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Abstract

Let n > 3, and let L be a Lagrangian embedding of Rn into the cotangent bundle
T ∗Rn of Rn that agrees with the cotangent fiber T ∗xRn over a point x 6= 0 outside a
compact set. Assume that L is disjoint from the cotangent fiber at the origin. The
projection of L to the base extends to a map of the n-sphere Sn into Rn\{0}. We
show that this map is homotopically trivial, answering a question of Eliashberg. We
give a number of generalizations of this result, including homotopical constraints on
embedded Lagrangian disks in the complement of another Lagrangian submanifold,
and on two-component links of immersed Lagrangian spheres with one double point
in T ∗Rn, under suitable dimension and Maslov index hypotheses. The proofs combine
techniques from Ekholm and Smith [Exact Lagrangian immersions with a single double
point, J. Amer. Math. Soc. 29 (2016), 1–59] and Ekholm and Smith [Exact Lagrangian
immersions with one double point revisited, Math. Ann. 358 (2014), 195–240] with
symplectic field theory.

1. Introduction

Recent work of Abouzaid and Kragh [AK16b] has established the following striking rigidity
result: if Q is a closed manifold and K ⊂ T ∗Q is a closed exact Lagrangian submanifold,
then the projection from K to Q is a simple homotopy equivalence. Here we consider related
homotopy rigidity questions for Lagrangian disks in T ∗Q with prescribed behavior at infinity,
and for Lagrangian immersions of spheres in Euclidean space with a single double point of high
Maslov grading. Although our results are broadly inspired by the nearby Lagrangian submanifold
conjecture, the methods of proof are very different: indeed, the homotopy equivalence of [Abo12,
AK16b] is obtained from Whitehead’s theorem, but here we focus on situations where there is
no underlying homological equivalence.

Our first result answers a question of Eliashberg (personal communication, 2015). Let x 6= 0
be a point in Rn and let L ⊂ T ∗Rn be a Lagrangian disk which agrees with the fiber T ∗xRn outside
a compact set. (By appropriate versions of the ‘nearby Lagrangian submanifold conjecture’, as
established in [Abo12, Corollary 1.2] or [EL17, Theorem 56], any exact Lagrangian which agrees
with the fiber outside a compact set must be a disk. See [EKS16, Corollary 3.12] for results on
its parameterization, and § 4.4 for a related Floer-theoretic discussion.) Assume that L is disjoint
from the fiber T ∗0 Rn at the origin. Then composing L with the projection to the base we get a
map fL : Sn → Rn\{0} ' Sn−1. For n > 3 the homotopy group πn(Sn−1) is isomorphic to Z/2Z.
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Theorem 1.1. For n > 3, the map fL represents the trivial element in πn(Sn−1).

If 0 ∈ Rn lies in the unbounded component of the complement of the projection of L

to Rn, then fL is clearly nullhomotopic, but if 0 lies in one of the bounded components of the

complement, this result seems to have no elementary proof. We prove Theorem 1.1 by extending

results of [ES16, ES14]. We compactify L to a Lagrangian sphere L̂ which immerses in T ∗Rn with

one double point of Maslov grading n. A displacing Hamiltonian for L̂ yields a one-parameter

family of deformations of the Cauchy–Riemann equations on the disk with boundary condition

on L̂. As in [ES14] we construct from the space of solutions a spin (n + 1)-manifold B with

∂B = L̂. Using the space of holomorphic disks with boundary on L̂, with one puncture at its

double point, and a monotonicity argument, we extend the evaluation map on L̂ = ∂B to a map

from B into the complement of T ∗0 Rn. In combination with the Pontryagin–Thom construction

this gives the result.

The proof applies more generally. Let Sk ⊂ Rk+1 ⊂ Rn be the k-dimensional unit sphere for

0 < k < n − 1 and let pr : T ∗Rn → Rn denote the bundle projection. Assume that x /∈ Sk and

that L is disjoint from pr−1(Sk), the union of all cotangent fibers over points in Sk. Composing

the projection to Rn with the inclusion Rn ⊂ Sn, where we now view Sn as the one point

compactification of the base, gives a map fL : Sn → Sn\Sk ' Sn−k−1. Then them-fold suspension

gives a map

ΣmfL : Sn+m
→ Sn−k−1+m

representing an element [ΣmfL] ∈ πn+m(Sn−k−1+m), which is independent of m in the stable

range k < 1
2(n+m− 3), the stable homotopy class of fL.

Corollary 1.2. The stable homotopy class of fL is trivial.

For instance, cf. Remark 4.5, a Lagrangian disk L ⊂ T ∗(R3\{0}) which coincides with a fiber

near infinity projects to the zero-section with even Hopf invariant; the question of whether the

Hopf invariant vanishes integrally remains open.

In the proofs of Theorem 1.1 and Corollary 1.2, a key requirement is to disjoin the images of

once-punctured holomorphic disks with boundary on L̂ from the co-isotropic subset pr−1(Sk).

We ensure that disjointness via a monotonicity argument. When the subset to be avoided is

a Lagrangian submanifold C, one can alternatively study the behavior of holomorphic curves

in a neighborhood of C by neck-stretching around C, as in symplectic field theory (SFT).

Under additional assumptions on the geometry of C, index arguments ensure that the relevant

holomorphic curves are disjoint from C for sufficiently stretched almost complex structure. We

next discuss two results in this setting.

Let R2n
st denote1 standard symplectic 2n-space, namely R2n equipped with the form ω0 =∑

j dxj ∧ dyj . Let φ : Sn → R2n
st be an immersed Lagrangian sphere with one double point of

Maslov grading n. Let C ⊂ R2n
st be a Lagrangian submanifold with ideal Legendrian boundary Γ.

We allow C to be closed, corresponding to Γ = ∅.

Theorem 1.3. Let n > 4. Suppose C ⊂ R2n
st is monotone with minimal Maslov number > 3 and

admits a Riemannian metric for which the Morse index of any non-constant contractible geodesic

loop is > 3. If φ(Sn) ⊂ R2n\C, then φ is nullhomotopic in R2n\C.

1 We will write R2n in place of R2n
st when context allows.
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In Appendices A.1 and A.2 we compute πn(R2n\C), which depends on the Stiefel–Whitney
classes wi(TC) for i = 1, 2. Theorem 1.3 is most interesting in the case that w2(TC) ∈
H2(C;Z/2Z) vanishes, since then πn(R2n\C) has a Z/2Z-subgroup corresponding to πn(ν), where
ν is the fiber (n− 1)-sphere in the boundary of a tubular neighborhood of C.

Manifolds satisfying the Morse index condition include (twisted) products of high-
dimensional spheres and manifolds without contractible geodesics. (In the proof of Theorem 1.3,
monotonicity arguments which prevent holomorphic discs escaping to infinity will show that the
hypotheses on geodesics will only be required in a large compact subset of C, so there are no
special requirements on the Riemannian metric near the ideal boundary.) In § 7 we give examples
showing that the monotonicity and Maslov index hypotheses are necessary.

We point out that Theorem 1.3 strengthens Theorem 1.1. Noting that a disk has a metric
without closed geodesics, the former result shows that we can replace the fiber T ∗0 Rn by
any Lagrangian disk D which agrees with [T,∞) × ∆ ⊂ [T,∞) × U∗Rn ⊂ T ∗Rn for some
T > 0, where U∗Rn is the unit cotangent bundle and [T,∞) × U∗Rn denotes the complement
of the radius T disk cotangent bundle, such that for all sufficiently large T ′ > 0 the intersection
L′ = L∩(T ∗Rn\([T ′,∞)×U∗Rn)) can be completed to a Lagrangian sphere with one double point
of grading n in the complement of D. This is possible for example if ∆ lies in the restriction of
the unit cotangent bundle U∗Rn|Hx to the half-space Hx = {u ∈ Rn : u · x 6 0} of vectors
with non-positive x-component. In this case we can extend L′ via a Lagrangian cobordism
L′′ with topology [T ′, T ′′]×Sn−1, in the region [T ′, T ′′]×U∗Rn over {u ∈ Rn : u ·x > x ·x}, which
interpolates between ∂L′ = ∂−L

′′ and a Legendrian fiber sphere ∂L′′+ ⊂ {T ′′} × U∗λxRn for some
large λ > 0. For λ > 0 sufficiently large we are then far from D and can cap the fiber sphere ∂L′′+
off with a standard half of a Whitney sphere in T ∗Rn over {u ∈ Rn : u · x > λx · x}, see §§ 3.1
and 4.1. We point out that there is a rich class of non-standard Lagrangian disks D (with ∆
Legendrian knotted), see [CNS16] for examples when n = 2, and [Ekh16, § 2.4] for constructing
analogous disks in higher dimensions.

Separately, we consider two component links of immersed spheres. A Whitney sphere link is
an immersion ι : SntSn → R2n such that each component has exactly one double point and the
images of the components are disjoint. Such a link ι determines a Gauss map Gι : Sn × Sn →

S2n−1,

Gι(x, y) =
ι(x)− ι(y)

|ι(x)− ι(y)|
∈ S2n−1.

There are two homotopy classes of maps Sn × Sn → S2n−1:

[Sn × Sn, S2n−1] ∼= π2n(S2n−1) = Z/2Z,

where 0 ∈ Z/2Z corresponds to the homotopy class of constant maps. We define the Hopf linking
number Hopf(ι) ∈ Z/2Z as the homotopy class of Gι. A Lagrangian Whitney sphere link is a
Whitney sphere link which is a Lagrangian immersion.

Theorem 1.4. Let n > 4 and let ι : SntSn → R2n
st be a Lagrangian Whitney sphere link. Assume

that the Maslov grading of the double point of each component equals n. Then Hopf(ι) = 0 ∈
Z/2Z.

Theorem 1.4 is derived from Theorem 1.3 by taking C to be a Lagrange surgery on one
component of ι. We point out that although the two components of ι appear symmetrically in
the statement of the result, they play radically different roles in the proof. The restriction to
n > 4 is used to exclude certain degenerations of holomorphic curves for index reasons, cf. § 5.3.
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In Proposition 6.2 we give an ad hoc argument for Theorem 1.4 when n = 2; the cases n = 3, 4
remain open.

There are non-Lagrangian Whitney sphere links in R4 with non-zero Hopf linking number
[FR86, MR85]. Applying results on Lagrangian caps from [EM13], when n > 3 is odd one can
construct Lagrangian Whitney sphere links (with double points of small Maslov index) with
non-trivial linking number, see Lemma 7.2.

The arguments used in the proofs of Theorems 1.3 and 1.4 are closely related to arguments of
Dimitroglou-Rizell and Evans [DE14], who prove homological non-linking theorems for monotone
Lagrangian links whose components are diffeomorphic either to tori or to products S1×Sn−1, and
who further prove that the smooth isotopy type of a Lagrangian S1×Sn−1 in R2n

st is determined by
its Lagrangian frame map when n > 4. Our work, like theirs, relies on neck-stretching to localize
holomorphic disks away from such monotone Lagrangian submanifolds, but we also appeal to
the ‘framed moduli spaces’ machinery of [ES16, ES14], and the Pontryagin–Thom construction
to control homotopical rather than homological information. As in [DE14], one can then infer
results up to smooth isotopy. For example, any two Lagrangian Whitney sphere links for which
the double points on each component are of Maslov index n are smoothly ambient isotopic.
Indeed, the nullhomotopy provided by Theorem 1.4 implies that the links are formally isotopic,
and the h-principle underlying [Ekh98, Theorem 1.3] then yields a smooth ambient isotopy.
Similarly, the homotopy result, Theorem 1.1, together with the h-principle in [Hae61] shows that
the Lagrangian disk L is smoothly isotopic relative boundary to the fiber TxRn in the complement
of the fiber T0Rn. For related smooth embedding results for (unparameterized) Lagrangian disks,
see [EKS16, Corollary 3.10].

2. Geometric stabilization for Lagrangian disks

In this section we consider a stabilization procedure for Lagrangian disks in the setting of
Corollary 1.2 which corresponds to suspension of the induced map fL.

2.1 Conventions for Lagrangian disks with Legendrian boundary in R2n

In this section we introduce a specific convention for Lagrangian disks that is convenient for
our study of associated homotopy classes. We consider a more general setting for Lagrangian
disks in R2n

st that generalizes that considered above. Let Λ be a Legendrian sphere in R2n−1
st =

T ∗Rn−1 × R with contact form dz − y · dx, where (x, y) are standard coordinates on T ∗Rn−1

and z on R. The symplectization of R2n−1
st is the symplectic manifold R×R2n−1

st with symplectic
form d(et(dz − y · dx)), where t is a coordinate on the additional R-factor. The symplectization
then contains the Lagrangian cone R× Λ on Λ.

Consider embeddings of half of the symplectization into R2n of the following form:

ψa : [0,∞)× R2n−1
st → R2n

st ∩ {x1 > 1},
ψa(t, x, y, z) = (et, z, x, ety) + (a, 0, 0, 0), a > 0.

Note that the image of [0,∞)× Λ is a Lagrangian cylinder in {x1 > a}. (Here {x1 = a} is a
contact hypersurface and the Lagrangian cylinder lies in the corresponding cylindrical end.)

