal M-failset within 3?.,
(ii) Us fl End(M) = 0,

(iii) Us is the only globally minimal M-failset within 3$ which is disjoint from
End(M).

PROOF. Assume that D is almost endodualisable with s as the extra relation; then,
by Theorem 1.1, M is also almost endodualisable with s as the extra relation. Let
r e Us. Then r has s as a retractive projection and hence r entails s, whence the
structure M = (M;End(M), r, &) yields a duality on D based on M. This proves
sufficiency in (1). Since Us is a D-failset of s and since s is not a retract of M, it
follows from Theorem 3.1 that for every r e Us, the algebra r is a test algebra showing
that M is not endodualisable, whence (2) holds.

Lemma 2.2 with t = s implies that there is an M-failset V of s which contains
no graphs of endomorphisms of M and satisfies V D ^(D) = Us. Hence, Us is an
M-failset of s within St. := End(M) U ^(D) with Us n End(M) = 0 . Thus, (3) (ii)
holds. Since any subset of 8Z that yields a duality on D (based on M) must intersect
every failset within Sf. (see [2, Theorem 8.3.1]), the existence of the M-failset Us

proves necessity in (1). Since Us is an M-failset of s within 8?., we know that 3S\US

does not yield a duality on s. By the Retraction Test Algebra Lemma [20, Lemma 4],
it follows that Sf.\Vs does not yield a duality on r, for all r e Us. Thus condition (i)
in (d) of Theorem 1.4 holds. To prove that Us is a globally minimal M-failset within
3?., it remains to prove (ii) in (d) of Theorem 1.4. But this follows immediately from
the fact that, for any r € Us, the structure M = {M;End(M), r, !7) yields a duality
on D based on M as shown in (1). Hence (3) (i) holds.
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It remains to prove (3) (iii). Let V be a globally minimal M-failset (within SI)
disjoint from End(M). Since, by (1), End(M) U {r} yields a duality on JD for every
r e Us, the failset V must contain r for every r e Us, whence Us c V. As U' is an
M-failset and V is a globally minimal M-failset (within ^?), we obtain V = f/1, as
required. •

Taking M = D yields the following interesting corollary.

COROLLARY 3.4. Let Dbe a finite almost endodualisable but not endodualisable
algebra with s C D2 as the extra relation and assume that the set Us is a failset ofs
within ̂ (D). LetT> := 0SP(D).

(1) For all r e ^(D), the structure D = (D; End(D), r, &) yields a duality on T>
if and only ifre Us.
(2) Each r e Us serves as a test algebra showing that D is not endodualisable.
(3) Us is a globally minimal failset within £8(D).
(4) Us fl End(D) = 0 and Us is the only globally minimal failset within

which is disjoint from End(D).

4. Transferring optimal dualities: practice

We turn now from theory to practice and present several applications which illustrate
the utility of the general theory.

Kleene algebras with fixpoints First we see how to transfer an optimal duality
based on the three-element Kleene algebra to other Kleene algebras that have a three-
element subalgebra. The variety of Kleene algebras DC = 0§P(K) is generated by
the algebra K = ({0, a, 1}; V, A, -., 0, 1) with 0 < a < 1 and --0 = 1, ->l = 0 and
-•a = a. For any Kleene algebra A e OC, one can define two important sublattices,
namely a filter Av := [c v ->c \ c € A] and an ideal AA := [c A ->c | c e A]
which are anti-isomorphic via the mapping c i-> ->c. If A is a subalgebra of K", then
Pj := JTJ-,\A : A -*• K denotes the restriction to A of the j th projection jij : K" —> K.
The next lemma is easily proved.

LEMMA 4.1. Let Abe a Kleene algebra.

(i) A is a Boolean algebra if and only i/|Av| = 1.
(ii) A has a subalgebra isomorphic to K if and only if Av D AA = [d], where

d = ->d is the unique ->-fixpoint of A.
(iii) A has the five-element Kleene algebra chain as a retract if and only if A has

a subalgebra isomorphic to K and A v is a non-Boolean lattice.
(iv) If A is a subalgebra ofK", then AA = A D {0, a}" and A v = A D {a, I}".
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(v) If A. is a subalgebra o/K", then A has no subalgebra isomorphic to K if and
only if there is a projection p, : A -> K satisfying PJ(A) = {0, 1}.

Let Ko := {0, 1}, AKo := {(0, 0), (1, 1)}, let < be the order given by

^ := {(0, 0), (0, a), (a, a), (1, a), (1, 1)},

let > be the converse of < and let — be the binary relation K2 \ {(0, 1), (1, 0)}. In
[13] (see also [2, Section 8.4]) it is shown that the subsets of §(K) U §(K2) that
yield optimal dualities on % based on K are the transversals of the following globally
minimal failsets:

• UKo := {Ko, AKo, Kl K x Ko, Ko xK,>H(Kx KQ), <D(Kox K)}.

