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Abstract

We present a method for narrowing nonparametric bounds on treatment effects by adjusting for potentially
large numbers of covariates, using generalized random forests. In many experimental or quasi-experimental
studies, outcomes of interest are only observed for subjects who select (or are selected) to engage in the
activity generating the outcome. Outcome data are thus endogenously missing for units who do not engage,
and random or conditionally random treatment assignment before such choices is insufficient to identify
treatment effects. Nonparametric partial identification bounds address endogenous missingness without
having to make disputable parametric assumptions. Basic bounding approaches often yield bounds that are
wide and minimally informative. Our approach can tighten such bounds while permitting agnosticism
about the data-generating process and honest inference. A simulation study and replication exercise
demonstrate the benefits.
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1. Introduction

We present a method for constructing covariate-tightened “trimming bounds” with generalized random
forests to address endogenous missingness in causal studies. We first explain trimming bounds (Lee
2009) for those unfamiliar with the method before turning to our contribution: an algorithm for using
a potentially large number of covariates to tighten the bounds and generalize an identifying condition
(monotonicity).

Causal studies often face endogenously missing outcome data, in which case random or conditionally
random treatment assignment is insufficient to point identify causal effects. Below we work with
the experiment in Santoro and Broockman (2022), in which subjects were asked to have an online
conversation about their “perfect day” with someone from a different political party (an outpartisan).
In one group, subjects were informed that their conversation partner was an outpartisan, while in the
other group, no such information about their partner was given. Examining only the complete data,
the authors found that knowingly talking to an outpartisan was associated with more warmth toward
outparty voters in the post-treatment survey. Nevertheless, among the 986 subjects who entered the
treatment assignment stage, only 478 completed the conversation and 469 went on to complete the
post-treatment survey. The completion rate was higher among those informed about their partner’s
outpartisan status. For people with a strong interest in politics, a conversation with a “random person”
about their perfect day may seem uninteresting while a conversation with an outpartisan might be
intriguing. Meanwhile, some people may have a sense of obligation such that they do not drop out if

© The Author(s), 2025. Published by Cambridge University Press on behalf of The Society for Political Methodology.
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they find the conversation uninteresting. Missingness based on such differences in subjects’ types would
leave an imbalanced comparison across treatment groups.

Political scientists encounter endogenously missing outcome data regularly. Whether a subject’s
outcome is revealed often depends on choices. Furthermore, the treatment typically creates asymmetric
choice conditions, leading to what Slough (2023) describes as the “phantom counterfactual” problem.
In the aforementioned example, knowing the partner’s identity may generate two distinct effects: it can
reduce the likelihood of completing a conversation while, among those who do complete a conversation,
increase the subject’s affability toward outpartisans. These are known as the “extensive margin” and
the “intensive margin” effects in the literature (Kim, Londregan, and Ratkovic 2019; Staub 2014). If
the conversation was not completed, the outcome for the subject is undefined (a “phantom”). Among
subjects who completed the conversation, those informed of their partner’s partisanship may have a
higher degree of political interest as compared to the group completing the conversation in the control
group. Consequently, the variation in the average outcome across the two groups is indicative of not only
the treatment’s impact but also differences attributable to heterogeneity in levels of political interest.
As elaborated by Montgomery, Nyhan, and Torres (2018), limiting the analysis to observations with
non-missing outcomes implies conditioning on a post-treatment variable (the response indicator),
introducing collider biases. If the confounding variables (e.g., political interest) are unmeasured,
common imputation or covariate adjustment methods are not justified (Little and Rubin 2019).

One solution is to forgo point identification and rather construct bounds on treatment effects
(Molinari 2020). The bounds enclose a set of effect values that are consistent with patterns of missingness
(“identified set”). The proposed method of “covariate-tightened trimming bounds” generalizes the
approach introduced by Lee (2009) to scenarios where a potentially large number of covariates exist
and the assumption of monotonic selection (explained below) might be violated. The bounds cover the
average causal effect for those who would always have their outcomes observed whether under treatment
or control (“always-responders”). In the example of Santoro and Broockman (2022), such an estimand
would characterize effects among those who would be willing to engage in an online conversation no
matter their treatment status. From a policy perspective, this subgroup defines those for which the
intervention raises the fewest red flags in terms of forcing people into an exercise that they find aversive.
It is also the subgroup for which intensive margin effects are defined (Slough 2023; Staub 2014).

The logic of trimming bounds is very simple. Suppose those who respond in the control group would
always also respond if they had been assigned to the treatment group (monotonic selection). Then
the control group consists only of “always-responders.” The treatment group is a mixture of always-
responders and those who respond only if treated (“treatment-only responders”). The difference in
response rates under treatment versus control measures the share of treatment-only responders. We
can bound the effect for always-responders using the means of trimmed versions of the treated outcome
distribution: a lower bound comes from trimming off the share of treatment-only responders from the
top of the distribution, and an upper bound comes from trimming this share from the bottom.

