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Abstract

Let S be a countable set and let Q = (qij , i, j ∈ S) be a conservative q-matrix over S
with a single instantaneous state b. Suppose that we are given a real number µ ≥ 0 and a
strictly positive probability measure m = (mj , j ∈ S) such that

∑
i∈S miqij = −µmj ,

j �= b. We prove that there exists a Q-process P(t) = (pij (t), i, j ∈ S) for which m is
a µ-invariant measure, that is

∑
i∈S mipij (t) = e−µtmj , j ∈ S. We illustrate our results

with reference to the Kolmogorov ‘K1’ chain and a birth–death process with catastrophes
and instantaneous resurrection.
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1. Introduction

We begin with a conservative q-matrix over a countable set S; that is, a collection Q =
(qij , i, j ∈ S) of real numbers that satisfy 0 ≤ qij < ∞, i, j ∈ S, j �= i; qi := −qii ≤ ∞,
i ∈ S; and

∑
j �=i qij = qi , i ∈ S.

We shall assume that Q has a single instantaneous state; that is, a state b ∈ S such that
qb = ∞ and qi < ∞ for i �= b. A set of real-valued functions P(t) = (pij (t), i, j ∈ S)

defined on (0,∞) is called a standard transition function or process if

pij (t) ≥ 0, i, j ∈ S, t > 0, (1)∑
j∈S

pij (t) ≤ 1, i ∈ S, t > 0, (2)

pij (s + t) =
∑
k∈S

pik(s)pkj (t), i, j ∈ S, s, t > 0, (3)

lim
t↓0

pij (t) = δij , i, j ∈ S, (4)

where δij is the Kroneker delta. The process P is then honest if equality holds in (2) for some
(and, thus, all) t > 0, and it is called a Q-transition function (or Q-process) if p′

ij (0+) = qij
for each i, j ∈ S.
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714 B. GRAY ET AL.

If µ is some fixed nonnegative real number, a collection of strictly positive numbers m =
(mj , j ∈ S) is called a µ-subinvariant measure (on S) for Q if

∑
i∈S miqij ≤ −µmj , j ∈ S,

and is called µ-invariant if

∑
i∈S

miqij = −µmj , j ∈ S. (5)

Here, we shall suppose that m is a finite measure (i.e.
∑
i∈S mi < ∞) which is almost

µ-invariant for Q, that is ∑
i∈S

miqij = −µmj , j �= b, (6)

and we will show that there always exists a Q-process P such that m is a µ-invariant measure
(on S) for P , that is ∑

i∈S
mipij (t) = e−µtmj , j ∈ S, t > 0. (7)

(When µ = 0, all of the above notions reduce to the more common ones of invariance and
subinvariance.) Note that if we were given a µ-invariant measurem for a particularQ-process
P , then, since (7) may be rewritten as

∑
i �=j

mipij (t)+ (1 − e−µt )mj = (1 − pjj (t))mj ,

Fatou’s lemma would give ∑
i �=j

miqij + µmj ≤ qjmj

for all j ∈ S, meaning thatm would be µ-subinvariant forQ. However, under what conditions
is m µ-invariant for Q? In Section 2, we provide necessary and sufficient conditions for m
to be almost invariant for Q and delay addressing the interesting question of whether or not∑
i �=b miqib = ∞, which would be the remaining requirement for (5) to hold; this question

will be considered in Section 6.
Here, we are assuming thatQ is uni-instantaneous. WhenQ is totally stable, that is qi < ∞

for all i ∈ S, the relationship between (5) and (7) is well understood, and has been divined
completely for the minimalQ-processF . It was shown by Tweedie [14] that ifm is aµ-invariant
measure for F , then it is also µ-invariant for Q. Conversely [8], [9], if m is µ-invariant for Q,
then it is µ-subinvariant for F and µ-invariant for F if and only if the equations