The set End(K) clearly plays no role here. Hence, for arbitrary r e UKo,

Ki = ({0,a, l};r, ^, - , ST) and K2 = ({0, a, 1}; r, ±, -, ST)

yield optimal dualities on DC based on K.
By applying the Optimal Duality Transfer Theorem 2.4 we shall transfer these

optimal dualities on K to optimal dualities on any Kleene algebra M that has K as a
subalgebra, that is, (up to isomorphism) to any M that has a ->-fixpoint. To do this, it
suffices to verify that (r, s, —}° avoids M for every r e UKo and s e {<, >}. We shall
achieve this by applying Lemma 2.5 and Lemma 2.6: in the next three lemmas we
show that the relations in the optimal dualities given by K, and K2 satisfy the required
'minimality' conditions.

LEMMA 4.2. Let M be a Kleene algebra that has K as a subalgebra and let
r € UKo.

(i) The map y' : DC(r, K) - • K, defined by y'(x) := a for all x e X(r, K),
satisfies

Fail^(y') = {n e <^(K) | ri has no subalgebra isomorphic to K}

= {r, e ^ (K) | Ko is a retract o/r,}.

(ii) The relation r avoids M relative to [r, <, —} and {r, >, —}.

PROOF. Let r e UKo. Inspection of UKa shows that r has no ---fixpoint and therefore
no subalgebra isomorphic to K. Let n € &§(K) be n-ary and assume that rj has no
subalgebra isomorphic to K, that is, (a, ..., a) $ r\. By Lemma 4.1 (v), there is
a projection p, : r —• K such that p,-(r) = {0, 1}. Hence, for all c 6 r, we have
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( A ( c ) , . . . , Pi{c)) e { (0 , . . . , 0), ( 1 , . . . , 1)} c r,, whence ( p , , . . . , pt) e r,X(r-B.
But, ( y ' ( p , ) , . . . , / ( p , ) ) = ( a , - - . , a) £ r,. Thus, r, 6 Fa i l* ( / ) . If r, has a
subalgebra isomorphic to K, then ( a , . . . , a) e n and consequently y' preserves r\.
To complete the proof of (i), it remains to show that r! has no subalgebra isomorphic
to K if and only if Ko is a retract of i^, but this is an almost immediate consequence
of Lemma 4.1 (v). Since r has no subalgebra isomorphic to K, for all r e UKo, while
i , >:, and — do have subalgebras isomorphic to K, it follows from (i) and Lemma 2.6
that r avoids M relative to {r, •<, —} and [r, >, —}. This proves (ii). •

LEMMA 4.3. Lets = < and let r e UKa.

(i) The map y' : 3C(s, K) - • K, defined by

satisfies Fail^(y') = {̂ i e ^ ( K ) | Si /iai s a s a
(ii) The relation •< is as small as possible relative to {r, <, —}.

(iii) Let M be a Kleene algebra that does not have s as a retract. Then < avoids
M relative to [r, <, —}.

PROOF. It is easily seen that each homomorphism K : A —*• B satisfies M(AV) C flv.
Since Kv = {a, 1}, the map y' is well defined. To simplify the notation, define a* = 1
and 1* = a, that is, * is Boolean complementation in the two-element chain [a, 1}.
Denote the pointwise extension of* to [a, 1}" by * also. Hence, y\x) — JC(1, a)*, for
all x e 0C(s, K). Let st be an n-ary algebraic relation on K.

Assume that s is not a retract of Si. Since s is a five-element chain, s^ is a Boolean
lattice by Lemma 4.1. Let (xu ..., xn) e 5,3C(S'K). It follows that

a := (a,..., a) = (xi(a, a),...,xn{a, a)) e su

Hence, s,v is a Boolean sublattice of {a, 1}". Thus, (xi(l, a), . . . ,xn(l, a)) e J,V

implies that

( / ( * , ) , . . . . y'(xn)) = (x,(l, a)*, . . . . Jc.d, a)*)

Hence, y' preserves st.
Now assume that y' preserves s\. Since we wish to prove that s is a not a retract

of Si, we may assume without loss of generality that s\ includes the diagonal {6, d, 1}
of K". In order to prove that s is not a retract of S] it suffices to show that sf is a
Boolean lattice, that is, that J,V is closed under *. Let c 6 s^. Then v : s -*• sx,
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defined by u(l , 1) = I, v(l, a) = c, v(a, a) = a, v(0, a) = ->c, and u(0, 0) = 0, is
an embedding of s into Si. Define xt := p,Sl o v. Then (xi xn) e s{

 ( s £ ) . Since y'

preserves st, we conclude that

= (JC,(1, a)*,.. .,xn(l, a)*) = ( / ( * , ) , . . . , / (*„ ) ) 6 5,,

as required. Hence, (i) holds. Let re UKo. Since s — < is a retract of neither r nor - ,
(ii) and (iii) follow at once by Lemma 2.5. •

LEMMA 4.4. Let t = — and let r e UKo-

(i) The map y' : 9C(t, K) - • K, defined by

fl ifx(l,d) = a;
Y (x) := {

(0 i/jc(l,a) = l,

satisfies Failr(y') = {r, € ^ (K) | ti /ia51 aj a rerracf}.
(ii) 77ie relation — is as small as possible relative to {r, -<, —}.