Unfortunately, basic trimming bounds can be very wide. We introduce an approach to tighten
them using pre-treatment covariates with the “generalized random forest” (known as grf ), a machine
learning algorithm developed in Wager and Athey (2018) and Athey, Tibshirani, and Wager (2019).1
Our covariate-tightened trimming bounds are assured to be no wider (in expectation), and can often
be substantially narrower, than the basic ones. They are valid when monotonic selection holds only
conditional on covariates (as we show in the Santoro and Broockman experiment). We prove that
the bounds estimators are consistent and approximately normal in large samples, and we provide
approaches for constructing valid confidence intervals. In both simulations and applications, our
method works significantly better than the basic trimming bounds and other recent proposals (Olma
2020; Semenova 2025). The method can be generalized to unit-level missingness, binary outcome
variables, or the probability of being treated needing to be estimated (as in observational studies). We

1Our framework is compatible with other machine learning algorithms. We choose the grf for its efficiency of handling
potentially large numbers of covariates.
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demonstrate with the Santoro and Broockman (2022) experiment, and our Supplementary Material
further illustrates performance in the experiment originally studied by Lee (2009), a binary outcome
case, and an observational study.

Our covariate-tightened trimming bounds are an alternative for those uncomfortable with either
parametric assumptions or untestable exclusion restrictions, as needed in selection modeling methods
following Heckman (1979). Our work is in line with other work in political methodology seeking to
relax disputable modeling assumptions by using machine learning (Blackwell and Olson 2022; Ratkovic
2022) and partial identification (Duarte et al. 2024; Knox, Lowe, and Mummolo 2020). It offers an
approach to handling situations in which one cannot avoid conditioning on post-treatment variables like
survey response, employment status, survival (Imai 2008; Tchetgen Tchetgen 2014), and endogenous
moderators (Blackwell et al. 2025).

2. Setup

We consider a randomized or natural experiment with subjects indexed by i = 1, . . . ,N, for which
we also have measured P pre-treatment covariates collected in the vector Xi = (Xi1,Xi2, . . . ,XiP). For
each subject, we always observe values of the covariates,2 the treatment status Di ∈ {0,1}, and the
response indicator Si ∈ {0,1}. The realized outcome Yi is observed only when Si = 1. For Di = 1 and
Di = 0, respectively, potential outcomes are given by (Yi(1),Yi(0)) and potential response indicators are
given by (Si(1),Si(0)). The realized response indicator is Si =DiSi(1)+(1−Di)Si(0), and the realized
outcome is Yi =DiYi(1)+(1−Di)Yi(0)when Si = 1 and missing when Si = 0. Define Ui to be unobserved
factors that affect both (Si(1),Si(0)) and (Yi(1),Yi(0)).

We make the following assumption on treatment assignment:

Assumption 1. Strong ignorability:

(Yi(1),Yi(0),Si(1),Si(0)) ⊥⊥Di∣Xi,

ε < P(Di = 1∣Xi) < 1−ε, with ε > 0.

The first part states that the treatment is conditionally independent to both the potential outcomes
and the potential responses. The second part requires that the propensity score, p(Xi) = P(Di = 1∣Xi),
is strictly bounded between 0 and 1.3 The assumption holds in experiments when treatment is randomly
or conditionally randomly assigned. In observational studies, the assumption implies that the covariate
vector Xi includes all confounders.

The directed acyclic graph (DAG) in Figure 1 shows relationships that our setting admits. For the
Santoro and Broockman (2022) study, Ui could represent the degree of political interest. Our approach
also admits the possibility that Yi directly affects missingness. Only using observations with Si = 1
amounts to conditioning on Si, which is a “collider” between the treatment Di and then either the
unobserved Ui or the outcome Yi (Elwert and Winship 2014; Montgomery et al. 2018). For example,
suppose that for some units, Di and Ui negatively affect response. For these units, high values of Di (i.e.,
being treated) would tend to require low values of Ui for Si = 1 to hold. The lower Ui values would affect
the distribution of Yi values. Correlations induced by conditioning on Si = 1 confound our ability to
estimate the causal effect of Di on Yi. Such induced correlations result in bias.

To further understand the source of the bias, we classify subjects into four different types
based on their responses to the treatment: always-responders (Si(0) = Si(1) = 1), never-responders
(Si(0) = Si(1) = 0), treatment-only responders (Si(0) = 0,Si(1) = 1), and control-only responders
(Si(0) = 1,Si(1) = 0). These subgroups are examples of what Frangakis and Rubin (2002) call “principal
strata,” similar to those in the setting with instrumental variables (Angrist, Imbens, and Rubin 1996).

2We discuss unit-level missingness in the Supplementary Material.
3We assume that p(Xi) is known here and discuss estimated propensity scores in the Supplementary Material.
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4 Cyrus Samii et al.

Figure 1. Endogenous missingness.

Note: The above figure shows a directed acyclic graph (DAG) representing an endogenous missingness mechanism. White nodes

represent observable variables and black nodes represent unobservable ones. An arrow from one node to the other (a “path”)

marks the causal relationship from the former to the latter. The heavier arrows indicate the relationships that generate the bias from

conditioning on Si .

Table 1. Principal strata.