We will consider Lagrangian disks in R2n with Legendrian boundary, which we define as
Lagrangian embeddings of Rn that agree with a Lagrangian cylinder on a Legendrian sphere
outside any disk of sufficiently large radius.

More precisely, let λ : Sn−1
→ R2n−1 be a Legendrian embedding. Let g : Rn → R2n be

a Lagrangian embedding and let (r, ξ) ∈ [0,∞) × Sn−1 be polar coordinates on Rn. If there
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exists r0 > 0 and a > 0 such that

g(r, ξ) = ψa(log(r/r0), λ(ξ)) for r > r0,

then g is a Lagrangian disk with Legendrian boundary Λ = λ(Sn−1).

Remark 2.1. Lagrangian disks which agree with a cotangent fiber in R2n ≈ T ∗Rn can be isotoped
to Lagrangian disks with Legendrian boundary as defined above. The Legendrian boundary of
such a Lagrangian disk is the standard Legendrian unknot.

Let L = g(Rn) be a Lagrangian disk with Legendrian boundary such that g(Rn)∩T ∗
SkRn = ∅.

Let h(r) = r/r0 + a. Then for, r1 > 0 sufficiently large, pr ◦g|{r6r1} gives a map from a disk D

into Rn\Sk such that D maps into {x1 6 h(r1)}, and ∂D = {r = r1} maps to {x1 = h(r1)}.
Furthermore, there exists a constant K > 0, depending on the Legendrian boundary of L such
that if r1 is sufficiently large then pr(g(D)) lies inside the radius K · h(r1) ball BK·h(r1) around
the origin in Rn. In particular, we get a map

fL,r1 : Sn = D/∂D
pr ◦g // (BK·h(r1)\Sk)/({x1 > h(r1)} ∪ ∂BK·h(r1)) ' Sn−k−1.

It is clear that there exists r1 > 0 such that the homotopy class of fL,r is independent of r for all
r > r1. We write [fL] ∈ πn(Sn−k−1) for this homotopy class. This agrees with the corresponding
homotopy class discussed in § 1.

2.2 Half rotations and suspension
Consider a Lagrangian disk L with Legendrian boundary Λ in R2n

st as above. We will construct
from L a Legendrian submanifold Γ(L) ⊂ R2n+1

st , which can be thought of as a double of L and
which bounds a Lagrangian disk C(L) in R2n+2

st .
We construct Γ(L) by defining its front. Recall that if Σ is a Legendrian submanifold of

J1(Rn) = T ∗Rn×R then the front of Σ is the 0-jet projection fΣ = pr0 : Σ → J0(Rn) = Rn×R.
Furthermore, if Σ is in general position with respect to this projection then fΣ determines Σ
as follows. Let prb : Rn × R → Rn denote the base projection. A generic point in the image
of prb ◦fΣ has a neighborhood U such that pr−1

b (U) ∩ fΣ(Σ) is the graph of a finite number of
local functions fj : U → R. The fiber coordinates y = (y1, . . . , yn) are then determined over U by
the equations yj = ∂fj/∂xj , and the genericity condition ensures that these solutions continue
over the singular locus (which has codimension one). Similarly, we define the front of an exact
Lagrangian submanifold L ⊂ R2n by picking a Legendrian lift into R2n×R and taking the front
projection into Rn×R of that lift. If L is connected then its front is well defined up to an overall
R-translation.

We now turn to the actual construction, see Figure 1. Consider the front gL of L∩{x1 6 a},
for some a > 0 sufficiently large that L is a cone on its Legendrian boundary in the region
{x1 > a− 1}. Translating L by −a in the x1-direction we get a front g′L lying over the half-space
(−∞,−1]× Rn−1 × R. If

fΛ : Sn−1
→ Rn−1 × R, fΛ = (f bΛ, zΛ)

is the front for the Legendrian boundary Λ, then for −2 6 x1 6−1 the front g′L on Sn−1×[−2,−1]
is given by

g′L(ξ, r) = (r, f bΛ(ξ), ψ(r)zΛ(ξ)),
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Figure 1. The fronts of: L (top), Γ(L) (middle) and C(L) (bottom).

for a monotone increasing positive function ψ. Denote the Lagrangian disk in {x1 6 −1} ⊂ R2n

defined by the front g′L by L−.
The Lagrangian disk L− constitutes almost half of the Lagrangian projection of Γ(L). We

next define the other half L+:

L+ = T (L−),

where T : R2n
→ R2n is the composition of reflections in the hyperplanes {x1 = 0} and {y1 = 0}.

The front of L+ is then given by the function g′′L on Sn−1 × [1, 2], where

g′′L(ξ, r) = (r, f bΛ(ξ), ψ(−r)zΛ(ξ)).

With L− and L+ defined we can now define the front of Γ(L) in Rn × R as follows.

(i) Over {x1 6 −1} it agrees with the front of L−.

(ii) Over {x1 > 1} it agrees with the front of L+.

(iii) In the region {−2 6 x1 6 2} the front is given by

gL(ξ, r) = (r, f bΛ(ξ), φ(r)zΛ(ξ)),

where φ : [−2, 2] → R is a Morse function with a maximum at r = 0 and no other critical
points, and such that φ(r) = ψ(r) for −2 < r < −1, φ(r) = ψ(−r) for 1 < r < 2.

By construction, Γ(L) is a Legendrian submanifold of R2n+1, whose Reeb chords all lie
in the slice {x1 = 0 = y1}, where they agree with the Reeb chords of Λ. (There are no
Reeb chords of Γ(L) outside the slice since the Lagrangian disk L, which is the projection
along the Reeb direction, is embedded.) If c is a Reeb chord of Λ then we denote by ĉ the
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corresponding Reeb chord of Γ(L). It follows from the ‘front formula’ for Maslov grading [EES05,

Lemma 3.4] that the gradings of the two Reeb chords are related by

|ĉ| = |c|+ 1.

We next construct a Lagrangian disk C(L) ⊂ R2n+2
st with Legendrian boundary Γ(L), see

Figure 1. Again we construct it by defining its front. Consider the ‘left’ half of the front of Γ(L),

gL : Dn
→ Rn+ × R, which lies over the half-plane {x1 6 0}. Then gL takes the boundary ∂D to

the front of Λ in 0× Rn−1 × R.

Consider now Rn+1, with coordinates (x1, x2, . . . , xn, xn+1), as an open book with binding

Rn−1 corresponding to the last n − 1 coordinates and with page Rn+ with coordinates (r cos θ,

r sin θ, x3, . . . , xn+1), r > 0. Define the immersed Lagrangian disk C ′(L) to be that defined by

the front which lies over the pages with positive x2-coordinate (i.e., 0 6 θ 6 π) and which in

each such page agrees with the front gL. Then C ′(L) is an immersed Lagrangian, all of whose

double points lie in the binding, these double points corresponding exactly to the Reeb chords

of Λ. For small ε > 0, the part of the front of C ′(L) which lies over {x2 > ε} defines an embedded

Lagrangian disk, which near the boundary looks like a cone on the Legendrian sphere Γ(L).

After small deformation of the front we may then add a half-infinite cone on the front of Γ(L)

to obtain a Lagrangian disk with Legendrian boundary in the sense defined before. This is our

desired Lagrangian disk C(L).

Lemma 2.2. Let L be a Lagrangian disk with Legendrian boundary Λ in R2n. Assume that

L is disjoint from T ∗Rn|Sk . Then one can construct the Lagrangian disk C(L) ⊂ R2n+2, with

boundary Γ(L), so that C(L) is disjoint from T ∗Rn+1|Sk .

Proof. Take Sk ⊂ Rn+1 to lie in an Rn+-page of the open book decomposition of Rn+1 used in the

construction of C(L). It then follows immediately from the construction that C(L) is disjoint

from T ∗Rn+1|Sk . 2

Recall that in this situation, we associated maps fL : Sn → Sn−k−1 and fC(L) : Sn+1
→ Sn−k

to L and to C(L), respectively.

Lemma 2.3. The map fC(L) : Sn+1
→ Sn−k is homotopic to the suspension of the map fL : Sn →

Sn−k−1 associated to L, i.e. fC(L) ' ΣfL.

Proof. To see this we use the Pontryagin–Thom construction. The preimage of a point in

Sn−k−1 under fL corresponds to the intersection of L and T ∗` Rn, where ` is a half-infinite line

perpendicular to Sk ⊂ Rn. For generic ` this intersection is an orientable (k+1)-manifold, framed

by a basis of the tangent space to the space of half-lines perpendicular to Sk at the base point

of `.

Similarly, the preimage of a point under fC(L) is given by the intersection of C(L) and a

ray `, which we can take to be the same ray as before. If we assume the ray ` lies in a page, then

it follows that the preimage is the same as that for fL but the normal framing is extended by

the constant vector field ∂θ (where θ is a co-ordinate in the parameter space of the pages of the

open book). Such a constant stabilization of the normal framing is exactly what happens with

preimages of submanifolds of a sphere under suspension of maps. The lemma follows. 2
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3. Floer-holomorphic disks on immersed Lagrangian spheres

A main ingredient in the proofs of all our results is the moduli space of Floer holomorphic disks
with boundary on an immersed Lagrangian sphere in R2n

st . This space was studied in detail in
[ES14]. In this section we recollect and extend these results. We assume n > 3 unless explicitly
stated otherwise.

3.1 Lagrangian sphere immersions
Let φ : Sn → R2n

st be a Lagrangian immersion. The tangential Gauss map takes any point p ∈ Sn
to the Lagrangian tangent plane dφ(TpS

n) and thus defines a mapGφ : Sn → U(n)/O(n) → U/O,
where U(n)/O(n) is the Lagrangian Grassmannian of Lagrangian n-planes in R2n

st , and the map
to U/O is given by stabilization. After small perturbation φ is self-transverse and hence has only
transverse double points and no other self intersections. If a is a transverse double point of φ
then there is an integer Maslov grading |a| associated to a, see [ES14].

The standard example of a Lagrangian sphere immersion is the Whitney sphere, defined as
follows. Equip R2n

st with the standard complex structure i and view it as complex n-space Cn
with coordinates x+ iy ∈ Rn + iRn. Consider Sn as the unit sphere in Rn+1:

Sn = {(x, y1) ∈ Rn × R : |x|2 + y2
1 = 1}.

The Whitney immersion is the map w : Sn → Cn given by

w(x, y) = x(1 + iy1). (3.1)

Then w has one self-transverse double point c with preimages at (0,±1) and no other singularities.
The Maslov grading of the double point is |c| = n.

We will assume throughout this section that φ : Sn → R2n
st is a self transverse real analytic

Lagrangian immersion with exactly one double point a of Maslov grading |a| = n. We say that
φ is tangentially standard if its stable tangential Gauss map Gφ is homotopic to the stable
tangential Gauss map Gw of the Whitney immersion.

Fix a primitive θ of the symplectic form, dθ = ωst. The immersed sphere φ : Sn → R2n
st has a

Legendrian lift φ× z : Sn → R2n
st ×R, where the contact form on R2n

st ×R is dz− θ, defined with
respect to a choice z : Sn → R of function satisfying φ∗θ = dz. In the case under consideration
φ has a single double point and φ× z is an embedding. We can then distinguish between small
disjoint disk neighborhoods V ± of the two preimages of the double point of φ(Sn), by declaring
that V + lives in the upper sheet and V − in the lower sheet of the image of φ× z.

3.2 Moduli spaces from displacing Hamiltonians
Fix an almost complex structure J on R2n

st which is standard in a sufficiently small neighborhood
of φ(Sn). Let H = Ht : R2n

→ R be a time dependent Hamiltonian function with associated
Hamiltonian vector field XHt and time-one flow ψ1

H . We suppose that ψ1
H(φ(Sn))∩φ(Sn) = ∅. As

in [ES16, § 3.1, (3.3)] we fix a one-parameter family of 1-forms γr ∈ Ω1(D) on the two-dimensional
closed disk D, with r ∈ [0,∞), such that γ0 ≡ 0, and such that with respect to a fixed conformal
isomorphism D\{±1} → R × [0, 1], and with co-ordinates (s, t) ∈ R × [0, 1], γr has compact
support and for r � 0 agrees with dt on [−r, r]× [0, 1].

Consider the Floer equation for maps u : (D, ∂D) → (R2n
st , φ(Sn)), such that u|∂D admits a

continuous lift to Sn,

(du+ γr ⊗XH)0,1 = 0, (3.2)
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where the complex anti-linear part is taken with respect to J and the standard complex structure
on D, and where XH = XH(u(z), t(z)) for the function t : D → [0, 1] defined by the second
co-ordinate in our fixed conformal equivalence D − {±1}→ R × [0, 1]. For fixed r ∈ [0,∞), we
write Fr for the space of solutions of (3.2) and we write

F =
⋃

r∈[0,∞)

Fr

for the corresponding parameterized moduli space.

Lemma 3.1. The space Fr has formal dimension n; F has formal dimension n+ 1. For generic
data the formal dimension equals the actual dimension, and F has boundary

∂F = F0 ≈C1 Sn.