(iii) Let Mbe a Kleene algebra that does not have t as a retract. Then — avoids
M relative to {r, <, —}.

PROOF. First note that 3C(t,K) = {p\, pf
2) and hence y'(x) = 0 •& x = p\

and y'(;t) = 1 o- * = p\. Let ^ be an n-ary algebraic relation on K. Assume
that y ' does not preserve tx. Hence, there exist JCI JCB 6 DC(t, K) such that

(xu...,xn) e t*(t& but ( / ( * , ) , . . . , y'(xn)) i /,. Let f, be the subalgebra of
K" generated by t\ and the n-tuple (y'(jcO, . . . . y'(xn)). Suppose now that (0, 1) 6
(7r, n 7Tj)(ti) for all i ^ j . Thus, {0, I}2 c (m n TTJ)(/[). Since {nt n Tr,-)^) is the
subalgebra of K2 generated by (nt n Jij)(t\) and the ordered pair (y'(xj), y'(xj)) and
since y'(x,), y'(xy) 6 {0, 1}, it follows that (nt n 7tj)(t[) and (7r, n nj)(ti) are equal.
Since every algebraic relation on a finite lattice-based algebra is determined by its
binary projections (see Baker and Pixley [1]), we conclude that t\ = t[ contradicting
the fact that (y'(xi),... ,y'(xn)) e t[ \ tx. Thus, there exist / and j such that
(y'(xj), y'(xj)) = (0, 1) £ (7T, n 7ry)(/]). In particular, we have *, = p\ andxj = p\.
It follows that (n, n itjKb) £ K2\ {(0, 1), (1,0)} = t. Thus, u := p]' n p]1 : t, -»• t
is well defined. Define u : t —• ti by v := X\ n • • • n xn. Then, for all (ci, c2) € t, we
have

(HO V)(C,,C2) = (p]' npj')(xi(cu c2) xn(cuc2))

- (Xi(c,, c2), Xj (c,, c2)) = (c,, c2) as J:, = p\ and x;- = p2.

Hence, t is a retract of t).
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Conversely, assume that t is a retract of t!. Let v : t -*• U be the embedding
and let u : ti -> t be the corresponding retraction. Define xt := p*1 o v. Then
(xi , . . . ,xn) 6 ffC(tS). Suppose that (y'Ot,), • • •, /(*„)) e tx. Note that the n-
tuple (y'(xi), . . . , y'(xn)) is a Boolean element of t,, that is, (y'(*i)> • • •. Y'(xn)) e
h D {0, 1}". Consequently, u{y'{x^), . . . , y'(xn)) e {(0, 0), (1, 1)}. Assume that
«(y'(*i), • • •. /(*„)) = (1, I)- Recall that

yM.\° "*-*•
(1 ifx, = pl

Since

v((a, 1)), = (*, n • • • n jc.)((fl, 1)), = a l f X' = p | :

[1 f\

we have (y'(^i),..., /(*„)) < ^((a. !))• Hence,

(1, 1) = «(/(*,) y'fe)) < «(v((a, 1))) - (a, 1),

a contradiction. Now assume that u(y'{x{),..., y'(xn)) = (0,0). Since

, a)), = ( x , n - • n*.)((l, a)), = * ' ^ ' P | :

[a ifxt = p\,

we have -()/'(*i), • • •. /(«»)) < v(d, «))• Hence,

(1, 1) = -(0, 0) = -ii(y'(x,) /(*„))

• • • - / (*») ) < «(v(d, a))) = (1, a),

a contradiction. Hence, (y'(x\),... ,y'(xn)) £ t\ and consequently y' does not
preserve ^. This proves (i), and since t = — is a retract of neither < nor r, for all
r e UKo, Lemma 2.5 yields (ii) and (iii). •

We require one more elementary lemma.

LEMMA 4.5. (i) The algebra Ko is a retract of the 1-generated free Kleene
algebra FDC(l).

(ii) The algebras s = •< and t = — are not retracts of any finitely generated free
Kleene algebra F3C(n) (n ^ 1).