Panel 1. Full set of principal strata Panel 2. Under monotonic selection

Variable Si = 0 Si = 1 Variable Si = 0 Si = 1

Di = 0 NR, TR CR, AR Di = 0 NR, TR AR

Di = 1 NR, CR TR, AR Di = 1 NR TR, AR

Note: AR, NR, TR, and CR in the table stand for always-responders, never-responders, treatment-
only responders, and control-only responders, respectively.

These strata are determined by the attributes of the units, such asXi and Ui, but not affected by treatment
assignment. From Table 1 (Panel 1), we see that among units with observed outcomes (Si = 1), the
control group may consist of both control-only responders (CR) and always-responders (AR), while
the treatment group is a mixture of treatment-only responders (TR) and always-responders (AR).
Therefore, the group-mean difference in the observed outcome does not capture an average of treatment
effects for a fixed sub-population.

From the decomposition in Table 1 (Panel 1), we cannot identify the share of units falling into
each principal stratum from data. Following Lee (2009), we consider the following assumption on the
selection process:

Assumption 2. Monotonic selection:

Si(1) ≥ Si(0)

for any i.

The assumption requires that under treatment, a unit is at least as likely to respond as under control,
thus it excludes the existence of control-only responders. This is shown in Table 1 (Panel 2). The
assumption is similar to the “no defiers” assumption for instrumental variables. It should be motivated
by arguments about the choice behavior of agents determining response (Slough 2023). We could
alternatively assume the opposite: Si(1) ≤ Si(0) for any i. Then, we have control-only responders but
not treatment-only responders. Either form of monotonicity allows one to form trimming bounds. In
the Santoro and Broockman (2022) example, subjects who would engage when uninformed of their
partners’ partisanship would be assumed to engage when informed.4 Parametric and semi-parametric
selection models implicitly impose a monotonicity assumption as part of the first-stage regression
specification (Vytlacil 2002); the manner in which we state monotonicity here is a nonparametric
generalization.

4Our reanalysis below suggests that monotonicity does not hold unconditionally in their experiment. We will discuss how
to test Assumption 2 and relax it to allow for conditionally monotonic selection in Section 5, following Semenova (2025).
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Table 2. Empirical examples

Application Santoro and Broockman (2022) Blattman and Annan (2010) Knox et al. (2020)

Yi Warmth toward Education/distress level Police use of force

outpartisan voters in encounter

Di = 1 Knowing partisanship of the Being kidnapped Citizen is minority

partner in conversation in conflict

Si = 1 Conversation happened and Survived and found Citizen is under arrest

outcome data obtained by researchers

Mono. selection Knowing partners’ partisanship Avoiding kidnapping does No encounters in which

does not cause subjects not cause death or minority citizens less likely

to drop out disappearance to be arrested

Always-responders Subjects who will complete Subjects who will survive Encounters in which citizen

conversation regardless of and be found even if will be arrested regardless

knowledge about partner kidnapped of race of citizen

Application Spilker et al. (2018) Hall, Huff, and Kuriwaki (2019) Cheema et al. (2023)

Yi Number of products Having descendants who Proportion of women

traded by a firm fought for the South who voted in a

in the Civil War household

Di = 1 Firm is under a Won the Georgia Household was canvassed

trade agreement land lottery and before election

own more slaves

Si = 1 Firm is an exporter Having descendants Household can be tracked

in the post-election survey

Mono. selection Trade agreements do not Winning lottery does not Being canvassed does not

cause firm not to export cause anyone to have make household less likely

fewer descendants to be tracked

Always-responders Firms that export even Households that will have Households that can always

without trade agreement descendants regardless of be tracked

lottery

Note: This table summarizes how examples from different fields of political science fit into the setup developed here.

Table 2 reports how examples from different fields of political science (American politics, compar-
ative politics, public administration, international relations, and political economy) fit into our setup.

3. Trimming Bounds

Lee (2009) shows that we can use “trimming” to bound the average treatment effect for always-
responders, τ(1,1) ∶= E[Yi(1) −Yi(0)∣Si(0) = Si(1) = 1], under Assumptions 1 and 2. The focus on
always-responders has substantive motivation. It is the subset of the population that would not withdraw
(or be withdrawn) from the intervention under prevailing circumstances. It is also the subset of the
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6 Cyrus Samii et al.

population for which intensive margin effects are defined (as in Lee’s original application). Table 2 lists
examples.

To lighten the notation in the discussion that follows, suppose that we have unconditionally random
assignment. For the more general analysis under strong ignorability (Assumption 1), one would simply
switch the expectations to include iterated expectations that condition on and then marginalize over
Xi. Given this notational convenience, the average treatment effect for always-responders can be
expressed as

τ(1,1) ∶= E[Yi(1)∣Si(1) = Si(0) = 1]−E[Yi(0)∣Si(1) = Si(0) = 1]
= E[Yi∣Di = 1,Si(1) = Si(0) = 1]−E[Yi∣Di = 0,Si = 1].

The result indicates that under random assignment and monotonic selection, the mean of observed
outcomes in the control group identifies the average untreated outcome for the always-responders.
Those who respond in the treatment group can belong to either always-responders or treatment-only
responders, and so the observed mean does not identify the average treated outcome for the always-
responders.