Proof. The dimension formula is a consequence of the index n + µ of the Riemann–Hilbert
problem in Cn for a Lagrangian boundary condition of Maslov index µ, and the fact that the
Maslov index of Sn is zero. The transversality result is [ES14, Lemma 3.4]. When r = 0 there is
no Hamiltonian term, the Floer equation reduces to the unperturbed Cauchy–Riemann equation,
and F0 consists of constant solutions by exactness. 2

In order to describe the compactification of F , consider spaces Frj of solutions u of the Floer
equation (3.2) with j negative boundary punctures, where the disk is asymptotic to the unique
double point of φ(Sn). More precisely, the source of such a map is the disk D with j boundary
punctures ζ1, . . . , ζj . Consider a punctured arc Ij in ∂D centered around ζj and note that it
is subdivided into two components I−j and I+

j in the negative and positive direction along the

boundary from ζj . We require that for any sufficiently small Ij , u(I−j ) lies in the upper branch

V + of the double point and u(I+
j ) in the lower branch V −. The following results were proved in

[ES14, Lemma 3.4].

Lemma 3.2. The formal dimensions of Frj and Fj are

n− j(n− 1) and n− j(n− 1) + 1,

respectively. For generic data these spaces are all transversely cut out. In particular, F1 is a
closed one-dimensional manifold and Fj is empty for j > 1.

Similarly, we consider the moduli spaceM of unperturbed holomorphic disks with boundary
on φ(Sn) and one positive puncture at the double point. The following result is proved in [ES14,
Lemma 3.5].

Lemma 3.3. The formal dimension of M is n − 1 and for generic data the moduli space is
transversely cut out. Furthermore, M is a closed C1-manifold.

The moduli space M is a space of holomorphic maps modulo automorphisms, and the
construction of the smooth structure above relies on a gauge-fixing procedure described in detail
in [ES14, Appendix A.2]; the gauge-fixing involves fixing parameterizations of maps inM so that
±i map to small spheres centered on the preimages of the double point. We will not distinguish
notationally betweenM and the corresponding space of maps after gauge-fixing; in particular, in
the sequel we will make use of an evaluation mapM×D → Cn, where D denotes the source-disk
for maps in the gauge-fixed moduli space corresponding to M.
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3.3 The Gromov–Floer compactification

The space F is non-compact; it has one boundary component F0 which is diffeomorphic to the

sphere Sn parameterizing constant solutions. It can be compactified to a C1-smooth compact

manifold with boundary by adding broken solutions.

Lemma 3.4. For generic J and H, the product

N = F1 ×M

is a C1-smooth n-manifold, canonically diffeomorphic to the Gromov–Floer boundary of F .

Proof. This is proved in [ES14, Lemma 3.6]. Note that other broken configurations are ruled out

because, for generic data, Fj = ∅ for j > 1 (this relies on our standing assumption n > 3). 2

[ES14, Theorem 5.21] constructs a Floer gluing map on N × [ρ0,∞) which, when composed

with a map reparameterizing the domain, gives a smooth embedding

Ψ: N × [ρ0,∞) → F (3.3)

whose image parameterizes a neighborhood of the Gromov–Floer boundary of F . (The effect of

the re-parameterization, discussed further below, is that the holomorphic disk part of the glued

map, coming from M, lies in a small half-disk around the puncture of the domain of the map

from F1.) It follows that

F = F\Ψ(N × (ρ0,∞))

is a smooth compact submanifold of F with boundary

∂F ≈C1 Sn ∪N ,

where the diffeomorphism on the first component is given by inclusion of constant maps (with

a lift of the map to the domain of the immersion φ), and the diffeomorphism on N is given by

the reparameterized gluing map Ψ.

Recall that F1 is a closed 1-manifold. As in [ES14, § 4] consider next the abstract filling

T = D ×M

of N , where D is a collection of disks filling F1. We let B = F ∪N T , which is a C1-smooth

compact (n + 1)-dimensional manifold with boundary, whose unique boundary component is

canonically diffeomorphic to Sn.

Proposition 3.5. If φ is tangentially standard then B is parallelizable.

Proof. Since B is a manifold with boundary, it suffices to prove that it is stably parallelizable.

This is [ES14, Theorem 1.1]. 2

With no assumption on the stable Gauss map of φ we have the following weaker result.

Proposition 3.6. If n > 3, the manifold B is spin.
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Proof. The tangent bundle TF of F is the restriction of the index bundle for the linearized
Cauchy–Riemann equation. This index bundle is pulled back from the space of linearized
boundary conditions over the free loop space of the sphere Sn. The loop space is (n−2)-connected,
hence TF is trivial over the 2-skeleton since n > 3, which means F is spin.

The manifold B is constructed from F by gluing D ×M along F1 ×M. Consider a circle
component S ⊂ F1 and the corresponding filling D×M, and let m ∈M. The spin structure on
F admits an extension over D×M provided that the induced spin structure on S × {m} is the
bounding spin structure (i.e. the spin nullcobordant spin structure, which in particular extends
over a disk). Now, either S×{m} bounds in F , in which case the induced spin structure bounds,
or it does not. In the latter case, we alter the spin structure on F by the element in H1(F ;Z/2Z)
corresponding to S × {m}, and then it does bound. The result follows. 2

Remark 3.7. Arguing as in the proof of Proposition 3.6 we find that if γ ⊂ B is a loop, we can
choose a spin structure on B that induces the nullcobordant framing on γ. Similarly, in the
setting of Proposition 3.5, we can choose a stable trivialization so that the induced framing on
γ is nullcobordant. Indeed, the framing of B is obtained from choices of stable framings of index
bundles over configuration spaces containing F , F1 and M, and in the construction one sees
that one can choose the stable framing on the 1-skeleton arbitrarily subject to the fact that it
bounds on 1-cells lying in F1. Compare to [ES16, § 3.7] and [ES14, Lemma 4.9].

3.4 Extending the evaluation map
From the Lagrangian immersion φ : Sn → R2n

st we have constructed a bounding manifold B,
∂B = Sn. The subspace F ⊂ B is a space of Floer holomorphic disks with boundary that lift via
φ to Sn, and hence there is a canonical evaluation map ev1 : F → Sn. This evaluation map cannot
extend to B as a map to Sn, because the map has degree 1 on the boundary ∂B. However, it can
be extended over the filling T as a map to R2n. We prove our results on homotopy classes using
a particular such extension coming from the holomorphic disk components of broken solutions.

Consider first the 1-manifold F1. Let ∂D denote the boundary of the source disk D of the
maps in F1. There is a smooth map

ζ : F1 → ∂D

taking a solution u ∈ F1 to the coordinate of its negative boundary puncture. After a small
rotation of the domain we may assume that ζ is transverse to 1 ∈ ∂D. Fix a small closed interval
I ⊂ ∂D centered at 1, and let

ζ−1(I) = I1 ∪ · · · ∪ Im,

where Ij are the components of the preimage and where I is sufficiently small that the restriction
of ζ to each Ij is a diffeomorphism onto I. We subdivide N = F1 ×M into m+ 1 pieces:

N =
m⋃
j=1

(Ij ×M) ∪ (U ×M),

where U = F1\
⋃m
j=1 Ij . Recall F1 = ∂D for an abstract collection of 2-disks D. Let Dj ⊂ D

denote a small half-disk neighborhood of the center of Ij that intersects the boundary in Ij .
Recall the neighborhoods V ± of the preimages of the double point introduced in § 3.1.

Lemma 3.8. Let σj ∈ {±} be the sign of the derivative dζ in Ij and let ∂+Ij and ∂−Ij denote
the positive and negative endpoints of Ij . For I small enough

ev1(∂−Ij) ⊂ V σj and ev1(∂+Ij) ⊂ V −σj .
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Proof. This holds since, with respect to the orientation on ∂D induced by the complex orientation
on D, points in ∂D just before the puncture map to V +, whilst points right after the puncture
map to V −. 2

We extend the evaluation map ev1 from F to B in two stages. The conditions of the
following lemma will arise naturally in the setting of Theorem 1.1, but can always be achieved by
appropriate scaling and translation. Let (x, y) = (x1, y1, . . . , xn, yn) be standard coordinates on
R2n. Let L ⊂ R2n be a Lagrangian disk with Legendrian boundary Λ, and suppose that L agrees
with the cone on Λ in the half-space {x1 6 −ε}. (Note that here we are conical in a region lying
over the negative, rather than the positive, x1-axis; this differs from the convention at the start
of § 2.1, but fits with the construction of the Legendrian double Γ(L) in § 2.2, which involves
translation of the front.) Assume that Λ has a single Reeb chord, which has grading (n − 1).
We construct the Legendrian double Γ(L) of L, in the sense of § 2.2, in such a way that: (i) L+

lies in {x1 > −τ}, and agrees with the front of L in that region; (ii) its reflection L− lies in
{x1 6 −τ − 2ε}; and (iii) the cylindrical piece which joins the two lies in {−2ε− τ 6 x1 6 −τ}.
Let φ : Sn → R2n be the Lagrangian immersion obtained by projecting Γ(L) along the z-axis.
Then φ has one transverse double point, corresponding to the unique Reeb chord of Λ; the double
point has grading n and lies in the slice {x1 = −τ − ε}.

As mentioned briefly above, the map

Ψ: F1 ×M× [ρ0, ρ1] → F

that gives the collar neighborhood on the boundary is constructed by first pre-gluing the disks
in F1 and M, then applying Floer–Picard iteration to obtain an actual solution, and finally
composing the result with a reparameterization of the domain so that the holomorphic disk part
lies in a small half-disk of size O(e−ρ) close to the boundary puncture of the disk in F1. In this
construction, we use an explicit gauge-fixing procedure for the holomorphic maps in M. The
(pre-)gluing map in fact takes as input an element in this gauge-fixed space of smooth maps, see
[ES14, Appendix A.9].

For (u, v, ρ) ∈ F1 × M × [ρ0, ρ1], let Ψ′(u, v, ρ) be the ‘naive’ version of Ψ(u, v, ρ) in
which we do not apply Floer–Picard iteration: Ψ′(u, v, ρ) is constructed only by pregluing and
reparameterization. The distance between the starting point for Floer–Picard iteration and the
actual solution resulting from iteration is estimated in [ES14, (5.10)]. In the current setting this
implies that, by taking ρ0 sufficiently large, we can make Ψ(u, v, ρ) and Ψ′(u, v, ρ) arbitrarily
C1-close for all (u, v, ρ) ∈ F1 ×M× [ρ0, ρ1].

Lemma 3.9. For φ : Sn → R2n a Lagrangian immersion with one double point of Maslov
grading n, constructed from a Lagrangian disk L as above, there is an extension of ev1 over
(D\

⋃m
j=1Dj)×M with image contained in φ(Sn) ∪ {x1 6 −τ}.

Proof. As indicated at the start of the section, we aim to construct an extension of ev1 using
holomorphic disk components of broken curves (whose evaluation image we will be able to control,
in contrast to that of disks in F1, say). At this stage, the key requirement will be to construct
the first step of the extension so as to have image in φ(Sn) ∪ {x1 6 −τ}.

For glued maps w : D → R2n, where w = u#v = Ψ(u, v, ρ) for (u, v) ∈ U ×M ⊂ F1 ×M,
the boundary point 1 ∈ ∂D at which we evaluate when defining ev1, ev1(w) = w(1), lies in the
part of the domain D of the glued map that comes from its component u in the factor F1. Since
the glued and pre-glued maps are arbitrarily close, this means that ev1(w) = w(1) is arbitrarily
close to u(1), see Figure 2.
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Figure 2. Top: the evaluation point 1 is far from the glued in holomorphic disk v, as
in Lemma 3.9. Middle: the glued in holomorphic disk passes the evaluation point 1, as in
Lemma 3.10. Bottom: the passage as viewed from the holomorphic disk, where the evaluation
point sweeps the whole boundary.

Consequently, by Lemma 3.8, if w± = u±#v for (u±, v) ∈ ∂±Ij ×M, we can connect the

two points ev1(w±) ∈ V ±σ to ev1(w∓) ∈ V ∓σ by a short straight line segment in R2n near

the double point. This gives an extension of the evaluation map to ∂(D\
⋃m
j=1Dj) ×M, where

we map ∂(Dj\Ij)×M to the line segments above.

The union of φ(Sn) and a small ball B in R2n around its double point is homotopy equivalent

to the space obtained from Sn by attaching a 1-cell e with one endpoint in V + and the other in

V −. The fundamental group of this space is generated by a loop γ ∪ e, where γ is a path in Sn

connecting the endpoints of e. We take γ to lie in the part of Sn mapped by φ to {x1 6 −τ − ε}
and think of e as a short path in B. Then it is clear that {x1 6 −τ} contains a 2-cell bounding

γ∪e, which means that we can find the desired extension. To see this note that ev1 of the preglued

map corresponding to u#v ∈ ∂(D\
⋃m
j=1Dj) ×M is independent of v. We then first homotope

the image of ev, in φ(Sn)∪B, into γ∪e and then extend over the two cell (D\
⋃m
j=1Dj)×M. The

actual glued map is arbitrarily close to the preglued one, and existence of the desired extension

follows. 2

Assume that an extension ẽv1 over (D\
⋃m
j=1Dj)×M as constructed in Lemma 3.9 has been

fixed. Note that for this extension ẽv1(∂(D\
⋃m
j=1Dj)×M) maps into a small neighborhood of

the double point. We use the holomorphic disks which are parameterized by M to extend the

map to the remainder of the filling T = D ×M.
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Lemma 3.10. For sufficiently large ρ0, there exists a further extension of ev1 to all of D ×M
such that the image of each subspace Dj ×M lies in an arbitrarily small neighborhood of the
total evaluation map

ev : D ×M −→ R2n, (z, u) 7→ u(z),

where D denotes the source disk for maps in (the gauge-fixed model of) M.