∑
i∈S

yiqij = −νyj , 0 ≤ yj ≤ mj , j ∈ S,

have only the trivial solution for some (and, thus, all) ν < µ. This result holds whether or not
S is irreducible and does not require m to be finite. If, as we are assuming here, m is finite,
then, for µ to be strictly positive, it is necessary that F be dishonest. Furthermore, if F is the
unique Q-process satisfying the forward equations, then m is µ-invariant for F .
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Uni-instantaneous Q-processes 715

Recently, Zhang, Lin and Hou solved the existence problem for the case µ = 0 in the totally
stable case [17] and the uni-instantaneous case [18]. They proved that ifm is a strictly positive,
(almost-)invariant probability measure for Q, then there exists a Q-process P for which m is
an invariant measure (and, hence, a stationary distribution). We will extend their results to the
case µ > 0.

The structure of the paper is as follows. We begin, in Section 2, by examining the relationship
between (6) and (7). Next, we recall the resolvent decomposition theorem of [2], which is the
major tool for constructing uni-instantaneous Q-processes. This, and some other preliminary
results, are presented in Section 3. Our main result on the existence of a Q-process with a
given finite, almost-µ-invariant measure forQ is proved in Section 4. In Section 5, we discuss
two examples illustrative of our results and, finally, in Section 6, we provide some necessary
conditions for µ-invariance. The terminology and notation used will follow that established by
Anderson [1] and Yang [16].

2. Almost µ-invariance

Our aim here is to provide necessary and sufficient conditions for a measurem that satisfies (7)
(but is not necessarily finite) to be almost µ-invariant for Q. To do so, we recall the notions of
an almost-B-type and an almost-F -type Q-process.

Definition 1. (Chen and Renshaw [3].) A uni-instantaneous Q-process P with instantaneous
state b is called almost B-type if it satisfies the Kolmogorov backward equations over the
noninstantaneous states, that is if

p′
ij (t) =

∑
k∈S

qikpkj (t), i �= b, j ∈ S. (8)

The process P is called almost F -type if it satisfies the Kolmogorov forward equations over
the noninstantaneous states, that is if

p′
ij (t) =

∑
k∈S

pik(t)qkj , i �= b, j ∈ S.

By adapting the proof of Theorem 1 of [11], we can establish the following result.

Theorem 1. If m is a µ-invariant measure for P , then m is almost µ-invariant for Q if and
only if P is almost F -type.

Proof. Since (7) holds, we may define an honest standard transition function P ∗(t) =
(p∗
ij (t), i, j ∈ S) over S by

p∗
ij (t) = eµt

mjpji(t)

mi
, i, j ∈ S, t > 0.

Indeed, P ∗ is aQ∗-transition function, whereQ∗ = (q∗
ij , i, j ∈ S) is the q-matrix with entries

q∗
ij = mjqji

mi
+ µδij , i, j ∈ S.
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(P ∗ is called theµ-reverse of P with respect tom andQ∗ theµ-reverse ofQwith respect tom;
see [9].) It is easy to see thatQ∗ is uni-instantaneous with instantaneous state b and, for i �= b,
that

mi
∑
j∈S

q∗
ij =

∑
j �=i

mjqji + µmi −miqi ≤ 0.

Moreover, all of the states i �= b are conservative states for Q∗ if and only if (6) holds. It is
easy to verify that P ∗ is almost B-type if and only if P is almost F -type. Thus, if (6) holds
then Q∗ is conservative for the states i �= b. Hence, the backward equations (8) hold for P ∗
over the states i �= b, implying that P is almost F -type. Conversely, if P is almost F -type then
P ∗ is almost B-type; however, P ∗ is honest, implying that the states i �= b are conservative
states for Q∗ and, hence, (6) holds.