Recall that Assumption 1 implies that the shares of units in each principal stratum are balanced
(in expectation) across treatment and control. Under Assumption 2, the rate at which outcomes are
observed in the control group, Pr[Si = 1 ∣ Di = 0], identifies the share of units in the overall sample
that are always-responders. The rate at which outcomes are observed in the treatment group, Pr[Si = 1 ∣
Di = 1], identifies the share of units in the overall sample that are either treatment-only responders or
always-responders. If we let q denote the share of treated units with observed outcomes that are always-
responders, then we have

q = Pr[Si = 1 ∣Di = 0]
Pr[Si = 1 ∣Di = 1]

.

The mean of observed outcomes in the treatment group can be written as a mixture of the always-
responders mean (with weight q) and the treatment-only responders mean (with weight 1−q):

E[Yi∣Di = 1,Si = 1] = qE[Yi∣Di = 1,Si(1) = Si(0) = 1]
+(1−q)E[Yi∣Di = 1,Si(1) = 1,Si(0) = 0].

The quantity E[Yi∣Di = 1,Si(1) = Si(0) = 1] is not identified under random assignment and mono-
tonicity. But we can construct sharp upper and lower bounds that surround it by trimming the lower
and upper tails of the observed treated outcome distribution by the share of treatment-only responders,
thus retaining the portion with mass q (Lee 2009, Proposition 1a). As shown in Figure 2, in the worst
case, always-responders take the bottom (left-most) q share of the treated outcome’s distribution. Hence,
the average treated outcome of always-responders is bounded from below by Y(1)’s expectation over
the shaded area in the left plot. Similarly, the average treated outcome for always-responders is bounded
from above by Y(1)’s expectation over the shaded area in the right plot. Mathematically, we have

E[Yi∣Di = 1,Si = 1,Yi ≤ yq] ≤ E[Yi∣Di = 1,Si(1) = Si(0) = 1]
≤ E[Yi∣Di = 1,Si = 1,Yi ≥ y1−q],

where yq is the qth-quantile of the observed outcome’s conditional distribution in the treatment group
that satisfies the condition ∫

yq
−∞dFY∣D=1,S=1(y) = q. Here, FY∣D=1,S=1(⋅) is the distribution function for

observed treatment group outcomes. The quantile y1−q is similarly defined. We denote E[Yi∣Di = 1,
Si = 1,Yi ≤ yq] − E[Yi∣Di = 0,Si = 1] as τ L

TB(1,1) and E[Yi∣Di = 1,Si = 1,Yi ≥ yq] − E[Yi∣Di = 0,Si = 1]
as τU

TB(1,1), where TB is short for trimming bounds. Clearly,

τ L
TB(1,1) ≤ τ(1,1) ≤ τ

U
TB(1,1).

The interval [τ L
TB(1,1),τU

TB(1,1)] is the identified set for the always-responder treatment effect.
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Lower bound for Y(1) of always−responders

q

fY|D=1(y)

yq

Upper bound for Y(1) of always−responders

q

fY|D=1(y)

y1−q

Figure 2. Basic trimming bounds in Lee (2009).

4. Covariate-Tightened Trimming Bounds

Basic trimming bounds that do not incorporate covariate information can be very wide. Lee (2009,
Proposition 1b) suggests that when covariates are discrete, researchers can estimate the bounds across
blocks formed by them for more precise inference. We extend this approach to cases where the covariates
are continuous or large in number. For Xi = x, consider the always-responders’ conditional average
treatment effect, τx(1,1) ∶= E[Yi(1) −Yi(0)∣Si(1) = Si(0) = 1,Xi = x]. We can derive the following
bounds using the same logic as above:

E[Yi∣Di = 1,Si = 1,Yi ≤ yq(x)(x),Xi = x] ≤ E[Yi∣Di = 1,Si(1) = Si(0) = 1,Xi = x]

≤ E[Yi∣Di = 1,Si = 1,Yi ≥ y1−q(x)(x),Xi = x],

where q(x) is the conditional proportion of always-responders among units with observed outcomes
in the treatment group; yq(x)(x) and y1−q(x)(x) are the conditional q(x)-quantile and (1− q(x))-
quantile of the conditional treated outcome distribution.

We denote the conditional control mean for always-responders, E[Yi∣Di = 0,Si = 1,Xi =x], as θ0(x),
E[Yi∣Di = 1,Si = 1,Xi = x,Yi ≤ yq(x)(x)] as θL

1(x), and E[Yi∣Di = 1,Si = 1,Xi = x,Yi ≥ y1−q(x)(x)] as
θU

1 (x), respectively. Then,

τ L
CTB,x(1,1) ∶= θ

L
1(x)−θ0(x) ≤ τx(1,1) ≤ τU

CTB,x(1,1) ∶= θ
U
1 (x)−θ0(x),

where CTB is short for covariate-tightened trimming bounds. The conditional bounds allow us to see
how the bounds vary across different values of the covariates. In practice, we can either estimate the
conditional bounds for all the observations or over evaluation points spanning the covariate distribution
of the sample. For instance, we can generate the evaluation points by going through the quantiles of one
covariate while fixing the values of the other covariates at their sample mode or average.