Proof. Fix Ij . As the location of the glued-in holomorphic disk sweeps Ij , the location of the
boundary point 1 on the glued domain sweeps the boundary of the once punctured source disk
of maps in M. More formally, a glued disk w = u#v is close to breaking, which means that the
restriction of w to a small half-disk around the point in ∂D where u has a negative puncture is
arbitrarily close to v for sufficiently large gluing parameter. This means that as the puncture of
u moves through the interval Ij around 1, the evaluation map ev1(u#v) is arbitrarily close to
the evaluation map v|∂D, see Figure 2.

As mentioned above, by construction of the map over ẽv1, its image ẽv1(∂(D\
⋃m
j=1Dj)×M)

is approximately constant and lies in a small ball around the double point of φ. Contracting this
ball to the double point (and the maps into it to constants), we may identify the products,

Dj ×M and D ×M,

in such a way that the map ev1 |Ij×M corresponds to the evaluation along the boundary ∂D. We
then naturally extend the map over Dj as the evaluation map over D under this identification.
The lemma follows. 2

4. Homotopy rigidity for Lagrangian disks

In this section we prove Theorem 1.1 and Corollary 1.2 in two steps. We first compactify
the Lagrangian disk L with Legendrian boundary Λ to an immersed Lagrangian sphere, the
Lagrangian projection of Γ(L), with double points in natural 1-1 correspondence with Reeb
chords of Λ. Then we apply the results of § 3 for a specific almost complex structure on R2n

st .

4.1 Compactification
Let (x1, y1, . . . , xn, yn) be coordinates on T ∗Rn and let x ∈ Rn. Let L be a Lagrangian disk
agreeing with the fiber T ∗xRn outside a compact set. We will first show how to change L in a
neighborhood of infinity to obtain a Lagrangian disk with Legendrian boundary in the sense of
§ 2.1. The Legendrian boundary will in fact be the standard Legendrian unknot.

To this end, we consider a Lagrangian disk D ⊂ R2n = T ∗Rn with Legendrian boundary the
standard Legendrian unknot, and such that D intersects the zero-section in one point and agrees
with the fiber at that point in a neighborhood of this intersection point. In agreement with the
conventions used after Lemma 3.8, we assume that D is a cone over a Legendrian unknot over
the negative x1-axis. Consider scaling the fiber coordinates in T ∗Rn by λ > 0. By choosing λ
sufficiently large we make the intersection of D with an arbitrarily large ball agree with the fiber
at the intersection point. Removing the intersection with the ball and inserting the corresponding
part of L, we get the desired Lagrangian disk with Legendrian boundary equal to the standard
unknot. This disk agrees with L in a ball, and is a cylinder over a Legendrian unknot in the
region {x1 6 −τ} for sufficiently large τ > 0.

Let Sk ⊂ Rn\{x} be a point if k = 0, or a k-sphere in Rn if 1 6 k < n − 1, as in § 1. By
a small homotopy, it will be convenient to normalize choices as follows (cf. the discussion after
Lemma 3.8). We take x = 0 to be the origin, and we assume that Sk ⊂ {x1 = ε} lies in an affine
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hyperplane (so in particular x = 0 does not lie in the convex hull of Sk), for some small ε > 0.
We have a Lagrangian disk L that agrees with the fiber T ∗0 Rn over 0 outside a compact set,
and which is disjoint from T ∗Sk

Rn. We alter L as above, inserting a cone on the unknot over the
negative x1-axis, to obtain a Lagrangian disk with Legendrian boundary in the sense of § 2.1.

Consider now the Lagrangian projection of the Legendrian sphere Γ(L) ⊂ R2n × R, as
constructed in § 2.2. If we view the standard Legendrian unknot as living in the contact
hypersurface {x1 = −τ + τ0}, then Γ(L) agrees with the cone over that unknot in the region
{−τ 6 x1 6 −τ + τ0}, for some large τ > τ0 > 0. Furthermore, since L has Legendrian boundary
the standard unknot, Γ(L) has exactly one Reeb chord, which has grading n. The corresponding
double point of its projection lies in {x1 = −τ − ε}, where we form Γ(L) by the doubling
construction centered at {x1 = −τ − ε}. Denote the resulting Lagrangian sphere immersion with
one double point by φ : Sn → R2n.

Lemma 4.1. The map pr ◦φ defines a map Sn → Sn\Sk whose homotopy class agrees with the
class [fL].

Proof. This follows for the same reasons as in the discussion at the end of § 2.1. We have arranged
that the map φ, when restricted to the disk Γ(L) ∩ {x1 6 −τ}, maps outside a large sphere
containing Sk. (Note that although Γ(L) is constructed by a doubling procedure, there is no
doubling of the locus Sk, so the homotopy class reproduces [fL] and not twice that class.) 2

4.2 Degenerating the almost complex structure
We continue in the setting of § 4.1. The map φ : Sn → R2n

st satisfies the conditions from the
start of § 3.1, so we have the moduli spaces of Floer-holomorphic and holomorphic disks as
before. Bearing in mind Lemma 3.9, the evaluation map ev1 : F1 → φ(Sn) ⊂ R2n admits an
extension over (D\

⋃
j Dj) ×M with image inside the half-space {x1 6 −τ}, which is disjoint

from pr−1(Sk) = (T ∗Rn)|Sk
. To construct the desired extension of the evaluation map to all of

B with image outside (T ∗Rn)|Sk
, in light of Lemma 3.10, it suffices to prove that for a suitable

almost complex structure J on T ∗Rn, the image of the total evaluation ev : D ×M→ T ∗Rn is
completely disjoint from the submanifold pr−1(Sk) ⊂ T ∗Rn.

To that end, we consider a family of almost complex structures associated to the limit in
which the fibres of pr : T ∗Rn → Rn are shrunk to zero volume. Let β ∈ π2(T ∗Rn, φ(Sn)) denote
the generator of positive area, so for any taming almost complex structure J , the holomorphic
discs in M have relative homotopy class β and area A(φ) =

∫
β ωst.

Lemma 4.2. Suppose J tames ωst. Let ηλ : T ∗Rn → T ∗Rn denote the map ηλ(x, y) = (x, λy).
Then the area of any once punctured J-holomorphic disk with boundary on ηλ(φ(Sn)) equals
A(ηλ ◦ φ) = λA(φ). In particular there exists λ0 > 0 such that for any 0 < λ < λ0 any
J-holomorphic disk with one positive puncture and boundary on ηλ ◦φ is disjoint from pr−1(Sk).

Proof. The area scaling is immediate. The second result follows from monotonicity for
holomorphic disks. The boundary of the disk lies at finite distance > ε/100 from pr−1(Sk).
Hence if the disk passes through a point in Sk it has area bounded below by Cε2, for some
constant C > 0 related to the taming condition. Take λ0 < Cε/A(φ). 2

Equivalently, one can fix the Lagrangian immersion φ(Sn), and consider the almost complex
structures Jλ = η∗λ(J). Let λ0 be as in Lemma 4.2 and write Mλ for the moduli space of
Jλ-holomorphic disks with one positive puncture and boundary on φ(Sn).

699

https://doi.org/10.1112/S0010437X17007692 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007692


T. Ekholm and I. Smith

Corollary 4.3. For 0 < λ < λ0, the image of the evaluation map ev : D ×Mλ → T ∗Rn is
disjoint from pr−1(Sk).

Proof. This follows from Lemma 4.2 on observing that if u is a Jλ-holomorphic disk with
boundary on φ(Sn) then ηλ ◦ u is a J-holomorphic disk with boundary on ηλ ◦ φ(Sn). 2

Remark 4.4. A more vivid route to proving Corollary 4.3 is to recall the correspondence, for
t � 0 sufficiently small, between Jt-holomorphic discs with boundary on the exact Lagrangian
immersion φ(Sn), and Morse flow trees for the corresponding Lagrangian front Λ = pr ◦φ(Sn).
By hypothesis, Sk ⊂ Rn\Λ, which means that there are no sheets of the Lagrangian φ(Sn) lying
over Sk. In particular, no Morse flow-tree for the Lagrangian can approach Sk, which is just the
conclusion of the preceding corollary.

4.3 Proofs of the local results
4.3.1 Proof of Theorem 1.1. Lemma 4.1 shows that fL : Sn → Rn\{0} is homotopic to the

composition pr ◦φ where pr : T ∗Rn → Rn is the bundle projection, and where the Lagrangian
immersion φ : Sn → T ∗Rn with one double point was constructed in § 4.1. Proposition 3.6 then
gives a spin (n+ 1)-manifold B such that ∂B = Sn (compare to the proof of Corollary 1.2 where
we use that B is parallelizable) and Lemma 3.10 gives an extension of the map ev1 = φ on Sn to
a map ev1 : B → T ∗Rn\T ∗0 Rn. Composing with the projection pr we find that pr ◦φ extends
to pr ◦ ev1 : B → Rn\{0}. Consider now the preimage C` = (pr ◦φ)−1(`) of a ray ` ≈ [0,∞)
emanating at 0 ∈ Rn which is transverse to pr ◦φ. Then C` is a closed 1-manifold, and the
tangent space of the sphere of rays at ` gives a normal framing of C`. Similarly, let F` ⊂ B
denote the oriented surface which is the preimage (pr ◦ ev1)−1(`) of `, similarly equipped with a
normal framing.

Let ξSn denote the unique spin structure on Sn. We view ξSn as a class in H1(SO′(Sn)),
where SO′(Sn) denotes the bundle of oriented frames on the stabilized tangent bundle TSn⊕R.
Similarly, we view the spin structure on B as an element ξB ∈ H1(SO(B)), where SO(B) denotes
the frame bundle of B. Note that ξSn is the restriction of ξB to the boundary Sn.

Given a normal framing ν of a circle γ in Sn ⊂ B we equip it with a full framing of TB|γ by
adding a framing τ in the two remaining directions which rotates once compared to the framing
given by the tangent vector of S1 followed by the constant vector in R. Let ~γ denote the curve γ
lifted to SO′(Sn) by the framing (τ, ν). An explicit calculation shows that ν is the null cobordant
framing if and only if

〈ξSn , ~γ〉 = 0.

For the link C` it is elementary to check that the framing (τ, ν) extends to a framing of F`.
This means that ~C` bounds in SO(B). Hence

〈ξB, ~C`〉 = 〈ξSn , ~C`〉 = 0.

This shows that C` is framed nullcobordant, which by the Pontryagin–Thom construction finishes
the proof. 2

4.3.2 Proof of Corollary 1.2. The proof of Corollary 1.2 follows similar lines, but uses
triviality of the tangent bundle of the filling B beyond its spin structure.

Let L be the Lagrangian disk. The stable homotopy class of fL is the homotopy class
of the m-fold suspension ΣmfL for any sufficiently large m. By Lemma 2.3, this is also the
homotopy class of the map fCm(L) associated to the (n + m)-dimensional Lagrangian disk

700

https://doi.org/10.1112/S0010437X17007692 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007692


Nearby Lagrangian fibers and Whitney sphere links

Cm(L) = C(C(. . . C(L))). We point out that although the Legendrian boundary of Cm(L) might

not be the standard Legendrian unknot, it is a knot with only one Reeb chord, and that is

sufficient for the argument below to apply.

Picking m sufficiently large to be in the stable range, and also so that πn+m(U/O) vanishes

(e.g. n + m ≡ −1 mod 8), Proposition 3.5 gives a parallelizable manifold B with boundary

Sn+m and Lemma 3.10 gives an extension pr ◦ ev1 of the corresponding map φ : Sn+m
→

T ∗(Rn+m\Sk) to B. Consider the composition pr ◦φ followed by the inclusion Rn+m ⊂ Sn+m.

Let Γ ≈ Sn+m−k−1 ⊂ Rn+m\Sk be a fiber sphere in the unit normal bundle of Sk. Then

Sn+m\Sk ≈ Γ × Dk+1 is foliated by open (k + 1)-disks Dγ parameterized by γ ∈ Γ. For Dγ

transverse to pr ◦ ev1 : B→ Sn+m\Sk we find that

Mγ = (pr ◦ ev1)−1(Dγ) ⊂ Sn+m

is a framed submanifold that framed bounds the framed submanifold

Wγ = (pr ◦ ev1)−1(Dγ) ⊂ B.