3. The resolvent decomposition theorem

Henceforth, we will find it convenient to specify transition functions through their Laplace
transforms. If P is a specified transition function, then the function�(α) = (ψij (α), i, j ∈ S)
given by

ψij (α) =
∫ ∞

0
e−αtpij (t) dt, i, j ∈ S, α > 0, (9)

is called the resolvent of P . Indeed, if i, j ∈ C, where C is any irreducible class, then the
integral in (9) converges for all α > −λP (C), where λP (C) is the decay parameter of C
(for P ); see [6]. In analogy to properties (1)–(4) of P , the resolvent satisfies

ψij (α) ≥ 0, i, j ∈ S, α > 0, (10)∑
j∈S

αψij (α) ≤ 1, i ∈ S, α > 0, (11)

ψij (α)− ψij (β)+ (α − β)
∑
k∈S

ψik(α)ψkj (β) = 0, i, j ∈ S, α, β > 0, (12)

lim
α→∞αψij (α) = δij , i, j ∈ S. (13)

(Note that (12) is called the resolvent equation.) Indeed, any � that satisfies (10)–(13) is the
resolvent of a standard transition function P ; see Lemma 1.1 of [12]. Furthermore, (11) is
satisfied with equality if and only if P is honest, in which case the resolvent is said to be honest.
Also, the q-matrix of P can be recovered from � using the following identity:

qij = lim
α→∞α(αψij (α)− δij ). (14)

Finally, a resolvent � that satisfies (14) is called a Q-resolvent.
We can identifyµ-invariant measures using resolvents. If P is aQ-process with resolvent�

and m = (mj , j ∈ S) is a µ-invariant measure for P , then µ ≤ λP (S), where λP (S) =
infC λP (C) (the infimum being taken over all the irreducible classes comprising S); see
Lemma 4.1 of [15]. Furthermore, since the integral in (9) converges for all α > −λP (S),
we have ∑

i∈S
miαψij (α − µ) = mj (15)
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for all j ∈ S and α > 0. We refer tom asµ-invariant for� if (15) is satisfied. Finally, a simple
extension of Lemma 1 of [10] establishes both that m is µ-invariant for � if it is µ-invariant
for P , and that if µ ≤ λP (S), then m is µ-invariant for P if it is µ-invariant for �.

We are assuming that Q is a uni-instantaneous q-matrix with instantaneous state b, so let
us write N = S \ {b} and denote by QN = (qij , i, j ∈ N) the restriction of Q to N . If
m = (mi, i ∈ S) is a measure on S, then mN = (mi, i ∈ N) will be the restriction of m to N .

The following important result combines Theorems 7.7 and 7.8 of [2]. It characterizes
Q-processes with a single instantaneous state. In preparation, define families H� and K� , for
a givenQN -resolvent�(α) = (ψij (α), i, j ∈ N), as follows: H� is the set of all nonnegative
row vectors η(α) = (ηi(α), i ∈ N), α > 0, satisfying

∑
j∈N ηj (α) < ∞ and

ηj (α)− ηj (β)+ (α − β)
∑
k∈N

ηk(α)ψkj (β) = 0, j ∈ N, (16)

and K� is the set of all column vectors ξ(α) = (ξi(α), i ∈ N), α > 0, satisfying 0 ≤ ξi(α)

≤ 1, i ∈ N , and

ξi(α)− ξi(β)+ (α − β)
∑
k∈N

ψik(α)ξk(β) = 0, i ∈ N.

Theorem 2. (Resolvent decomposition theorem.) For the uni-instantaneous q-matrixQ, every
Q-resolvent R(α) = (rij (α), i, j ∈ S) can be decomposed uniquely as

R(α) =
(

0 0
0 ψ(α)

)
+ rbb(α)

(
1 η(α)

ξ(α) ξ(α)η(α)

)
, (17)

where �(α) = (ψij (α), i, j ∈ N) is a QN -resolvent and η(α) = (ηi(α), i ∈ N) and
ξ(α) = (ξi(α), i ∈ N) satisfy the following conditions:

(i) η(α) ∈ H� and ξ(α) ∈ K� ,

(ii) ξi(α) ≤ 1 − ∑
j∈N αψij (α), i ∈ N ,

(iii) limα→∞ αηj (α) = qbj , j ∈ N ,

(iv) limα→∞ αξi(α) = qib, i ∈ N , and

(v) rbb(α) = (C+α+α∑
j∈N ηj (α)ξj )−1, where ξj := limα→0 ξj (α) and C < ∞ satisfy

C ≥ lim
α→∞α

∑
j∈N

ηj (α)(1 − ξj ), (18)

lim
α→∞α

∑
j∈N

ηj (α)ξj = ∞
(

or, equivalently, lim
α→∞α

∑
j∈N

ηj (α) = ∞
)
.