We can further integrate (τ L
CTB,x(1,1), τU

CTB,x(1,1)) over the distribution of Xi among always-
responders to recover the unconditional covariate-tightened bounds on τ(1,1). Define

τ L
CTB(1,1) ∶=

∫ τ
L
CTB,x(1,1)q0(x)dF(x)
∫ q0(x)dF(x)

,

τU
CTB(1,1) ∶=

∫ τ
U
CTB,x(1,1)q0(x)dF(x)
∫ q0(x)dF(x)

,

where

q0(x) ∶=Pr[Si(1) = Si(0) = 1 ∣Xi = x] =Pr[Si = 1 ∣Di = 0,Xi = x]
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is the expected conditional proportion of always-takers in the overall sample and F(x) is the distribution
of the covariates. The expression indicates that q0(x) can be identified from the control group. In
expectation, covariate-tightened trimming bounds will not be wider than the basic trimming bounds:5

τ L
TB(1,1) ≤ τ

L
CTB(1,1) ≤ τ(1,1) ≤ τ

U
CTB(1,1) ≤ τ

U
TB(1,1).

The improvement depends on how well the covariates predict the outcome or response rate (Semenova
2025). These bounds are also sharp—we cannot further reduce the identified set’s width without
additional information.

We can also relax Assumption 2 and allow the direction of monotonicity to change across the values
of covariates, as suggested by Semenova (2025). We replace Assumption 2 with the following:

Assumption 3. Conditionally monotonic selection: Si(1) ≤ Si(0)∣Xi = x or Si(1) ≥ Si(0)∣Xi = x.

Under Assumption 3, the covariates space X can be divided into two parts, X + and X −, that satisfy
⎧⎪⎪⎨⎪⎪⎩

Si(1) ≤ Si(0), Xi ∈ X −

Si(1) ≥ Si(0), Xi ∈ X +
where X +∪X − = X .

To identify X + andX −, we first estimate the conditional trimming probability, q(x), and approximate
X + and X − with X̂ + ∶= {Xi ∶ q̂(x) < 1} and X̂ − ∶= {Xi ∶ q̂(x) > 1}, respectively. Semenova (2025)
shows that the classification is accurate in large samples under regularity conditions. If the sample is
substantially divided between sets X̂ − and X̂ +, conditional monotonicity would be more plausible than
unconditional monotonicity. Conditional on each part, we can estimate either the conditional or the
aggregated bounds. To acquire the aggregated bounds for the whole sample, we take a weighted average
the estimates from X + and X −.

Conditionally monotonic selection (Assumption 3) is weaker than its unconditional counterpart
(Assumption 2). It also seems uncontroversial that there could be both control-only and treatment-only
responders in a sample, even if Lee’s original analysis ruled this out. In the Santoro and Broockman
(2022) experiment, treatment may induce missingness for those who find it aversive to speak to an
outpartisan, while it may reduce missingness for those who find it boring to talk to a “random person.”
That said, the interpretation of conditionally monotonic selection can be subtle. The assumption holds
when, at any point in the covariate space, units for which outcomes are observed are either a mixture of
always-responders and control-only responders or a mixture of always-responders and treatment-only
responders. If there are values of Xi in which control-only responders and treatment-only responders
are both present, then the assumption is violated. The share of always-responders can vary arbitrarily
over covariate values, and so it may not be obvious exactly where in the covariate space transitions occur
from regions containing control-only responders versus treatment-only responders. In our algorithm,
we use units’ covariates to classify them as being in either the (1) always-responders + control-only
responders class or (2) always-responders + treatment-only responder class. Our algorithm would be
inconsistent if, asymptotically, the covariates are inadequate to perform such a classification. There may
be ways to further adjust the bounds to account for such residual classification error. We consider this
issue to be beyond the scope of the current paper but one that we think is interesting for further research.
We do note that our implementation and accompanying package contains an option to set a tolerance
parameter for how sensitive is the classification.

We can also consider the relationship between conditionally monotonic selection and the conditional
independence (“missing at random,” MAR) assumption that motivates approaches such as imputation,
regression adjustment, or inverse propensity score weighting. One can construct scenarios where

5Lee (2002, Proposition 1b) proves this whenXi is independent of Di, and our Supplementary Material shows this under the
more general Assumption 1, allowing for the possibility that basic trimming bounds could be formed under strong ignorability
using, for example, inverse propensity score weighting.
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conditionally monotonic selection is satisfied while MAR is violated, and vice versa. Importantly,
however, the bounding approach allows unmeasured variables to affect both response and the outcome,
as demonstrated by our DAG in Figure 1, which we understand to be a first-order threat to identification.
In cases where an unobserved variable affects response patterns in a conditional-monotonicity fashion,
a MAR approach is biased but we would still be able to recover valid trimming bounds, as we show
in Section D.1 of the Supplementary Material. In contrast, when an unobservable variable affects the
direction of missingness, even after conditioning on covariates, but is strictly independent of outcomes,
then MAR would hold but Assumption 3 would fail. The latter scenario strikes us as more unusual than
the former, although we appreciate that this does not exhaust all possibilities.