The manifold B is a parallelizable (n+m+1)-manifold; the stability condition k < (n+m−3)/2

guarantees that we can perform framed surgery on B, along framed spheres in the interior and

disjoint from Wγ , to yield a parallelizable manifold B′ which is (k + 2)-connected. Fix a Morse

function on B′ with no critical points of index 6 k+2, and with gradient field pointing outwards

along the boundary. Via gradient flow, one can then isotope the (k + 2)-dimensional subset

Wγ ⊂ B′ into a collar neighborhood of the boundary of B′ (which is identified with a collar

neighborhood of the boundary of B), since for dimension reasons it will generically miss the

ascending manifolds of all critical points. By the Pontryagin–Thom construction the result again

follows. 2

Remark 4.5. In the borderline case {k = 0, n = 3}, the relevant homotopy group π3(S2) is not

stable, but Corollary 1.2 shows vanishing of the corresponding stabilized invariant. Concretely

this means that if L ⊂ T ∗(R3\{0}) is a Lagrangian disk which coincides with a fiber outside a

compact set, then [fL] ∈ π3(S2) ∼= Z is even.

Note that when n = 3 the moduli space F−2 has virtual dimension zero, cf. Lemma 3.2, so

the construction of the bounding manifold B does not go through directly in this case.

4.4 Quasi-isomorphism type

For a closed exact Lagrangian L ⊂ T ∗Q, it is known that L is isomorphic to the zero-section in

the Fukaya category. We point out that the hypotheses in Theorem 1.1 imply the analogous result

for the nearby Lagrangian fiber, though we know of no Floer-theoretic argument to constrain

the homotopy class fL.

Fix a coefficient field K. A Liouville like manifold (Y, ω = dθ) (see [EL17, Appendix B.3] for

a more detailed description of manifolds Y as considered below) then has a well-defined wrapped

Fukaya category W(Y ), an A∞-category over K, whose objects are exact spin Lagrangian

submanifolds which are either closed or are cylinders on Legendrian submanifolds of the ideal

boundary near infinity; see [AS10] for the construction.

Lemma 4.6. Suppose n > 3. In the situation of Theorem 1.1, L defines an object of the wrapped

Fukaya category W(T ∗(Rn\{0})) quasi-isomorphic to the cotangent fibre.

701

https://doi.org/10.1112/S0010437X17007692 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007692


T. Ekholm and I. Smith

Proof. We compactify the base Rn\{0} = Sn−1 × R to Sn−1 × S1, and we compactify the
distinguished fibre T ∗x by adding a handle to the Legendrian unknot at infinity. This yields
the plumbing X = T ∗(Sn−1 × S1)#∂T

∗Sn, which is naturally a Liouville domain with an exact
symplectic structure ω. The manifold X contains non-compact Lagrangian thimbles T ∗p and T ∗q ,
which are cotangent fibres to points p ∈ Sn−1 × S1 and q ∈ Sn, in both cases lying near infinity
(i.e. in the parts of the base added in the compactification). The Lagrangian disk L extends
to a Lagrangian sphere L′ in X, which meets the cotangent fibre T ∗q transversely once, and is
disjoint from the fibre T ∗p . Since n > 3, the results of [AS12] show that every compact Lagrangian
submanifold in X can be expressed as a twisted complex on the two core components, and then
the conditions

HF (L′, T ∗p ) = 0, HF (L′, T ∗q ) = K

imply that L′ is quasi-isomorphic in the wrapped (and hence compact) Fukaya category W(X)
to the core component Sn ⊂ X. Applying Viterbo functoriality [AS10], we infer that the original
Lagrangian L is quasi-isomorphic to the cotangent fibre of Rn\{0}. 2

5. Whitney spheres in the complement of a monotone Lagrangian

In this section we consider a more global version of Theorem 1.1, where we replace the fiber
T ∗0 Rn by a monotone submanifold C which is either closed or has ideal Legendrian boundary
Γ, and study the homotopy class of an immersed Lagrangian sphere S with one double point
in the complement of C. As in § 4.2, we will study the moduli space B for a specific almost
complex structure for which the holomorphic disks with boundary on S do not intersect C.
The appropriate almost complex structure is obtained from symplectic field theory, stretching
the boundary of a neighborhood of C. In the limit holomorphic curves then fall apart into
holomorphic buildings, and dimension estimates for the pieces yield sufficient conditions for
holomorphic disks on S to stay away from C.

Note that, for a general Lagrangian submanifold C, there is no global projection to a sphere
linking C, as existed in the special case for T ∗0 Rn considered previously, and hence we cannot
associate the linking homotopy class via such a projection. We refer to Appendix A.1 for a
general discussion of the topology of the complement of a Lagrangian submanifold in R2n. In
§§ 5.2 and 5.3 we give dimension formulae for holomorphic curves and then turn to a more
detailed study of the holomorphic buildings that arise. This leads to a proof of Theorem 1.3,
which occupies § 5.4.

5.1 Neck stretching around Lagrangian submanifolds
Let C be a closed Lagrangian submanifold of R2n

st . Then C has a neighborhood which is
symplectomorphic to a disk bundle neighborhood of the zero-section in T ∗C. We identify this
neighborhood with the union of two pieces: a collar region [0,−1) × U∗C, where U∗C denotes
the unit cotangent bundle equipped with the standard contact form and the product has the
symplectic form of the symplectization, together with a suitably scaled version of the unit disk
cotangent bundle D∗C glued in. Stretching the neck then corresponds to replacing the collar
region by [0,−T ) × U∗C for T → ∞. In the limit the manifold separates into two pieces, one
a completion of R2n

st \C with negative end U∗C, and the other symplectomorphic to T ∗C with
positive end U∗C.

Given instead a Lagrangian submanifold C with non-empty ideal Legendrian boundary Γ,
before stretching the neck around C we must adjust the Liouville structure, so the Liouville
vector field agrees with the Liouville field of the cotangent bundle of C near C. To accomplish

702

https://doi.org/10.1112/S0010437X17007692 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007692


Nearby Lagrangian fibers and Whitney sphere links

this we proceed as in [ENS17, § 6.1 and Figure 7]. Consider a large ball such that C intersects
its boundary sphere in Γ. We create the new Liouville structure by attaching D∗(Γ × [0,∞))
along Γ, where D∗Γ denotes a disk subbundle of the cotangent bundle T ∗Γ. One can interpolate
between the usual radial Liouville vector field on R2n

st and the field p ·∂p in the cotangent bundle
neighborhood to define a Liouville field for the new structure. This gives a Liouville-like manifold,
that we denote R2n

C , with non-compact contact boundary. Note that the Liouville-like manifolds
we consider look like ordinary Liouville manifolds except that they have additional ends where
they look like the standard fiberwise Liouville structure on the cotangent bundle T ∗(Γ× [0,∞))
where Γ is a closed (n− 1)-manifold. We refer to [EL17, Appendix B.3] for a discussion of such
domains. It still contains C as an embedded Lagrangian submanifold, and in R2n

C we can stretch
the neck around C just as in the closed case. The Maslov class of C is unaffected by the passage
from R2n

st to R2n
C , and in particular monotonicity of C is unaffected. For uniform notation, we let

R2n
C = R2n

st when C is closed.

Remark 5.1. Typically in SFT one stretches the neck around a closed contact (or stable
Hamiltonian) hypersurface. When C has non-empty ideal boundary, the contact boundary of
R2n
C is not compact, but monotonicity constrains all holomorphic curves we consider to live in a

compact set, where the contact hypersurface is geometrically bounded. This is sufficient for the
conclusions of [BEHWZ03] to apply.

5.2 Conley–Zehnder and Morse indices
Virtual dimensions of moduli spaces of punctured holomorphic curves are typically expressed
in terms of Conley–Zehnder indices of Reeb orbits. These may be canonically defined in the
unit cotangent bundle of an orientable manifold, but depend on additional choices in the non-
orientable case. In this section we explain our convention for such indices.

Let C ⊂ R2n
st be a Lagrangian submanifold. Fix a Riemannian metric on C. The Reeb orbits

on the unit cotangent bundle are the oriented closed geodesics for the metric. We will not
distinguish the geodesic from the Reeb orbit in our notation. In case C has Legendrian boundary
Γ we choose the metric in the cylindrical end [0,∞) × Γ to have the form ds2 = dt2 + f(t)g,
where g is a metric on Γ and where f(t) > 0 is a function with f ′(t) > 0. Then the t-coordinate
along a non-constant geodesic in the cylindrical end cannot have a local maximum. Hence, there
are no closed geodesics in the end.

If pr : T ∗C → C is projection, then T (T ∗C) ∼= pr∗(TC ⊗ C). Let detC(TC) denote the
corresponding determinant bundle, i.e. the complex line bundle which is the determinant of
the complexified tangent bundle TC ⊗ C.

Lemma 5.2. The bundle TC⊗C is trivial and hence the complex line bundle detC(TC) is trivial.

Proof. Consider the standard complex structure i on Cn ≈ R2n
st . Since C is Lagrangian,

multiplication by i gives an isomorphism from the tangent bundle of C to its normal bundle
in Cn. It follows that TC ⊗ C ≈ TCn|C . The lemma follows. 2

We next define trivializations of detC(TC). Consider the real line bundle det(TC) over C
and fix a section s : C → det(TC) that is transverse to the 0-section. (When C is orientable we
can take s to be non-vanishing.) Let P = s−1(0).

Lemma 5.3. The zero-set P ⊂ C is an orientable submanifold whose Z/2-Poincaré dual
represents the first Stiefel–Whitney class w1(TC) ∈ H1(C;Z/2). An open neighborhood N(P )
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of P in C is also orientable, so N(P ) ≈ P × (−ε, ε). A choice of orientation of the normal
bundle of P in C defines an integral lift W1 ∈ H1(C;Z) of w1(TC).

Proof. First note that the total space E of det(TC) is orientable. The normal bundle to P
in E is the sum of the normal bundle ν1 to P in C and the normal bundle ν2 of C in E.
Since P is Poincaré dual to w1(TC) it follows that w1(ν1) = w1(TC)|P . Since ν2 = det(TC) by
definition of E, also w1(ν2) = w1(TC)|P . Hence the normal bundle to P in E has vanishing first
Stiefel–Whitney class and since E is orientable, P is orientable.

We claim that a neighborhood N(P ) of P is orientable as well. To see this, note that, by
orientability of P , N(P ) is orientable provided the normal bundle ν1 of P in C is trivial. Let
σ : P → ν1 be a section of ν1 transverse to the 0-section. Since P is Z/2-Poincaré dual to the
first Stiefel–Whitney class w1(TC), σ−1(0) is Poincaré dual to w1(TC)2. But

w2(TC ⊗ C) = w2(TC ⊕ TC) = w1(TC)2 = 0,

by Lemma 5.2. Hence ν1 is orientable and so is N(P ), and we have a tubular neighborhood
N(P ) ≈ P × (−ε, ε) of P in C as required. Finally, picking an orientation of ν1 allows us to
define a Z-valued intersection number between loops in C and P . Since P is Z/2-Poincaré dual
to w1(TC), it is clear that the resulting class in H1(C;Z) is an integral lift of w1. 2

To normalize sections in the construction below we use the metric on TC to induce a metric
| · | on the real line bundle det(TC). Let s : C → det(TC) be the section above and define

v′(q) =
1

|s(q)|
s(q), q ∈ C\N(P ).

Then v′ trivializes detC(TC) over C\N(P ) by viewing v′ as a non-zero section of detC(TC).
By the above discussion also det(TC)|N(P ) is trivial. The boundary of N(P ) ≈ P × (−ε, ε)

is disconnected and the restriction of v′ to the boundary component {−ε} × P gives a unit
length section. Let v′′ : N(P ) → det(TC) be the unique extension of this section as a unit length
section then v′′ gives a trivialization of detC(TC) over N(P ). The trivializations v′ and v′′ can
be compared along P ×{±ε}. Since s has a transverse zero along P we find the following: v′ = v′′

along P × {−ε} and v′ = −v′′ along P × {ε}. We use this to fix a trivialization v of detC(TC)
over all of C as follows:

v =

{
v′(q) for q ∈ C\N(P ),

eiπ(t+ε)/2εv′′(p, t) for (p, t) ∈ P × [−ε, ε] = N(P ).
(5.1)

We will denote the Conley–Zehnder index of a Reeb orbit γ defined with respect to this
trivialization CZw1 . Denote by ι(γ) the Morse index of an oriented closed geodesic, viewed as a
critical point of the energy function on the free loop space.