Conversely, if there exists a QN -resolvent �, and vectors η(α) and ξ(α) satisfying the above
conditions, then R, defined by (17), is a Q-resolvent.
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Our main result rests on the following three lemmas.

Lemma 1. Suppose that the uni-instantaneous q-matrixQ admits an almost-µ-invariant mea-
sure m = (mi, i ∈ S). Then di(α) = (di(α), i ∈ N), defined by

di(α) = mi − (α + µ)
∑
k∈N

mkφki(α), i ∈ N, α > 0, (19)

where �N(α) = (φij (α), i, j ∈ N) is the minimal QN -resolvent, satisfies

lim
α→∞αdi(α) = mbqbi, i ∈ N.

Proof. Sincem is almostµ-invariant forQ, it is clear that the restrictionmN = (mi, i ∈ N)
is a µ-subinvariant measure for QN . Therefore, because mN is then µ-subinvariant for �N ,
we find that di(α) ≥ 0, i ∈ N , α > 0. Also, since�N is the minimalQN -resolvent, it satisfies
the resolvent equation

φij (α)− φij (β)+ (α − β)
∑
k∈N

φik(α)φkj (β) = 0, i, j ∈ N, α, β > 0,

and, therefore,

d̄i (α)− d̄i (β)+ (α − β)
∑
k∈N

d̄k(α)φkj (β) = 0, i ∈ N, α, β > 0, (20)

where
d̄i (α) = mi − α

∑
k∈N

mkφki(α), i ∈ N, α > 0.

Since di(α) ≥ 0, i ∈ N , α > 0, we have d̄i (α) ≥ 0, i ∈ N , α > 0. Using (20)
we see that, for each i ∈ N , d̄i (α) is nonincreasing in α and, hence, α

∑
k∈N mkφki(α)

is nondecreasing in α. Therefore, limα→∞ α
∑
k∈N mkφki(α) exists. However, by Fatou’s

lemma, limα→∞ α
∑
k∈N mkφki(α) ≥ mi , and, hence, limα→∞ α

∑
k∈N mkφki(α) = mi

because d̄i (α) ≥ 0. Since �N satisfies the forward equation

αφij (α) = δij +
∑
k∈N

φik(α)qkj , i, j ∈ N, α > 0,

and (19) can be rewritten as

di(α) =
∑
k∈N

mk(δki − (α + µ)φki(α)), i ∈ N, α > 0,

we deduce that

αdi(α) = −α
∑
k∈N

mk
∑
j∈N

φkj (α)qji − αµ
∑
k∈N

mkφki(α),

= −
∑
j∈N

qjiα
∑
k∈N

mkφkj (α)− µα
∑
k∈N

mkφki(α),

which leads to

lim
α→∞αdi(α) = −

∑
j∈N

mjqji − µmi = mbqbi, i ∈ N.

This completes the proof.
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Lemma 2. Let �(α) = (ψij (α), i, j ∈ N) be a QN -resolvent and let ξi = limα→0 ξi(α),
where ξi(α) = 1 − α

∑
j∈N ψij (α), i ∈ N . If η(α) ∈ H� then α

∑
i∈N ηi(α)(1 − ξi) is finite

and does not depend on α.

Proof. By the dominated convergence theorem,

lim
β→0

αβ
∑
i∈N

∑
j∈N

ηi(α)ψij (β) = α
∑
i∈N

ηi(α) lim
β→0

β
∑
j∈N

ψij (β)

= α
∑
i∈N

ηi(α) lim
β→0

(1 − ξi(β))

= α
∑
i∈N

ηi(α)(1 − ξi).