PROOF. AS an ordered set, FDC (1) is the linear sum 1 © 22 © 1, the doubly irreducible
elements being the free generator* and its negation ->x. It is trivial that Ko is a retract
of F9C(1). Hence (i) holds. Statement (ii) follows from the fact that, for all n ^ 1,
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the free Kleene algebra F0C(n) has no subalgebra isomorphic to K while both s and
t do. This can also be seen easily via natural duals. The natural dual %(F%(n), K)
can be identified with K" for any structure K algebraic over K (see [2, page 45]), and
so has a non-empty relation Ko. But because s and t have ->-fixpoints, the relation Ko

is empty on both 9C(s, K) and 3C(t, K). Therefore, neither s nor t can be a retract of
FX(n). D

Our first conclusion does not concern the transfer of the duality given by —, ;<
and Ko to some generating algebra other than K. Rather, it shows that this duality is
optimally optimal in the whole class £8(K) in a very natural sense.

THEOREM 4.6. Let R be a subset of @(K) and let s = < and t = - . // the
structure K:=(K;R, 2?) yields a duality on % based on K, then there exist relations
r, S\, t\ e R such that Ko, s and t are retracts ofx, s, and \.\, respectively.

PROOF. If R yields a duality on 3C based on K, then R must intersect every
failset in &(K). The result follows at once from Lemma 4.2 (i), Lemma 4.3 (i) and
Lemma 4.4 (i). •

The main result of this subsection follows immediately from the above analysis
by the Optimal Duality Transfer Theorem 2.4. The fact that M in (i) below is not 1-
endoprimal follows from Lemma 4.5 and the corollary of the Retraction Test Algebra
Lemma [20, Corollary 5]. We note that if M has K as a subalgebra, then M has a
-i-fixpoint, and consequently, for every relation r e UK0, the corresponding algebra r
is not a retract of M. Since K is injective in 3C, the algebra M has K as a subretract
and consequently the unary relation K on M is not needed. We reiterate that, as
End(K) = {idjc}, the endomorphisms of K play no role here.

THEOREM 4.7. Let M be a finite Kleene algebra and assume that M has Kas a
subalgebra. Let s = < and t = —.

(i) Assume that M has t and s as retracts. Then for any relation r e UKo, the
structure M = (M; End(M) ,r,^) yields a duality on % based on M which is optimal
modulo endomorphisms. Moreover, M is not l-endoprimal.

(ii) Assume that M has t as a retract but does not have s as a retract. Then for
any relation r € UKo, the structure M = (M; End(M), s, r, &) yields a duality on 0C
based on M which is optimal modulo endomorphisms.

(iii) Assume that M has s as a retract but does not have t as a retract. Then for
any relation r € UKo, the structure M = (M;End(M), t, r, S) yields a duality on %
based on M which is optimal modulo endomorphisms.

(iv) Assume that M has neither s nor t as a retract. Then for any relation r e UK0,
the structure M = (M; End(M), t, s, r, f7) yields a duality on 0C based on M which
is optimal modulo endomorphisms.
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Semilattices The varieties of semilattices, bounded, upper-bounded and lower-
bounded semilattices are SK = OSP(2K) where, respectively, 2K = ({0, 1}; v, K)
is the 2-element semilattice with bounds K = 0 , K = {0, 1}, K = {1} and K = {0}.
Let

2 := ({0,1}; v, 0,1, ?), 201 := ({0, 1}; v, ^ ) ,

2, := {{0,1); v, 1, £T), 20 := ({0, l}v, 0, ?),

where, as usual, & is the discrete topology. In Davey and Werner [14] it was shown
that 2^K yields a duality on SK (see also [10]). Hence, in each case, 2K is almost
endodualisable with graph(v) as the extra relation which is, qua algebra, isomorphic
t o 22

K.
One can prove that the set V := {jj e 3§(2LK) I 2K *s a retract of Si} contains a

failset of s := graph(v) c {0, I}3 for each choice of K. We note that since 2^
is injective in BK, one can replace "2^ is a retract ofs\" by "Si has a subalgebra
isomorphic to 2jK".

Our Almost Endodualisability Transfer Theorem 3.1 provides an alternative ap-
proach to the results on semilattices presented in [10]. Let M be a non-trivial finite
semilattice in SK. The Almost Endodualisability Transfer Theorem 3.1 gives us that
M is almost endodualisable with extra relation s. Using Theorem 3.1 and the fact that
V contains a failset of s, one can show that M is endodualisable if and only if M has
a subalgebra isomorphic to 2^., and that if M is not endodualisable, then 2}K, and any
t e §K having a subalgebra isomorphic to 2}K, serves as a test algebra showing that M
is not endodualisable.

The smallest Jk-generated free algebra YSK(k) that has the algebra 2jK as a retract
exists in the varieties SK where K = 0 and K = {0} with k = 3 and k = 2,
respectively. Using Part (3) of Theorem 3.1 one can prove that if K = 0 (K = {0}),
then M is endodualisable if and only if M is not a tree (M is not a chain) if and only
if M is endoprimal if and only if M is 3-endoprimal (M is 2-endoprimal).