In Section C of the Supplementary Material, we demonstrate extensions to unit-level missing data,
binary outcomes, and estimated propensity scores for generalizing to observational studies under strong
ignorability.

5. Estimation

Estimating the covariate-tightened trimming bounds proceeds in two steps. First, we estimate the “nui-
sance parameters”, (q0(x),q1(x)) and (yq(x)(x),y1−q(x)(x)). Second, we use the nuisance parameter
estimates to estimate the “target parameters,” that is, the conditional bounds or the aggregated bounds.
To estimate parameters evaluated at point x, we use the generalized random forest (grf ) method. The
grf method approximates quantities at x using a weighted average of neighboring observations. To
determine the weights, grf generates many regression trees from randomly selected sub-samples, and
the weight given to observation i for a prediction at x equals the share of trees in which i falls in
the same leaf as the value x. Compared to standard kernel weighting, the grf weights are adaptive to
the sample distribution and better manage the bias-variance tradeoff. Following Chernozhukov et al.
(2018), our algorithm also incorporates Neyman orthogonalization and cross-fitting to avoid biases
from using the same data to fit nuisance and target parameters, while also maintaining efficiency. The
bounds estimators are shown to be asymptotically normal, therefore confidence interval construction
is straightforward. Practitioners can also directly construct confidence intervals for τ(1,1), the ATE for
always-responders, using methods developed by Imbens and Manski (2004) and Stoye (2009). Figure 1
summarizes the algorithm. Technical details and statistical properties are given in the Supplementary
Material.

Algorithm 1: Honest inference for the covariate-tightened trimming bounds
1 Define the set of covariates X = (X1, . . . ,XP) and evaluation points X (all sample values for

aggregate bounds or specified evaluation points for conditional bounds).
2 Randomly split the sample into K sets (I1,I2, . . . ,IK) with approximately equal size.
3 for each k ∈ {1,2, . . . ,K} do
4 Fit the q(X)model using the probability forests on I−k = ∪j≠kIj.
5 For any x ∈ X , treat q(x) as fixed and fit the models (yq(x)(X), y1−q(x)(X)) using the

quantile forests on I−k.
6 Treat q(x), yq(x)(x) and y1−q(x)(x) as pre-fixed, construct orthogonalized moment

conditions, and fit them on Ik.
7 Calculate estimates for the conditional bounds (τ̂U

CTB,x(1,1),τ̂ L
CTB,x(1,1)) or aggregated

bounds (τ̂U
CTB(1,1),τ̂ L

CTB(1,1)) using the orthogonalized moment conditions.
8 Take the average over the K estimates.
9 Construct confidence intervals using estimated standard errors and critical values from the

normal distribution.
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6. Simulation

We conduct a Monte Carlo experiment to study the method’s performance. We set N = 1,000 and the
number of covariates P = 10. Each of the covariates, Xp, is drawn from the uniform distribution on [0,1].
The unobservable factor, U, is uniform on [−1.4,1.4]. We only allow X1 and U to affect both the potential
responses (Si(0), Si(1)) and the potential outcomes (Yi(0), Yi(1)), while the other nine covariates are
pure noise. The setup resembles the reality in which we possess measures of multiple covariates but do
not know ex-ante which one(s) should be controlled. Our exact data-generating process is as follows:

Yi(0) = 1.5−2∗U2
i +4∗X1i+εi,

Yi(1) = Yi(0)+2.5+1.8∗Ui+3∗ sin(−0.7+2∗X1i),
Si = 1{1−0.2∗X1i−1.6∗ ∣Ui∣+0.4∗Di+0.1∗Di ∗X1i+2.2∗Di ∗ ∣Ui∣+νi > 0},
Di ∼ Bernoulli(0.5),εi ∼N(0,1),νi ∼N(0,1).

Individualistic treatment effects are nonlinear and non-monotonic in the covariates. Both the selection
indicator Si and outcome Yi are affected by Di and Ui, making the sample selection process endogenous.
The construction of Si guarantees that Si(1) ≥ Si(0) per Assumption 2.

We first estimate the conditional bounds, (τ L
CTB,x(1,1), τU

CTB,x(1,1)), across 19 points where X2 to
X10 are fixed at their sample averages, with X1 values set at 5ppt. increments. The results are shown in
the right plot of Figure 3. Each gray point is an individual-level treatment effect for an observation from
one of the Monte Carlo samples. The black line traces out the true CATE for the always-responders; this
quantity would be unobservable in a real application and constitutes what the conditional bounds should
cover. Upper bounds estimates are depicted as red dots and lower bounds estimates as blue dots. The
dotted lines surrounding them are the estimated 95% confidence intervals. The red and blue curves are
the true bounds on the always-responders CATEs, based on the simulation parameters. The estimates
are very accurate in the middle part of X1’s support but slightly biased at the boundary points.