Lemma 5.4. The Conley–Zehnder index of a Reeb orbit γ in U∗C with respect to the
trivialization v of detC(TC), see (5.1), satisfies the following:

CZw1(γ) = ι(γ)−W1(γ). (5.2)

Proof. The Conley–Zehnder index CZw1 measures rotations in the determinant of the linearized
Reeb flow with respect to the given trivialization v in (5.1). Here the linearized Reeb flow is the
linearized geodesic flow. After small deformation of P , we can assume that no Jacobi field of any
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closed geodesic vanishes near P , and that the closed geodesics intersect P transversely. Taking

N(P ) sufficiently small we then find that the linearized Reeb flow is approximately constant

with respect to v′′ in N(P ) and thus rotates −π relative to the reference trivialization v of

detC(TC) here. In C−N(P ) v = v′ is the standard section of the real determinant det(TC) and

zeros of Jacobi fields give contributions to the Conley–Zehnder index. Adding these contributions

proves (5.2). 2

To compute dimensions of disks and spheres in the component R2n\C after stretching, we

use the Conley–Zehnder index of Reeb orbits as defined with respect to the standard global

trivialization of the tangent bundle of R2n
C . More precisely, if (x1, y1, . . . , xn, yn) are standard

symplectic coordinates on R2n then we think of TR2n as a complex vector bundle T ′R2n trivialized

by (∂x1 , . . . , ∂xn). In a neighborhood of C, the complex line bundle detC(TC) is isomorphic to

det(T ′R2n) and

v0 = ∂x1 ∧ · · · ∧ ∂xn (5.3)

gives a non-zero section of detC(TC). We denote the Conley–Zehnder index of Reeb orbits defined

with respect to the trivialization v0 by CZ. The following result relates CZ and CZw1 ; it is closely

related to [Vit90, Theorem 3.1].

Lemma 5.5. If γ is a Reeb orbit in U∗C, if CZ denotes the Conley–Zehnder index defined with

respect to the trivialization v0, and if CZw1 is as in Lemma 5.4, then

CZ(γ) = CZw1(γ) +W1(γ)− µC(γ) = ι(γ)− µC(γ),

where µC(γ) denotes the Maslov index of the projection of γ into C.

Proof. We need to compare the trivializations v in (5.1) and v0 in (5.3) of detC(TC) along a

given Reeb orbit γ. Let `v and `v0 denote the fields of real lines in detC(TC) spanned by v and v0,

respectively. To simplify the comparison we use the fact that Conley–Zehnder and Maslov indices

are invariant under homotopies and replace C by its image ρs(C) under fiber scaling of R2n:

ρs(x1, y1, . . . , xn, yn) = (s−1x1, sy1, . . . , s
−1xn, syn), s > 0.

Note that φ∗sω0 = ω0, and that, since γ lies in a compact subset of C, there is a neighborhood

U of γ in C such that ρs(U) lies in an arbitrarily small neighborhood of the subspace yj = 0,

j = 1, . . . , n, provided s > 0 is sufficiently small.

Let GrLag(R2n) denote the Lagrangian Grassmannian of R2n. Consider the Lagrangian

subspaces Πy = {xj = 0, j = 1, . . . , n} and Πx = {yj = 0, j = 1, . . . , n} of R2n, and let

Z ⊂GrLag(R2n) denote the Maslov cycle of subspaces that intersect Πy in a subspace of dimension

> 0. After small deformation of P , we may assume that the path of Lagrangian tangent planes

TC|γ along γ does not intersect Z in γ ∩ P . Assume now that the scaling parameter s > 0 is

sufficiently small so that φs(TC) is approximately equal to the subspace Πx outside the caustic

Σ of φs(U) (the locus of tangencies with the subspace Πy). Then each transverse intersection of

TC|γ with Z of sign ε = ±1 corresponds to a transverse passage of `v through `v0 of sign ε. To see

this, note that such an intersection corresponds to a point where the curve γ crosses the caustic

Σ transversely and the tangent space of TC along γ is approximately constant in the (n − 1)

directions tangent to Σ and makes a π-rotation in the complex line normal to Σ.
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Furthermore, the line `v′′ , see (5.1), is approximately constant with respect to `v0 in N(P )∩γ,
since γ ∩ P ∩ Z = ∅, and hence `v makes a ±π-rotation with respect to `v0 for each intersection
P ∩ γ. Since P is dual to W1, adding these two contributions we find that

CZ(γ)− CZw1(γ) = W1(γ)− µC(γ),

as claimed. 2

5.3 Dimension formulae and neck-stretching
Let C ⊂ R2n

st be a Lagrangian submanifold with Legendrian boundary Γ and let φ(Sn) ⊂ R2n
st be

a Lagrangian sphere with exactly one double point a of grading |a| = n. Since φ(Sn) is compact,
by choosing a sufficiently large ball, we consider φ as a Lagrangian immersion into R2n

C , see § 5.1.
The moduli space M of holomorphic disks in R2n

C with boundary on φ(Sn) and one positive
puncture at a is a closed manifold of dimension

dim(M) = |a| − 1 = n− 1.

Below we will consider the behavior of holomorphic disks in this moduli space under neck-
stretching around C. More precisely, we will take limits of curves as we degenerate the almost
complex structure near C in such a way that, in the limit, the ambient R2n

C falls apart in two
pieces. The upper piece X+ has one positive end as in R2n

C and one negative end, the negative
half of the symplectization of the unit conormal bundle U∗C. The lower piece X− = T ∗C. SFT-
compactness [BEE12] describes the limits of holomorphic curves in R2n

C in terms of holomorphic
buildings with at least one level in X+ and perhaps some levels in X−, where the levels are
asymptotic to Reeb orbits in U∗C. (The compactness theorem in [BEE12] also gives additional
levels in the symplectization R×U∗C. Here we will simply consider such levels as curves in X−,
which means that the levels in X− in general consist of broken curves. Since the relevant indices
and virtual dimensions are additive, this elision will not lose track of any information that
we need.)

Since the pieces of the limiting holomorphic building glue to a disk, each piece is a disk or
sphere with punctures. We will thus consider dimensions of the following curves:

– spheres in T ∗C with positive punctures at Reeb orbits in U∗C;

– spheres in X+ with negative punctures at Reeb orbits in U∗C;

– disks in X+ with a positive boundary puncture at a and negative interior punctures at
Reeb orbits in U∗C.

We consider first a sphere v in T ∗C with positive punctures at Reeb orbits γ1, . . . , γk of
indices CZw1(γ1) = i1, . . . ,CZw1(γk) = ik. We have [EGH00, § 1.7]

dim(v) = 2(n− 3) +

k∑
j=1

(ij − (n− 3)). (5.4)

Consider next the case of a sphere w in X+ with no positive puncture and with negative
punctures at Reeb orbits β1, . . . , βr. We have

dim(w) = 2(n− 3)−
∑
j

(CZ(βj) + (n− 3))

= 2(n− 3)−
∑
j

(ι(βj)− µL(βj) + (n− 3)). (5.5)

706

https://doi.org/10.1112/S0010437X17007692 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007692


Nearby Lagrangian fibers and Whitney sphere links

Similarly, if u in X+ is the component with positive puncture at a and negative punctures
at β1, . . . , βr then

dim(u) = (n− 1)−
∑
j

(CZ(βj) + (n− 3))

= (n− 1)−
∑
j

(ι(βj)− µL(βj) + (n− 3)). (5.6)

Any punctured holomorphic curve has an underlying somewhere injective curve; for the latter
result in the punctured setting, see e.g. [DE14]. Standard transversality arguments, perturbing
the almost complex structure near an injective point, imply that moduli spaces of somewhere
injective holomorphic curves are cut out transversely for generic data. In the proof of Lemma 5.6
below, we use such transversality arguments only for curves where monotonicity of the Lagrangian
implies that any multiple cover has higher virtual dimension than that of the underlying simple
curve.

Let β ∈ π2(R2n, φ(Sn)) denote the generator of positive area. As usual, fix an almost complex
structure J on Cn standard in a neighborhood of φ(Sn).

Lemma 5.6. Let C ⊂ R2n
st be monotone with minimal Maslov number > 3. Let Jt denote the

sequence of almost complex structures on R2n
C obtained by stretching the neck with parameter t

around C. If for some Riemannian metric on C the minimal non-zero Morse index of a contractible
geodesic loop is > 3, then for t� 0, no Jt-holomorphic disk with one positive puncture and with
boundary on φ(Sn) in homotopy class β intersects C.

Proof. The dimension of any curve in the limit is non-negative by transversality, and those
dimensions sum to n−1, the dimension of the space of disks in class β, by additivity of dimension
in holomorphic buildings. If no component of the limit building lies in T ∗C the conclusion is
immediate, so assume some component is contained in T ∗C.

The dimension of any sphere with only one positive puncture in T ∗C is

(n− 3) + i > (n− 1),

where i is the Morse index of the contractible geodesic corresponding to the Reeb orbit at the
positive puncture. There must therefore be a sphere with several positive punctures γ0, . . . , γm,
m > 1, inside T ∗C; the dimension din of such a sphere is

din = 2(n− 3) +
m∑
j=0

(ij − (n− 3)).

At each γj there is (a possibly broken) outside sphere with a negative puncture at γj of dimension

djout given by

djout = (n− 3)− ij +mj ,

where mj is the Maslov index of the geodesic corresponding to γj . Gluing the half-cylinder on
this geodesic with boundary on the zero-section C to the punctured sphere in R2n

C −C, we obtain
a holomorphic disc with boundary on C. Monotonicity and the condition on minimal Maslov
number then implies that mj > 3. Assume now that the dimension din > n−2. Then 0 6 djout 6 1,
with right equality for at most one j. In particular,

ij − (n− 3) > 2 with ij − (n− 3) > 3 except for one j.
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Thus

din > (n− 3) + i0 +
∑
j>0

(ij − (n− 3)) > n,

which contradicts din 6 n − 1. We conclude that din < n − 2, and hence the subset swept by
evaluation of holomorphic curves in all moduli spaces of building components inside T ∗C has total
dimension < n. For generic data, this will then be disjoint from the zero-section C ⊂ T ∗C. 2

5.4 Proof of Theorem 1.3
Fix C ⊂ R2n

st as in the formulation, adjust the Liouville structure near the ideal boundary of C
if necessary, and let X = R2n

C \C. From Lemma A.7, and its analogue in the case when C has
boundary as discussed in §A.2, we know that πn(X) is determined as follows:

πn(X) =

{
Z/2Z⊕Hn(X;Z) w2(C) = 0,

Hn(X;Z) w2(C) 6= 0.

Consider the completed moduli space B of disks on φ(Sn) and the evaluation map ev : B→ R2n
C .

For an almost complex structure sufficiently stretched around C, the map ev takes B into X.
This immediately implies that φ(Sn) is nullhomologous in X, which completes the proof in the
case that w2(C) 6= 0.

If w2(C) = 0 then there is an additional Z/2Z-normal fiber subgroup in πn(X). Since φ(Sn)
represents the trivial class in Hn(X;Z), the exact sequence of Lemma A.7 – and the fact that
the map η occurring in that exact sequence is represented by a map into the (n− 1)-skeleton –
implies that φ may be homotoped to land in the (n− 1)-skeleton of X, which is the fiber linking
(n− 1)-sphere ν of C by Lemma A.2.

Since B is an (n+ 1)-manifold with boundary, it is homotopy equivalent to an n-dimensional
cell complex. Suppose first that B is simply-connected. Since B has dimension > 5, we can find
a Morse function f : B→ R with the following two properties:

– f achieves its maximum along the boundary ∂B ∼= Sn, and has outward-pointing gradient
vector field along the boundary;

– f has no index 1 or index n critical points.

In this case, B admits a cell structure with cells of dimension 6 n−1, and one can homotope
the evaluation map ev : B → X into the (n − 1)-skeleton ν. The preimage of a regular value in
B gives a framed cobordism which by the Pontryagin–Thom construction shows that the map is
homotopically trivial exactly as in § 4.3.1.

If B is not simply connected, we may modify it by surgery, as in the proof of Corollary 1.2
in § 4.3.2. Pick a collection of pairwise disjoint embedded loops γi ⊂ B representing a generating
set for (the finitely generated group) π1(B). We may assume that the evaluation map ev is an
embedding in a neighborhood of each γi. Since B is spin, it is in particular orientable, so each of
the loops γi has trivial normal bundle, and an open neighborhood U(γi) ∼= S1 ×Dn. We claim
that we can do surgery, cutting out these neighborhoods and re-gluing 2-handles D2 × Sn−1, in
such a way that the following two conditions hold.

(i) The spin-structure of TB extends across the 2-handles, to give a spin manifold B′ with
∂B′ ∼= ∂B = Sn.

(ii) The evaluation map ev : B→ X extends across the cobordism between B and B′ to define
an evaluation map ev : B′ → X.
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For the first point, the only obstruction to extending a spin structure over a 2-handle in B′ is
that the surgery circle should carry the bounding framing (equivalently, be compatible with the
bounding spin structure). This can be ensured in the construction of B, from Remark 3.7. Since
X is simply connected, the loops ev(γi) ⊂ X bound disks, which for dimension reasons we may
assume, after small perturbation, are embedded and pairwise disjoint. Fixing such disks, and
picking trivializations of their normal bundles to model the surgery, one obtains an extension of
ev over the 2-handles. This returns us to the case of simply connected B treated previously. The
theorem follows. 2

6. Whitney sphere links

6.1 Relating invariants
Let n > 3. For a Whitney sphere link, we claim the Hopf linking number, defined as an element
in [Sn×Sn, S2n−1] ∼= π2n(S2n−1) = Z/2Z, and the Z/2Z-summand of the homotopy class defined
by one component in the complement of the other, always agree.