It is known that in cases K = {1} and K = {0, 1} there is no ^-generated free
algebra FSK (k) that has the algebra 2jK as a retract (see also [20]). In these varieties,
examples of finite semilattices that are endoprimal but not endodualisable were found
in [10].

Bounded distributive lattices The variety D of bounded distributive lattices is
D§P(D) where D = ({0, 1}; V, A, 0, 1) is the two-element bounded lattice. Priestley
duality for D states, in part, that the structure D = ({0, 1}; ^ D , &) yields a duality
on D, where <D = {(0,0), (0, 1), (1, 1)} is the usual order on {0, 1} (see [2]). Hence
D is almost endodualisable with ^ D as the extra relation. To apply Theorem 3.3, we
require a characterisation of the algebraic relations r e J : = ^(D) that have <D as
a retractive projection.
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We prove the following lemma in a slightly more general setting than we need in this
subsection as the more general version will be required in the following subsection. If
{11,..., it} is a ̂ -element subset of { 1 , . . . , n}, then we denote the natural {ii , . . . , 4} -
projection by 7r,, it : D" -> D*. Let 2 := ({0, 1}; v, A) be the two-element lattice.

LEMMA 4.8. Let r e 38(2) with r < 2". The following are equivalent:

(i) the lattice r is non-Boolean;
(ii) there exist i,j € { 1 , . . . , n] with i ^ j such that jitj (r) is a non-Boolean

sublattice of??, that is, 7r,j (r) is a three-element chain;
(iii) S*D is a retractive projection of r;
(iv) 3 is a retract of r.

PROOF. The implication (iii) =^ (iv) is trivial as < D , qua lattice, is a three-element
chain, while (iv) => (i) is trivial since a homomorphic image of a Boolean lattice is
Boolean.

We now prove the contrapositive of (i) =>• (ii) via a 'Baker-Pixley-like' argument
(see [1]). Assume that ntj (r) is Boolean for all i ^ j . Denote the top and bottom of
r by Tr and J_r, respectively. Let (au ..., an) e r. We shall prove by induction that r
contains the relative complement (a[,..., a'n) of (au ..., an) in the interval [±r, Tr]
within 2".

Let 2 ^ k < n and assume that (a'h,..., a'k) e nt ,t(r) for all ^-element subsets
{/'i,..., 4} of { 1 , . . . , n). Let {I'O, I'I, . . . , 4} be a (&+l)-element subset of { 1 , . . . , n}.
By the inductive hypothesis, for eachy e {/0,..., 4} we have

and thus there is an element bj e {0, 1} such that

by := ( < , . . . , a'. ,, bj, a'lj+i, ..., < ) 6 n^ u(r).

Define a (k+l)-ary term by n(v0, ..., vk) := (v0 A i>i) v (vt A v2) v (v2 A u0)- It is
easy to check that n is a near-unanimity term on 2, that is, that 2 satisfies

n(u, v, v, ..., v) % n(v, u, v, ... ,.v) % • • • « n(v, v, . . . , v, u) as v.

Since n^ ,t(r) is closed under n, we obtain

(a^, . . . , a'ik) = / i (b0 , . . . , bk) e TT̂  ,t(r),

as required. Since ;r,j (r) is Boolean for all i ^ ^, by assumption, the inductive
hypothesis is fulfilled for k = 2.
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Finally we prove that (ii) =$• (iii). Assume that JIQ (r) is non-Boolean. It follows that
ffyW = <oor7T(J(/-) = ^ o . Since nui(f) = ^ D implies that nSii(r) = < o , we may
assume that s := ntj (r) = ^ D . Let a, b, c e r be elements such that TTQ (a) = (0, 0),
7r,j(b) = (0,1) and 7r,-j(c) = (1, 1). Let s := ^D; then the embedding q : s -> r
defined by <?(((), 0)) = a, ^((0, 1)) = a v b and g((l, 1)) = a v b v c satisfies
jtij o q = ids, whence ^ D is a retractive projection of r. •

As a lattice, ^ D is a three-element chain. Consequently, the three-element chain,
3 = ({0, a, 1}; V, A, 0, 1), is a test algebra showing that D is not endodualisable.
This is witnessed by the map y' : 2)(3, D) -> D mapping each x e D(3, D) to the
complement AC(a)' of the element x{a) in D = {0, 1). As was first noted in [7], the
map y' preserves a relation r in ^(D) if and only if r is Boolean. The reader can
easily see, that the equivalence of (i) and (iii) in Lemma 4.8 also holds in the category
of bounded distributive lattices. Hence

Failj-(y') = {r € 38 \ ^D is a retractive projection of r]

= [r € 98 | r is non-Boolean}.