τCTB
L (1,1) τ(1,1) τ τCTB

U (1,1)

IPW

OLS

CF

TB

CTB

0 2 4 6
Estimates

Estimand ATE Lower Upper

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

X1

C
on

di
tio

na
l b

ou
nd

s

Treatment effects
CATE for always−responders
Upper bounds (true)
Lower bounds (true)
Upper bounds (est.)
Lower bounds (est.)
95% CI of upper bounds
95% CI of lower bounds

Figure 3. Covariate-tightened trimming bounds in simulated data.

Note: The plot on the left shows the averages of the covariate-tightened trimming bound estimates (CTB, in squares), basic trimming

bounds (TB, in triangles), ATE estimate using causal forest on the non-missing sample (CF, in circles), ATE estimate using OLS on the

non-missing sample (OLS, in circles), and ATE estimate using OLS re-weighted by the inverse probability of attrition (IPW, in circles).

Lower bound estimates are in blue and upper bound estimates are in red. The segments represent 95% confidence intervals. The red

and blue dotted lines mark the CTBs. The black dotted line represents the true ATE and the black dash dotted line represents the true

ATE for the always-responders. The plot on the right shows the estimates of the conditional covariate-tightened trimming bounds

across 19 evaluation points on X1, holding X2 to X10 to their sample averages.
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Figure 4. Asymptotic performance of the method.

Note: The left panel shows how the MSE of the lower bound estimate (in blue) and upper bound estimate (in red) varies with sample

sizes. The right panel presents the variation of the coverage rate across sample sizes. The gray line marks the nominal level of coverage,

95%.

In the left plot of Figure 3, the top row presents the averages of our CTB estimates with 95%
confidence intervals across 1,000 treatment assignments. It is clear that our estimates lead to a narrower
identified set of τ(1,1), the ATE for always-responders, than unadjusted bounds (“TB”). The estimates
are also centered around the true CTB and the standard errors of our estimates are not larger than
the unadjusted bound estimates. Estimates of the ATE using causal forest or OLS on the non-missing
sample and OLS with inverse probability of attrition weighting (IPW) are biased given endogeneity to
the unobserved U.6

We examine the asymptotic properties of our estimators by varying the sample size from 400 to 2,000.
In Figure 4 shows how mean squared error (MSE) and the confidence interval coverage rates perform as
N goes from 400 to 2,000, still over 1,000 Monte Carlo draws. MSE declines toward zero as N grows, and
our method provides the correct (95%) coverage across the sample sizes. In the Supplementary Material,
we present evidence that the performance of the method remains stable when the number of features
in the data increases and is superior to alternative methods proposed by Olma (2020) and Semenova
(2025).

7. Application

We apply our methods to study the robustness of the findings from Santoro and Broockman (2022)
to potentially endogenous attrition. Our Supplementary Material reanalyzes the Job Corps study,
which was the original application in Lee (2009), as well as a study by Kalla and Broockman (2022)
to demonstrate a binary outcome and a study by Blattman and Annan (2010) to demonstrate an
observational study.

We focus on Santoro and Broockman (2022, Study 1), which invited subjects to have a video chat
on an online platform with a partner from a different party. The theme of the conversation is what
their perfect day would be like. The study started with 986 subjects who satisfied the screening criteria.
The subjects were then randomly assigned into either the treatment group (Di = 1), in which they were

6We do not compare to outcome imputation, since it works under the same identifying conditions as IPW, or the Heckman
correction because we do not have selection instruments that satisfy the exclusion restriction and so identification would
depend exclusively on parametric assumptions (Honoré and Hu 2020).
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Figure 5. Covariate-tightened trimming bounds in Santoro and Broockman (2022).

Note: In both plots, the outcome variable is warmth toward outpartisan voters. The plot on the left shows the estimated covariate-

tightened trimming bounds (CTB, in squares), basic trimming bounds under monotonicity (TB (mono.), in triangles) and under

conditional monotonicity (TB (cond. mono.), in triangles), and the ATE estimate using OLS on the non-missing sample (OLS, in circles).

Lower bound estimates are in blue and upper bound estimates are in red. Segments represent the 95% confidence intervals for the

estimates. Black segments between the red and blue ones represent the 95% confidence intervals for the ATE for always-responders,

using the Imbens–Manski approach. The plot on the right shows the estimates of the conditional covariate-tightened trimming bounds

across nine evaluation points of age with other demographic attributes are fixed to sample mean or mode.

informed that the partner would be an outpartisan, or the control group (Di = 0), in which they received
no extra information. Among subjects that were assigned to a treatment condition, 45.2% of the treated
subjects and 39.5% of the control subjects completed the conversation and post-treatment survey. The
authors examined the treatment effect on attitudes toward the other parties and found significant effects
in the short run.

The authors indicate that the treatment effect on the response rates had a p-value of 0.055, and
their omnibus test for covariate balance with respect to education, race/ethnicity, gender, age, and
party identification had a p-value of 0.28. Nonetheless, the difference in response rates is not trivial,
and other confounding factors may be imbalanced beyond those tested. We can use our covariate-
tightened trimming bounds to assess the robustness of their findings. Our inference targets the “always
responders” that would complete the conversation and survey regardless of being informed about their
partner’s partisanship. We focus on the “warmth toward outpartisan voters” outcome (measured by a
rescaled thermometer) and rely on the same covariates the authors selected for their analysis, including
the age, gender, race, education level, and party identification of the subjects, as well as their pre-
treatment outcome.