On the other hand, using (16), we obtain

lim
β→0

αβ
∑
i∈N

∑
j∈N

ηi(α)ψij (β) = lim
β→0

αβ
∑
j∈N

∑
i∈N

ηi(α)ψij (β)

= lim
β→0

αβ

β − α

∑
j∈N

(ηj (α)− ηj (β))

= lim
β→0

αβ

β − α

∑
j∈N

ηj (α)+ lim
β→0

αβ

α − β

∑
j∈N

ηj (β).

The first term vanishes because
∑
j∈N ηj (α) < ∞. The second term equals

lim
β→0

β
∑
j∈N

ηj (β),

which exists, because it is easy to deduce, from (16), that β
∑
j∈N ηj (β) is nondecreasing in β.

Since this limit does not depend on α, the proof is complete.

Lemma 3. Suppose that m = (mi, i ∈ S) is a strictly positive probability measure. If m is
µ-invariant for the Q-resolvent R defined in (17), then

(i) mN = (mi, i ∈ N) is a µ-subinvariant measure for �, and

(ii) ηi(α) = di(α)/mb, where di(α) = mi − (α + µ)
∑
k∈N mkψki(α), i ∈ N , α > 0.

Conversely, if (i) and (ii) hold, then, on setting ξi(α) = 1 − α
∑
j∈N ψij (α), i ∈ N , and

C = µ/mb+α∑
i∈N ηi(α)(1−ξi), where ξi = limα→0 ξi(α), (17) determines aQ-resolventR

for which m is a µ-invariant measure.

Proof. If m is µ-invariant for R, that is

(α + µ)
∑
i∈S

mirij (α) = mj , j ∈ S, α > 0, (21)
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then (α + µ)
∑
i∈N miψij (α) ≤ mj , j ∈ N , since, from (17), we have ψij (α) ≤ rij (α),

i, j ∈ N . This proves part (i). Next, from (17) and (21), we have

(α + µ)rbb(α)mb + (α + µ)
∑
k∈N

mkξk(α)rbb(α) = mb (22)

and, for all i ∈ N and α > 0,

(α+µ)ηi(α)rbb(α)mb+(α+µ)
∑
k∈N

mkψki(α)+(α+µ)
∑
k∈N

mkξk(α)rbb(α)ηi(α) = mi. (23)

These equations combine to give mbηi(α) + (α + µ)
∑
k∈N mkψki(α) = mi, i ∈ N, and,

hence, part (ii) holds.
To prove the converse, set ξi(α) = 1 −α∑

j∈N ψij (α) in (17) and take η(α) to satisfy (16).
Then, by Lemma 2, α

∑
i∈N ηi(α)(1 − ξi) is finite and independent of α, and, so, the given C

satisfies (18). It follows that

rbb(α) =
(
µ

mb
+ α + α

∑
i∈N

ηi(α)

)−1

.

Since parts (i) and (ii) hold and
∑
i∈S mi = 1, we have

(α + µ)rbb(α)mb + (α + µ)
∑
i∈N

miξi(α)rbb(α)

= rbb(α)

(
(α + µ)mb + (α + µ)(1 −mb)− α

∑
j∈N

(α + µ)
∑
i∈N

miψij (α)

)

= rbb(α)

(
µ+ αmb + αmb

∑
j∈N

ηj (α)

)

= mb

and, for i ∈ N ,

(α + µ)ηi(α)rbb(α)mb + (α + µ)
∑
k∈N

mkψki(α)+ (α + µ)
∑
k∈N

mkξk(α)rbb(α)ηi(α)

= (α + µ)rbb(α)di(α)+ (α + µ)
∑
k∈N

mkψki(α)+ (α + µ)rbb(α)
di(α)

mb

∑
k∈N

mkξk(α)

= (α + µ)
∑
k∈N

mkψki(α)+ di(α)

mb

(
(α + µ)rbb(α)mb + (α + µ)

∑
i∈N

miξi(α)rbb(α)

)

= (α + µ)
∑
k∈N

mkψki(α)+ di(α)

= mi.

Thus, (22) and (23) hold. These in turn imply that (21) holds, meaning that m is a µ-invariant
measure for R.
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4. Existence

We are now ready to state our main result.