It is obvious that for any non-trivial finite bounded distributive lattice M we can regard
D as a subretract of M. The following theorem, which provides alternative proofs and
refinements of results proved in [7], is now an immediate consequence of Theorem 3.3.

THEOREM 4.9. Let U := {r e ^(D) | r is non-Boolean} and let M be a finite

Boolean lattice.

(1) The algebra M is almost endodualisable: let r e &'(D), then

M = (M;End(M),r, ST)

yields a duality on "D based on M if and only ifre U.
(2) For every r 6 U, the algebra r serves as a test algebra showing that M is not

endodualisable.
(3) Let &. := End(M) U ^(D). Then

(i) U is a globally minimal M-failset within £%,
(ii) (/nEnd(M) = 0,

(iii) U is the only globally minimal M-failset within !% that is disjoint from End(M).

Finally, as FD(1) = 3 is the smallest free algebra in D that has 3 as a retract, it
follows from the Almost Endodualisability Transfer Theorem 3.1 that a finite non-
trivial bounded distributive lattice M is endoprimal if and only if M is 1-endoprimal
if and only if M is endodualisable if and only if 3 is a retract of M if and only if
M is non-Boolean, which was first proved in [7]. It is straightforward to modify
the arguments given here to obtain the corresponding results in [7] and [5] for the
two-element lattice with only one or with no bounds as nullary operations.
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Stone algebras The variety of Stone algebras is St = D§P(S) where the generator
S = ({0, a, 1}; v, A,*, 0,1) is the 3-element chain with 0* = 1 and a* = 1* = 0.
The structure IS = ({0, a, 1}; e, =4, &), where e e End® is determined by e(a) := 1
and =̂  := {(0,0), (a, a), (1, 1), (1, a)}, yields a duality on St (see Davey [3] or [2,
page 105]). Hence S is almost endodualisable with =̂( as the extra relation. In order to
apply Theorem 3.3, we require a characterisation of the algebraic relations r e 38(§)
that have =̂I as a retractive projection.

Since the four-element chain, 4 = ({0, b, c, 1}; v, A,*, 0, 1), where 0 < b < c <
1, is isomorphic to =̂  (regarded as a subalgebra of S2), we can use 4 as our test algebra
for showing that S is not endodualisable. As each x e St(4, S) maps the dense filter
d(4) = [b, c, 1} to the (Boolean) dense filter d(S) = {a, 1), we may define a function
y' '• St(4, S) -+ 5 by mapping each x e St(4, S) to the relative complement of x(c)
in the interval [x(b), 1] c {a, 1}.

LEMMA 4.10. Let Y' • Sr(4, S) -> 5 be defined as above and let r € SB. The
following are equivalent:

(i) d(r) is a non-Boolean lattice;
(ii) ^ is a retractive projection ofr;

(iii) 4 is a retract ofr;
(iv) reFailf(x')-

PROOF. Let r e 8) and assume that r is n-ary. The equivalence of (i) and (iii)
is well known (see, for example, [5]). If r has ^ as a retractive projection, then
r entails =$. Since it is clear that y' does not preserve =$, it follows that y'
does not preserve r. Hence, (ii) implies (iv). We now prove the contrapositive
of (iv) => (i). Assume that d(r) is Boolean and let xlt..., xn e St(4, S) with
(JCI, . . . ,xn) e r8'^. Then (y'Oti),. . . , y'(xn)) is the relative complement d of
(*i(c) xn(c)) in the interval [(*,(&),... ,xn(b)), U. • • •, 1)1 £ {a, I}". Since
(x\(b),... ,xn(b)), (x\(c),... ,xn(c)) e r and since r is Boolean, we have d e r, that
is, (y'Cxi),..., y'(xn)) € r. Hence, y' preserves r. Thus (iv) implies (i). It remains to
prove that (i) implies (ii). Assume that d(r) is non-Boolean. Since d(r) is a sublattice
of d(S)n = 2", we can apply Lemma 4.8. Hence there exist i,j such that 7r,,; (d(r)) is
a non-Boolean sublattice of [a, I}2. Without loss of generality, we may assume that
tfi,; (d(r)) = {(a, a), (1, a), (1, 1)}. It follows that nu (r) = 4, as required. •

We can now apply Theorem 3.3 to obtain the following result. Note that if M is a
non-Boolean Stone algebra, then M has a subalgebra isomorphic to S and there is no
loss of generality in assuming that S is actually a subalgebra of M. Since S is injective
in St, it follows that S is subretract of M.
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THEOREM 4.11. Let M be a finite non-Boolean Stone algebra such that d(M) is
Boolean and assume that S is a subalgebra ofM. Let U := {r e £8(S) \ d(r) is
non-Boolean).