Consider the Lagrangian submanifold i : C ↪→ R2n
st obtained by surgery on a Whitney sphere

ι : Sn → R2n
st (i.e., one with a single double point). Then

πn(R2n
st \C) =

{
Z/2Z⊕ Z if n is even,

Z/2Z if n is odd.
(6.1)

In both cases the Z/2Z-summand is carried by a fiber (n− 1)-sphere ν in the normal bundle
of C. Consider a map φ : Sn → R2n

st \C which is disjoint from ι(Sn), and which represents zero
in the Z-summand above in the even-dimensional case.

Lemma 6.1. The map φ represents the non-trivial element in Z/2Z ⊂ πn(R2n
st \C) if and only if

the Hopf linking number of the link ι t φ : Sn t Sn → R2n is non-trivial.

Proof. Via a Hamiltonian isotopy supported in a small neighborhood of the double point, we
take a model of ι(Sn) which is very flat near the double point. More precisely, consider the
standard model

{x+ iy ∈ Rn ⊕ iRn, |x|2 + y2 = 1}

of the Whitney sphere, where the preimages of the double point are (0,±1), and rescale the
factors Rn and iRn by ε−1 respectively ε. Via this flattened model, we find a small (n−1)-sphere
K ⊂ C, with a neighborhood N(K) ∼= K × (−δ, δ) ⊂ C such that ι(Sn) is obtained by removing
N(K) and adding two small flat disks D1, D2 intersecting at one point along the boundary of C.
Critically, both N(K) and D1 ∪ D2 can be taken to lie arbitrarily close to the double point
p ∈ ι(Sn). It follows that under the Gauss maps

Gιtφ : Sn × Sn → S2n−1, Gitφ : C × Sn → S2n−1

we can find an open neighborhood U of points in S2n−1 whose preimage is disjoint from
D1 ∪ D2 respectively N(K), since the latter subsets each have Gauss image in an arbitrarily
small (depending on the flattening parameter ε) neighborhood of the n-dimensional subset
Gιtφ({p} × Sn).

Suppose now φ defines the non-trivial element in Z/2Z, so φ is homotopic in R2n
st \C to a

map ψ : Sn → ν with non-zero Hopf invariant. The Gauss map

Γ: C × ν → S2n−1,
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which takes a pair of points to the unit vector of the oriented line segment connecting them, has
degree ±1, and, provided ν is sufficiently small, for a generic point u ∈ S2n−1, Γ−1(u) = (q, n)
∈ C × ν will comprise a single point. We pick u in the open subset U above. For the Gauss map
Gitψ, the preimage

G−1
itψ(u) = (q, ψ−1(n))

of the point u is exactly the framed knot fiber of ψ over the point n, equipped with the framing
it carries from ψ. Furthermore, since u ∈ U , the discussion of the first paragraph shows that this
framed knot lies in a ball in Sn×Sn. This shows that the Hopf linking invariant of ιtψ ' ιtφ
is also non-trivial. The choice of u ∈ U ensures that the preimages of ι t φ and i t φ can be
identified, so the lemma follows. 2

6.2 Proof of Theorem 1.4
Suppose we have a Whitney sphere link ι : Sna t Snb → R2n, n > 4, with each component having
a single double point of Maslov index n. Let C denote the Maslov index n surgery of Snb . If
n is even then C ≈ S1 × Sn−1 and if n is odd then C is diffeomorphic to the non-orientable
Sn−1-bundle over S1.

In either case, C ⊂ R2n
st is a monotone Lagrangian submanifold of minimal Maslov index n.

Equipping the sphere bundle with the standard metric on the sphere factor (which is invariant
under the monodromy map, which we can take to be an isometry in both cases) we find that the
minimal index of a non-constant contractible geodesic equals n−2 > 3. In particular, we find by
Theorem 1.3 that the map ι : Sna → R2n

st \C is homotopic to a constant map in the complement
of C. In particular, in the even-dimensional case, ι(Sna ) represents zero in the Z-summand of
πn(R2n

st \C). This satisfies the hypotheses of Lemma 6.1, which implies the result. 2

6.3 Whitney links in four-dimensional space
Let ι1 t ι2 : S2 t S2

→ R4 be a Whitney link. Kirk [Kir90, § 6] proves that in this dimension,
the Hopf linking number can be understood as follows. Let γ be a loop on the first component
which generates π1(ι1(S2)). Then

Hopf(ι1, ι2) = 0 ⇔ [γ] = 0 ∈ H1(R4\ι2(S2);Z) (6.2)

(this is the content of Kirk’s formula for σ+ in [Kir90, p. 685] when there is a unique double
point on each component). Using this characterization, we show the following.

Proposition 6.2. A Lagrangian Whitney sphere link in R4 has trivial Hopf invariant.

Proof. Note that the Maslov index of a Lagrangian Whitney sphere is necessarily 2 in this
dimension. We consider as usual holomorphic disks with one positive puncture in the generating
class β ∈ π2(R4, ι1(S2)) for the first component. From the usual Gromov–Floer displacing
argument, it follows that the moduli space of such discs is non-empty for every taming J .
From (6.2), to prove that the Hopf linking number vanishes, it suffices to prove that such
a J-holomorphic disk D on ι1(S2) has trivial algebraic intersection number with the second
component ι2(S2). Performing a Lagrange surgery on ι2(S2) whose trace is disjoint from ι1(S2),
we can replace the second Whitney sphere by an embedded Lagrangian torus L, and it suffices to
prove that the holomorphic disc D ∈ H2(C2, ι1(S2)) has trivial homological intersection number
with L ⊂ R4\ι1(S2).

We now employ a simple trick due to Welschinger [Wel07]. Stretch the neck along the
boundary of a small disk cotangent bundle U∗L as usual. The holomorphic disk D will break
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into various components, say E1, . . . , El inside T ∗L, and E′1, . . . , E
′
j in R4\L, where E′1 has

boundary on ι1(S2) and all the other components are punctured spheres. The projection
p∗ : H1(U∗L;Z) → H1(L;Z) is an isomorphism when restricted to the subspace R ⊂ H1(U∗L)
spanned by Reeb orbits for the Reeb flow associated to the flat metric on T 2, see [Wel07]. For
each component Ei ⊂ T ∗L, the total boundary Ri of Ei is nullhomologous (via Ei itself) in
T ∗L, hence the projection p∗(Ri) ∈ H1(L;Z) of Ri to the zero-section L is nullhomologous. The
compactness theorem in SFT shows that Ri is a union of Reeb orbits and hence Ri ∈ R, so as
p∗ : R→ H1(L;Z) is an isomorphism, we deduce Ri = 0 ∈ H1(U∗L;Z). We may therefore choose
2-chains Fi ⊂ U∗L inside the spherical cotangent bundle with boundary Ri, for each i. Adding
and subtracting these two-chains to the union of building components obtained from stretching
D, we see that D is homologous in H2(R4, ι1(S2)) to the sum

D ∼
(⋃

Ei ∪ Fi
)
∪
(⋃

E′j ∪ (−Fi)
)

where the final minus sign denotes orientation reversal. The first term above is a closed 2-cycle in
T ∗L, which is therefore homologous to some multiple of the zero-section [L] itself, and has trivial
self-intersection with [L] (as L has trivial Euler characteristic). The second term is a two-chain
which is wholly contained in R4\L, so obviously has trivial intersection with [L]. Therefore
D · [L] = 0, as required. 2

7. Linked examples

Examples illustrate the necessity of the various hypotheses in Theorems 1.3 and consequently in
Theorem 1.4. Recall that Sk ⊂ Rn denotes a point, if k = 0, or a sphere Sk if k > 0.

Lemma 7.1. For any non-trivial element η ∈ πn(Sn−k−1), there is a totally real embedding
Rn ↪→ T ∗(Rn\Sk), coinciding with a fixed cotangent fiber T ∗xRn near infinity, for which the
projection to the zero-section defines η.

Proof. This follows from the h-principle for ε-Lagrangian embeddings (more precisely, for the
‘extension’ form of that h-principle, since we work relative to fixed data near infinity), cf. [Gro86].

2

More strikingly, without constraints on the Maslov index of the double point, non-trivial
Lagrangian Whitney sphere links do exist.

Lemma 7.2. If n > 3 is odd, there is a Lagrangian Whitney sphere link with non-vanishing Hopf
linking number.

Proof. We fix the standard Whitney sphere w(Sn) ⊂ R2n
st , and construct a second immersed

Lagrangian sphere which links it non-trivially. Let L ⊂ R2n
st be the Lagrangian submanifold

obtained by surgery on w(Sn). Fix a point p of R2n
st \L, and remove L t {p} from R2n

st to obtain
a symplectic manifold with disconnected negative end. Near the negative end asymptotic to {p}
we start with the standard Lagrangian disk bounded by the Legendrian unknot, and build a
cobordism to a loose Legendrian sphere by pushing the two sheets of the unknot front through
each other. The cobordism is immersed with precisely one double point, compare to [EEMS13].
The positive end of this disk cobordism is now a loose Legendrian knot, which has a cap in each
of the two possible homotopy classes in the complement of L, by [EM13]. The union of the cap
and the immersed disk is our desired one double point immersion, which links L and hence w(Sn)
non-trivially. The non-vanishing of the Hopf linking invariant then follows from Lemma 6.1. 2
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The surgery on an immersed sphere with one low-index double point has vanishing Maslov
class when n = 3, and has minimal Maslov number 2 − 2k when n = 2k + 1 > 5. In particular,
the examples constructed in the proof of Lemma 7.2 show the necessity of the monotonicity and
minimal Maslov index hypotheses in Theorem 1.3.

In R4k, the argument of Lemma 7.2, based on the results of [EEMS13], enables one to
construct an immersed Lagrangian sphere with three double points which non-trivially links the
standard Whitney sphere.
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Appendix A. Computation of a homotopy group

In this appendix we compute the nth homotopy group of the complement of a Lagrangian
submanifold of R2n.

A.1 The complement of a closed Lagrangian submanifold in R2n

The stable homotopy type of the complement of a submanifold of Euclidean space is determined
by Spanier–Whitehead duality. We will give a concrete description of the homotopy group of
relevance to us, in the special case of a Lagrangian submanifold (the key point is that the normal
bundle agrees with the tangent bundle). Let C ⊂ R2n

st , n > 4 be a Lagrangian submanifold and
set X = R2n\C. Fix a Morse function f : C → R with exactly one minimum, and consider the
corresponding CW-decomposition of C:

C = C(n) ⊃ C(n−1) ⊃ · · · ⊃ C(0) = {pt},

where C(j) is the union of the closures of the stable manifolds of all critical points of index 6 j,
and pt denotes a point. For dimensional reasons, the tangent bundle TC has a non-zero section
over the 2-skeleton C(2). Fix such a section v, and consider the Thom space Y2 of the spherical
tangent bundle SC over C(2), obtained from the restriction SC|C(2) by collapsing the section v
to a point.

Lemma A.1. X is homotopy equivalent to a space obtained from Y2 by attaching cells of
dimension > n+ 2.

Proof. Consider the inclusion R2n ⊂ S2n and C ⊂ S2n ⊂ S2n+1. Defining

X̂ = S2n\C and X̂ ′ = S2n+1\C

we note that there is a homotopy equivalence X̂ ′ ' ΣX̂ between X̂ ′ and the suspension of X̂.
Consider the height function h on S2n+1 for which the equator S2n is the zero-set. There is a
tubular neighborhood ν C of C on which the restriction of h agrees with the height function on
each fiber disk. Now introduce on each fiber n-disk of ν C a canceling pair of critical points of
indices 0 and 1. This gives a function on S2n+1 with a pair of critical Bott manifolds C and
C ′ of indices 0 and 1. We deform this Bott–Morse function so as to pull the local minimum
submanifold below the minimum of h, further Morsifying the index 1 critical submanifold C ′
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via f . Then the super-level set of a regular value slightly larger than the new global minimum is
homotopy equivalent to the complement of C; in this description it is clear that it is obtained by
attaching one cell of dimension n+ k, starting with the maximum 0-cell, for each critical point
of −f of index k.

We conclude that X̂ ′ has a cell structure with (n + 2)-skeleton given by the standard cell-
structure of the Thom space Y ′2 of the restriction of the normal bundle of C in S2n+1 to C(2),
with cells of dimension > n + 3 attached. Any non-zero section of the normal bundle of C in
S2n ⊂ S2n+1 is homotopic to the vertical normal vector field in S2n+1, which implies that Y ′2 is
the suspension of Y2. 2

We next describe the attaching maps in the (n+ 1)-skeleton of Y2. To this end we consider
the chain complex generated in degree j by the j-cells in C(j), j = 0, 1, 2, with the differential
dtw in cellular homology twisted by the orientation bundle det(TC)|C(2) . We view det(TC) as a
rank one local system with Z-coefficients.

Lemma A.2. Y2 has a cell structure with one 0-cell corresponding to the point at infinity in the
Thom space and one ((n − 1) + j)-cell for each j-cell of C(2), j = 0, 1, 2, so that the following
hold.

(i) The (n− 1)-skeleton Y0 is an (n− 1)-sphere.