Theorem 3. Let µ ≥ 0 and suppose that the uni-instantaneous q-matrix Q admits a finite,
almost-µ-invariant measure m = (mi, i ∈ S). Then there exists a Q-process for which m is a
µ-invariant measure.

Proof. Without loss of generality, we may assume that
∑
i∈S mi = 1. Let �(α) =

(φij (α), i, j ∈ N) be the minimal QN -resolvent. Since m is almost µ-invariant for Q, the
restrictionmN = (mi, i ∈ N) is aµ-subinvariant measure forQN and, hence, isµ-subinvariant
for �. Set

di(α) = mi − (α + µ)
∑
k∈N

mkφki(α), i ∈ N, α > 0, (24)

ηi(α) = di(α)

mb
, i ∈ N, α > 0, (25)

ξi(α) = 1 − α
∑
j∈N

φij (α), i ∈ N, α > 0, (26)

and

rbb(α) =
(
µ

mb
+ α + α

∑
i∈N

ηi(α)

)−1

. (27)

Since � satisfies the resolvent equation, η(α) and ξ(α) given in (25) and (26) satisfy

ηi(α)− ηi(β)+ (α − β)
∑
k∈N

ηk(α)φki(β) = 0, i ∈ N, (28)

and

ξi(α)− ξi(β)+ (α − β)
∑
k∈N

φik(α)ξk(β) = 0, i ∈ N.

Using Lemma 1, we see that

lim
α→∞αηj (α) = lim

α→∞α
dj (α)

mb
= qbj , j ∈ N,

and

lim
α→∞α

∑
j∈N

ηj (α) = lim
α→∞

1

mb

∑
j∈N

αdj (α) =
∑
j∈N

qbj = ∞.

Also,

lim
α→∞αξi(α) = lim

α→∞
∑
k∈N

α(δik − αφik(α)) = −
∑
k∈N

qik = qib, i ∈ N.
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Therefore, using (26), (28), and Lemma 2, we deduce that α
∑
i∈N ηi(α)(1 − ξi) is finite and

independent of α. Now set

C = µ

mb
+ α

∑
i∈N

ηi(α)(1 − ξi),

where ξ = limα→0 ξ(α), and observe that C satisfies (18). Hence, in view of Theorem 2, we
may use (24)–(27) to construct a Q-resolvent R by setting

R(α) =
(

0 0
0 φ(α)

)
+ rbb(α)

(
1 η(α)

ξ(α) ξ(α)η(α)

)
,

and then use the second part of Lemma 3 to deduce thatm is a µ-invariant measure for R. This
completes the proof.

Remark 1. When µ = 0, Theorem 3 reduces to the result of [18].

5. Examples

Example 1. We will begin with an example, generally known as the ‘K1’ chain, described
by Kolmogorov [7] and analysed by Kendall and Reuter [5] and Reuter [13] (see also the
discussions in [4] and [1]). The chain has a q-matrix over the nonnegative integers given by

Q =

⎛
⎜⎜⎜⎜⎜⎝

−∞ 1 1 1 · · ·
q1 −q1 0 0 · · ·
q2 0 −q2 0 · · ·
q3 0 0 −q3 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠
, (29)

where qi > 0, i ≥ 1. If aµ-subinvariant measure exists forQ thenµ ≤ inf i qi ; see Corollary 1
of [6]. We will assume that µ < qi for all i ≥ 1. Then, for any such µ,Q admits a µ-invariant
measurem = (mi, i ≥ 0) given bymi = m0/(qi −µ), i ≥ 1, withm0 arbitrary. This is finite
if and only if

∞∑
i=1

1

qi
< ∞, (30)

in which case Q has the unique µ-invariant probability measure

m0 = 1

A
, mi = m0

qi − µ
, i ≥ 1, (31)

where A = 1 + ∑∞
i=1 1/(qi −µ). Therefore, an immediate consequence of Theorems 2 and 3

and Lemma 3 is the following simple result.