(1) The algebra M is almost endodualisable: let r e &(§), then

M = (A/;End(M),r, &)

yields a duality on St based on M if and only ifre U.
(2) For every r € U, the algebra r serves as a test algebra showing that M is not

endodualisable.
(3) Let® := End(M) U &(§). Then

(i) U is a globally minimal M-failset within 3&,
(ii) f/nEnd(M) = 0,

(iii) U is the only globally minimal M-failset within 3& that is disjoint from End(M).

The smallest free algebra in St having 4 as a retract is FS/(2) (see Gratzer [18,
page 188], where free Stone algebras are described). The only Stone algebras that
do not have S as a retract are the Boolean algebras (and these are endodualisable).
Therefore it follows from the Almost Endodualisability Transfer Theorem 3.1 that a
finite non-Boolean Stone algebra M is endoprimal if and only if M is 2-endoprimal if
and only if M is endodualisable if and only if M has 4 as a retract if and only if the
dense filter d(M) is a non-Boolean lattice, which was first proved in [5].

5. Proofs of the technical lemmas

Our main transfer theorems, namely Theorem 2.4, Theorem 3.1 and Theorem 3.3,
were quite easy to prove given Lemma 2.2 and Lemma 2.3. We now present the
proofs of these technical lemmas. Their proofs depend upon four even more technical
lemmas!

Let M be finite algebra in D = D§P(D) that has D as a subalgebra. As in the
assumptions for the Subalgebra Duality Transfer Theorem, let Q — {a>\, ..., cok} be a
set of endomorphisms of M which satisfy

(El) Wi(M) c D for all /, and
(E2) co\,..., cok separate the points of M,

and let a; := a>x n • • • n u>k : M -*• D* be the induced embedding. Assume that
D = (D;End(D), S, 3?) yields an optimal duality on D modulo endomorphisms
and let s € S. Then s is needed in R := End(D) U 5 and so there exists a map
y' : D(s, D) -> D satisfying (Nl) and (N2). As we aim to investigate the optimality
of the transferred duality for D based on M, we must use the map y' to define a map
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y : D(s , M) -> M whose failset Fail^Cy) can be used to study entailment amongst
the relations occurring in the transferred duality.

Assume that s is n-ary so that s ^ D". Let a>~x : co(M) —> M be the inverse of the
embedding co : M —• D* and 'define' the map y : D(s , M) -> M by

(5.1) y(x) := aT V(<» i OX),..., y'(fi>kox)),

for each x e D(s, M). Note that

(5.2) (wKyW) = /(<«,• ox).

The following four lemmas will establish sufficient conditions for y to be both well
defined and well behaved.

LEMMA 5.1. Ify' preserves the k-ary algebraic relation co(M) C Dk, and in par-
ticular ify' preserves every k-ary algebraic relation r onD such that r is isomorphic
to M, then y : D(s , M) —>• M is well defined.

PROOF. Assume that y' preserves the relation co(M) and let JC 6 D(s , M). Since

(5.3) fa ox,..., cok ox) e coiM)®1*®,

we conclude that {y'(a>\ ox),..., y'(cok o x)) e a>(M), whence

y(x) :=co-l((y'(coiox),...,y'(<okox))) e M,

as required. •

LEMMA 5.2. Ife e End(M) and y' preserves the k-ary algebraic partial operations
on D defined by

(5.4) e, := a>, o e o cu"1 : o>(M) —> D,

/or i = I,... ,k, then y is well defined and preserves e. Consequently, if y' preserves
every (k+l)-ary algebraic relation r o n D such that r is isomorphic to M, then y is
well defined and preserves End(M).

PROOF. Let e e End(M) and assume that y' preserves e, for / = 1 , . . . , k. It
follows that y' preserves dom(e,) = co(M), whence y is well defined. To show
that y(e o x) = e(y(x)), for every x e D(s , M), it suffices to prove that, for all
/ = 1 k,

(5.5) coi(y(
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since the maps co\,..., cok : M -*• D separate the points of M. Let x e D(s, M) and
for all i = 1 , . . . , it, define y,; : s —> D by

(5.6) yt := &>,- 0* .

Then

(5.7) a)-lo(yin---nyk)=x.