Figure 5 shows the results. At the bottom is the OLS estimate replicating the main result in the
paper. Above that (TB mono.) are the basic trimming bounds, assuming monotonic selection. In this
case, however, unconditional monotonicity is questionable. While the overall pattern was such that
missingness was lower in the treatment group, some types of people (e.g., those with high affective
polarization) may actually choose to drop out when informed about their partner’s partisan status.
When we perform the test proposed in the discussion of conditional monotonicity above, the results
suggest that unconditional monotonicity is violated (see the Supplementary Material for details). We
thus construct two sets of units (X + andX −) for which treatment is positively and negatively associated
with response. Basic trimming bounds (without covariate adjustment) for the first group would be based
on bounding the treated mean, and bounds for the second group are based on bounding the control
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mean. We can form the basic trimming bounds for the overall sample by constructing the appropriately
weighted average of these bounds and the observed treated and control means. The result is shown as
“TB (cond. mono.).” We see that relaxing the monotonic selection assumption has strong consequences
for our inference. However, when we adjust for covariates using our proposed method (“CTB”), we
get tighter results that also allow for conditionally monotonic selection. Both the lower bound (0.272)
and the upper bound (0.355) are significantly larger than zero, suggesting that the ATE for the always-
responders is indeed positive.

We can examine how the bounds vary over the age of the subjects. We create nine “representative
subjects” whose demographic attributes are fixed at the sample mean or mode while their age varies
across its deciles. The estimates of the conditional bounds are shown in the right plot of Figure 5. The red
and blue dots represent the upper and the lower bounds, respectively, while the dotted lines around them
are the 95% confidence intervals. The dash-dotted curve depicts the conditional trimming probability.
The response rate (which determines the share of always-responders) is much higher among subjects
who are younger than 30. The conditional lower bounds are also significantly larger than zero for this
sub-group, while the identified set crosses zero for other subjects. We show results for pre-treatment
warmth and ideology in the Supplementary Material.

8. Conclusion

Even in experiments and plausible quasi-experiments, researchers face sample selection due to endoge-
nous nonresponse or censoring. When the selection process is affected by treatment assignment,
comparing the average outcome between the treated and untreated subjects no longer yields clean
causal estimates, because the two groups consist of different principal strata. Conventional methods
attempt to solve the problem by modeling the selection process, using the Heckman correction, inverse
probability of attrition weighting, or outcome imputation. But the validity of these methods requires that
either conditioning on observables is sufficient or that one knows obscure details of the data-generating
process. Inferences are invalid if these conditions are not met. Such approaches do not allow us to be
agnostic about the data-generating process and undermine the design-based logic of experimental or
quasi-experimental analysis.

We present an alternative partial identification approach that avoids making strong structural
assumptions while also improving, in terms of precision, on existing methods. Our proposal combines
the trimming bounds method developed by Lee (2009) with a recently developed machine learning
algorithm, generalized random forest (Athey et al. 2019; Wager and Athey 2018), to generate covariate-
adjusted bounds for the average treatment effect on the always-responders. Our approach allows a
potentially large set of covariates to tighten the bounds. It also allows one to loosen a “monotonicity”
assumption and to still construct informative bounds; we show that the monotonicity assumption is
indeed problematic in applied settings. Evidence from our simulation and replication studies shows
that the proposed method can be informative when existing methods are not. The price we pay is to
forgo a point estimate and rather settle for a range of plausible estimates. In cases where experiments or
quasi-experiments are tainted by complex selection problems, we consider this to be a reasonable way
to balance credibility and robustness with the need to provide informative estimates (Manski 2019).

Researchers should be aware of some of the trade-offs and limitations of our proposed approach.
Using machine learning (the random forest algorithm) offers gains in robustness and efficiency in
exchange for the simplicity or interpretability of stratification or linear regression. The algorithm may
be harder for non-experts to understand, and one would not obtain results that immediately display
partial correlations of covariates with respect to missingness rates, for example. Our algorithm is also
more computationally expensive (see Table 1 in the Supplementary Material for running times on a
consumer laptop). Finally, our approach requires that there are no points in the covariate space in which
both treatment-only and control-only responders reside. Nonetheless, in situations in which the always-
responder effect is a quantity of interest and where (conditionally) monotonic selection is plausible, our
approach offers a significant improvement over current alternatives.
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We have developed an open-source R package, CTB, for practitioners to implement the method.
A Supplementary Material explains a variety of extensions and applications to experimental and
observational studies.

Data Availability Statement. Replication code for this article is available as Wang (2025), and can be accessed via Dataverse
at https://doi.org/10.7910/DVN/JDSFJO.

Supplementary Material. For supplementary material accompanying this paper, please visit https://doi.org/10.1017/
pan.2025.10001.
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