Proposition 1. If Q defined in (29) satisfies (30), then there exists a Q-process for which m,
defined by (31), is a µ-invariant probability measure. The resolvent of one such process is
given by

R(α) =
(

0 0
0 φ(α)

)
+ rbb(α)

(
1 η(α)

ξ(α) ξ(α)η(α)

)
,
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where

φij (α) = δij

α + qi
, i, j ≥ 1, α > 0,

ξi(α) = qi

α + qi
, i ≥ 1, α > 0,

ηj (α) = 1

α + qj
, j ≥ 1, α > 0,

and

rbb(α) =
(
µ

m0
+ α + α

∞∑
i=1

ηi(α)

)−1

.

Example 2. Next we consider the following q-matrix, describing a birth–death process incor-
porating catastrophes to state 0 and instantaneous resurrection from state 0:

Q =

⎛
⎜⎜⎜⎜⎜⎝

−∞ h1 h2 h3 · · ·
d1 −(d1 + b1) b1 0 · · ·
d2 a2 −(a2 + b2 + d2) b2 · · ·
d3 0 a3 −(a3 + b3 + d3) · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠
. (32)

Here, di > 0, bi > 0, i ≥ 0, ai > 0, i ≥ 1, hj ≥ 0, j ≥ 1, and
∑∞
j=1 hj = ∞. Define

π = (πi, i ≥ 1) by π1 = 1 and

πi =
i∏

j=2

bj−1

aj
, i ≥ 2.

It is easy to show that if µ satisfies 0 ≤ µ ≤ inf i≥1 di and if hi = cπi(di − µ), i ≥ 1, where
c is a positive constant, then m = (mi, i ≥ 0) given by

m0 = 1, mi = cπi, i ≥ 1, (33)

is a µ-invariant measure for Q.

Proposition 2. If µ satisfies 0 ≤ µ ≤ inf i≥1 di and Q defined in (32) satisfies
∑∞
i=1 πi < ∞

and
∑∞
i=1 πidi = ∞, then there exists aQ-process for whichm, defined by (33), is aµ-invariant

probability measure.

Proof. The condition
∑∞
i=1 πi < ∞ implies that m is a finite measure, and the facts that∑∞

i=1 πidi = ∞ and
∑∞
i=1 πi < ∞ together imply that

∑∞
j=1 hj = ∞. Hence, the result

follows from Theorem 3.

6. Necessary conditions

In both of the examples above, our finite measure m satisfied
∑
i �=b

miqib = ∞ (34)

and, hence, was invariant for Q (that is, (5) holds for all j ∈ S). We have established that
only almost µ-invariance is needed for the existence of aQ-process for which the given (finite)
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measure is µ-invariant. It would therefore be of interest to know whether (34) is actually
necessary for a (finite or infinite) measurem to beµ-invariant for P . We shall content ourselves
with the following result, which shows that (34) is necessary in the µ = 0 case under the
condition that P is reversible.

Theorem 4. Let Q be a uni-instantaneous q-matrix with instantaneous state b and let P be a
Q-process with invariant measure m. If P is reversible with respect to m, that is if

mipij (t) = mjpji(t), i, j ∈ S, (35)

then (34) holds.

Proof. On dividing (35) by t and letting t ↓ 0, we obtain miqij = mjqji , j �= i. Hence,

∑
i �=j

miqij = mj
∑
i �=j

qji , j ∈ S,

meaning that, in particular,

∑
i �=b

miqib = mb
∑
i �=b

qbi = ∞,

since Q is conservative.

We gain some insight into the general case from the following simple result, which follows
directly from the proof of Theorem 1.

Theorem 5. Let Q be a uni-instantaneous q-matrix with instantaneous state b and let P be a
Q-process with µ-invariant measure m. Let P ∗ and Q∗ be, respectively, the µ-reverse of P
with respect to m and the µ-reverse of Q with respect to m. Then P ∗ is honest. In particular,
b is an honest state for P ∗, while being instantaneous for Q∗. Moreover,

mb
∑
j �=b

q∗
bj =

∑
j �=b

mjqjb,

meaning that, in particular, b is a conservative state for Q∗ if and only if (34) holds.
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