Now let i e { l k). By (5.3), we have

Ci y*) 6 ^(M)D(S'B>

Since y' preserves the partial operation e,, we have

(5.8) y'teO'i y*)) = * ( / (y i ) ,

Thus,

(a>, o e)(y(x)) = (<w, o e o © " ' X / O ' , ) , . . . . y'(yk)) by (5.1) and (5.6)

= ei(y'(yi) y\yk)) by (5.4)

= y'(««(yi,...,y*)) by (5.8)
= y'fa o (y, n • • • n yk))

= y'(a>i oeoOJ"1 o (y, n • • • ny^)) by (5.4)

= / ( « , o ( e o x ) ) by (5.7)

= <»,(y(e°x)) by (5.2)

and hence (5.5) holds. Consequently, y preserves e. Since y' preserves the k-ary
partial operation e, if and only if it preserves the (it+l)-ary relation graph(e,), which
as an algebra is isomorphic to dom(e,) = co(M) and hence to M, the final claim
follows immediately. •

Let r be an m-ary algebraic relation on D. By using the embedding co \D : D —*• Dk,
we can assign a Jfcm-ary algebraic relation rw on D to the relation r via

) , • • •, cok(ci),..., coi(cm),..., cok(cm)) | (c, cm) € r}.

Note that, for any (du,..., dik),.... (dmi,..., dmk) e co(M) c Dk, we have:

(5.9) (di , dlk, ...,dml,..., dmk) e rw

©"'(rfn, . . . , du), ...,a>-\dmU..., dmk)) e r.

We shall use relations of the form ra in the proofs of the following two lemmas.
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LEMMA 5.3. Assume that y' preserves the k-ary relation co(M) and, for each i,
preserves the endomorphism cw, \D e End(D). If y' preserves a finitary algebraic
relation r on D, then y also preserves r. In particular, y preserves the unary
relation D c M.

PROOF. Let r be m-ary. To show that y preserves r, let (x\,... ,xm) e
Then, for all a e s, we have (xi(a),..., xm(a)) € r c Dm, whence x,(s) c D and
(JCI xm) e r " ^ . As y' preserves r, we have ( y ' ( * i ) , . . . , y'(xm) e r. Thus we
find

m)), ...,cok \D(y'(xm))) e ra

by the definition of rw. As y' preserves each OJ, \D € End(D), we obtain

(y'{a>i 0 * 1 ) , . . . , y \ c o k o x { ) , . . . , y'{oo\ o x m ) , . . . , y ' ( c o k o x m ) ) € rw.

By (5.9), this means that

(co~l(y'(a)x oxi) y'(a>koxi)),..., co~\y\a>\ oxm),..., y'(cok oxm))) e r,

whence (y( jc i ) , . . . . y(xm)) e r by (5.1). D

LEMMA 5.4. Assume that y' preserves the k-ary relation co(M) and, for each i,
preserves the endomorphism cot \D 6 End(D). Ify' does not preserve s, then neither
does y.

PROOF. Assume that y' does not preserve s. Thus there ex i s tx \ , . . . , xn e D(s , D)
with ( * i , . . . , x n ) e J D ( S E ) and (y'(jc,) y'(xn)) i s. Since *, e D(s , M), for
all i, it suffices to prove that (y(*i), • • •. y(xn)) £ s. Since (y'(^i). • • •. y 'CO) ^ ^.
we have

by the definition of sa. As y'(xi) € D, for all /, and since y' preserves all <y, \D e
End(D), we obtain

(y'(o)i oxi),...,y'(a)koxl), ...,y\a>x oxn),..., y'(cok oxn)) i sw.

By (5.9) we can rewrite this as

(co~l(y'(eoi o x , ) , ...,y'((okoxi)),...,Q)~1(y'((Oi oxn),... ,y'(cokoxn))) i s,

whence, by (5.1), we obtain the desired conclusion (y(xt),..., y(xn)) £ s. •
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With these four lemmas in hand we can now prove Lemma 2.2 and Lemma 2.3.

PROOF OF LEMMA 2.2. Let U = FailS(y') where y' : D(s, D) -> D and assume
that t is a retract of r for all r e U. Since t is not a retract of M, the map y' preserves
every relation r € &(D) with r = M, whence y : D(s, M) -*• M is well defined
and preserves End(M), by Lemma 5.2. Thus V := Fail"(y) contains no (graphs
of) endomorphisms of M, whence (i) holds. As t is not a retract of D, the map y'
preserves End(D) and hence, by Lemma 5.3 and Lemma 5.4, (ii) holds. Since s e U,
it follows from (ii) that s e V, and consequently V is a failset of s. •

PROOF OF LEMMA 2.3. Assume that s e S avoids M relative to End(D) U 5. Then,
by definition, there is a map y' : D(s, D) —> D which preserves every endomorphism
of D, every relation in S \ {s} and every relation r satisfying r = M and does not
preserve s. By Lemmas 5.1, 5.2, 5.3 and 5.4, the map y : D(s, M) -»• M (is well
defined and) preserves the endomorphisms of M, the relation D and every relation in
S \ [s] but does not preserve s, whence 5 is needed in End(M) U S U [D]. Thus (1)
implies (2). If s were a retract of M, then s would be entailed by End(M), and hence
^ would not be needed in End(M) U 5 U {D}. Hence, (2) implies (3). •
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