(ii) The n-skeleton Y1 is obtained from Y0 by attaching one n-cell Y τ
1 for each 1-cell τ in C(1).

The degree of the attaching map of Y τ
1 equals the coefficient of ε0 in dtwτ , where ε0 is the

0-cell.

(iii) The (n+ 1)-skeleton Y2 is obtained from Y1 by attaching one (n+ 1)-cell Y σ
2 for each 2-cell

σ in C(2). The degree of the attaching map of Y 2
σ to Y 1

τ equals the coefficient of τ in dtwσ.

Proof. Picking a non-zero section v of the tangent bundle TC over the 2-skeleton C(2) we can
identify Y2 with the Thom space of its orthogonal complement v⊥. The (n− 1)-skeleton of Y2 is
then the restriction of this Thom space to the point in C(0) ⊂ C(2) and is clearly an (n−1)-sphere.

We next compute the degrees of the attaching maps of the higher cells. An (n−1+ j)-cell σ̂j

is given by σj ×Dn−1 where σj ≈ Dj is a j-cell in C, where Dn−1 is the fiber of v⊥ at the center
of σj , and where the product structure is obtained by trivializing the pull-back of the bundle v⊥

over the cell by moving the central fiber along rays in the disk. The attaching map i of the cell
σ̂j takes σj×∂Dn−1 to the base point in the Thom space, in other words to the 0-cell, and takes
∂σj × Dn−1 to the bundle over the (j − 1)-skeleton by the natural map from i∗v⊥ to v⊥|im(i).
The preimage in σj × Dn−1 of the point given by the origin in Dn−1 at the central point in a
cell σj−1 consists of the origin in Dn−1 at each of the preimages of the central point under the
attaching map of σj to σj−1. Furthermore, the local degree at such a preimage is exactly the local
degree of the attaching map σj → σj−1 multiplied by the sign of the parallel transport from the
fiber at the central point of the disk. Since det(TC)|C(2)

∼= det v⊥|C(2) , this is exactly the twisted
differential in the cellular complex for C. 2

Corollary A.3. There is an isomorphism Hn(X;Z) ∼= H1(C;Z⊗ det(TC)).

As a first step in computing πn(X) we consider the Hurewicz homomorphism.

Lemma A.4. The Hurewicz homomorphism h : πn(X) → Hn(X;Z) is surjective.
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Proof. Inclusion gives isomorphisms πn(Y2) ∼= πn(X) and Hn(Y2) ∼= Hn(X), and hence it suffices
to prove the result for Y2. It follows from the cell structure of Lemma A.2 that any n-cycle Γ in
Y2 corresponds to a 1-cycle for the orientation-twisted differential on the 1-skeleton C(1). Any
such cycle is carried by an orientation preserving loop γ in the 1-skeleton (i.e. one such that TC|γ
is trivial). Parameterizing γ by an interval [0, 1], we define a map fγ from the sphere into Y1,

fγ : Sn ≈ ([0, 1]×Dn−1)/∂([0, 1]×Dn−1) −→ Y1, (A.1)

exactly as when we defined the attaching maps corresponding to 1-cells. More precisely, fγ takes
[0, 1] × ∂Dn−1 to the base point and maps [0, 1] × int(Dn−1) to Y1 using parallel translation in
the pull-back of the bundle v⊥ over [0, 1] from the central point 1/2 ∈ [0, 1]. The image of the
map fγ sweeps the cellular cycle Γ with multiplicity one, and so its image under the Hurewicz
homomorphism is exactly Γ. The lemma follows. 2

Let η ∈ πn(Y0) = Z/2Z denote a generator. Via inclusion Y0 ⊂ Y2, this defines a class (not
necessarily non-trivial) in πn(Y2) ∼= πn(X).

Lemma A.5. The kernel of the Hurewicz homomorphism h is generated by η.

Proof. The homotopy exact sequence for (Y2, Y1) includes

· · ·→ πn+1(Y2, Y1) → πn(Y1) → πn(Y2) → {0}. (A.2)

Suppose that f : Sn → Y2 is in the kernel of h. We may assume from (A.2) that f has image
in Y1, and we wish to prove that we can homotope f into the (n−1)-skeleton Y0, since η generates
πn(Y0). To do this, it suffices to show that we can homotope f to a map f ′ so that, for each
n-cell in Y1, the degree of the composition of f ′ with projection to that n-cell vanishes.

Let [f(Sn)] denote the cellular n-cycle defined by f . There is a cellular (n + 1)-chain Y2(σ)
with ∂Y2(σ) = [f(Sn)]. Using the isomorphism with the twisted homology complex, this cellular
(n+ 1)-chain corresponds to a cellular 2-chain σ for C(2). Suppose dtwσ = γ.

Let τ be a 2-cell which appears with coefficient −nτ in σ. Let ∂τ denote the loop
parameterized by the attaching map of τ . Then f is homotopic to f ∗ f∂τ where ∗ denotes
composition in πn(Y2) and f∂τ is as in (A.1). The homotopy pulls the part of the map
corresponding to f∂τ across the 2-cell τ . The n-cycle [f ∗ f∂τ (Sn)] has associated 1-chain γ + ∂τ
in the twisted cellular complex for C, and there is a chain σ′ with dtwσ′ = γ+∂τ . The coefficient
of τ in σ′ is −(nτ − 1). Continuing inductively, we homotope the map f to a map f ′ whose
associated cellular n-cycle [f ′(Sn)] = ∂Y2(0), i.e. where the bounding cellular (n+1)-chain is the
zero-chain. This precisely means that the map obtained by composing f ′ with projection to any
n-cell in Y1 has degree 0, as required. 2

Combining the previous two Lemmas, to compute πn(X), it only remains to understand
when η vanishes in πn(X) = πn(Y2).

For i = 1, 2 let wi(TC) denote the ith Stiefel–Whitney class of TC, viewed as defining an
element

wi ∈ Hom(Hi(C;Z/2Z);Z/2Z). (A.3)

Note that C is orientable if w1 = 0 and both orientable and spin if w1 = 0 and w2 = 0. More
concretely, w2 = 0 if and only if the trivialization of v⊥ over the orientation-preserving loops in
the 1-skeleton of C extends over all 2-cells. Thus, if both w1 = 0 and w2 = 0, we can trivialize v⊥
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over C(2), and Y2 is the Thom space of a trivial bundle. In this case, the class η obviously survives
as a split summand in πn(Y2), which shows that

πn(Y2) = Z/2Z〈η〉 ⊕Hn(X;Z).

To prove the general statement, recall that πn(Y2) is a quotient of πn(Y1).

Lemma A.6. The homotopy group πn(Y1) = H1(C(1);Z⊗ det(TC))⊕ Z/2Z〈η〉.

Proof. Consider the 1-skeleton C(1); the corresponding n-skeleton Y1 is constructed as follows.
Start with an (n− 1)-sphere Σ, for each orientation preserving 1-handle in C(1) attach an n-disk
to Σ with an attaching map of degree 0, and for each orientation reversing handle attach an
n-disk to Σ with attaching map of degree 2. Homotoping the attaching maps of degree 0 to
constant maps, we see that Y1 is homotopy equivalent to a wedge Z ∨

∨
j S

n
j , where there is one

Sn-factor for each orientation preserving 1-handle, and where the space Z is obtained from Σ by
attaching n-disks by maps of degree 2.

Note that πn(Y1, Y0) ∼= Zk, where k is the number of 1-cells in C(1), and the map
χ : πn(Y1, Y0) → πn−1(Y0) = Z sends the generator associated to a 1-cell γj to the attaching
degree dtw(γj) = dj . Thus, χ is naturally identified with the boundary map Ctw

1 → Ctw
0 in the

orientation-twisted cellular complex for C(1). The homotopy exact sequence for the pair (Y1, Y0)
reads⊕

j

Z/2Z α−→ πn(Y0) = Z/2Z → πn(Y1) → πn(Y1, Y0) → Z → Z/{dj}Z → {0}, (A.4)

where we have used

πn+1(Y1, Y0) = πn+1

(∨
j

Sn
)

=
⊕
j

Z/2,

which follows from Hilton’s theorem (since n > 3, all non-trivial Whitehead products have degree
> 2n−1 > n+ 1). We claim the map α in (A.4) vanishes. It suffices to treat the case when there
is a single n-cell attached by a map g of degree 2, and Y1 = Z is the Moore space M(Z/2, n− 1).
There is a cofiber sequence Sn−1

→ Cg → Z, where Cg ' Sn−1 is the mapping cylinder of g;
this yields an exact sequence, for i 6 2n− 2,

· · ·→ πi(S
n−1)

2−→ πi(S
n−1) → πi(Z) → πi−1(Sn−1)

2−→ πi−1(Sn−1) → · · ·

which shows that πn(Z) = Z/2 as required. Since ker(χ) is free abelian, the sequence

0 → Z/2 → πn(Y1) → ker(χ) → 0 (A.5)

necessarily splits, which completes the proof. 2

Lemma A.7. The nth homotopy group πn(X) ∼= πn(R2n\C) is determined as follows.

– If w2 = 0, there is an exact sequence

0 → Z/2〈η〉→ πn(X)
h−→ Hn(X;Z) → 0,

which splits canonically and hence

πn(X) ≈ Z/2〈η〉 ⊕H1(C;Z⊗ det(TC)).
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– If w2 6= 0, then h is an isomorphism and hence

πn(X) ≈ H1(C;Z⊗ det(TC)).

Proof. Given any cell complex A with only j-cells for j ∈ {0, n − 1, n, n + 1}, if A′ is obtained
by attaching an (n+ 1)-cell to A along f : Sn → A, then

πn(A′) = πn(A)/〈[f ]〉.

Consider attaching a 2-disk to C(1). Assume first that the trivialization of v⊥ over orientable
loops in the 1-skeleton of C extends over the attached 2-disk. By our description of the attaching
maps for Y2 via transporting trivializations from the central point in cells radially outwards, the
attaching map of the corresponding (n+ 1)-cell is the sum of the n-spheres corresponding to the
1-cells in the boundary of the given 2-disk. This vanishes in the Z/2Z-summand of πn(Y1). If
w2 = 0, the result follows, with the canonical splitting of πn(Y2) inherited from that for πn(Y1).

To conclude, it suffices to show that if w2 6= 0 then η arises as the homotopy class of the
attaching map of some (n + 1)-cell when constructing Y2 from Y1. We know there is a 2-cell σ
over which the trivialization of v⊥ does not extend, and inductively we may suppose this is the
first attached handle over which the trivialization does not extend. Let ψ denote the attaching
map of the (n+1)-cell in Y2 corresponding to σ. The boundary loop γ of the 2-handle σ must be
expressible in terms of boundaries of 2-handles that have already been attached (in particular,
γ is bounding). Consider now the map fγ from Lemma A.4. Since the framing of v⊥ does not
extend over σ, we find that ψ is homotopic to the map f ′γ which is defined in the same manner
as fγ but using a map [0, 1]×Dn−1

→ Y1 which differs from that of fγ by a twist corresponding
to the generator of π1(O(n− 1)).

We now homotope f ′γ across the two cell σ to a map into Σ. Identify Σ with the one point

compactification of the fiber in v⊥. As before, we homotope the map by pulling the loop γ over
the disk and parallel translating the fiber. The preimage of the origin in Σ is the boundary loop
γ with its initial framing. In the n-sphere boundary of the attached (n + 1)-handle this is the
non-trivially framed loop, so we conclude that η is in the image of the attaching map. Hence
the presence of a 2-disk in Y2 over which the trivialization of v⊥ does not extend implies that
η = 0 ∈ πn(Y2). 2

A.2 The complement of a Lagrangian submanifold with Legendrian boundary in R2n
st

In this section we carry over the study for closed Lagrangians in §A.1 to the case of Lagrangians
with Legendrian boundary. As in §A.1 let C denote the Lagrangian and let Γ denote its
Legendrian boundary. We show here that Lemma A.7 holds unchanged in this situation. In
other words πn(R2n

st \C) is isomorphic to

H1(C,Z⊗ det(TC))⊕ Z/2Z〈η〉,

if w2(C) = 0, and

H1(C,Z⊗ det(TC)),

if w2(C) 6= 0.
To see this we consider C as a clean submanifold of D2n with boundary Γ ⊂ S2n−1. The

complement of C ⊂ D2n ⊂ D2n+1 is again the suspension of its complement in D2n.
We will consider Morse functions on manifolds with boundary which are extensions of

Morse functions on the boundary, and for which the Morse flow in the boundary agrees with
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the Morse flow on the whole manifold. As in the closed case, we consider a deformation of the

Morse function on D2n+1 with an index 2n + 1 and an index 1 critical point on the boundary

sphere and a minimum at the center. We deform this by introducing a minimum and an index 1

critical point in each normal fiber of C, where the normal fiber over Γ is the normal fiber in the

boundary. Exactly as in the closed case, we find that the (n+ 2)-skeleton of the complement is

given by the Thom space of the normal bundle over the 2-skeleton on C defined by the stable

manifolds of a Morse function on C which has its unique minimum on the boundary. After

observing that the Morse complex associated to such a function computes the homology of C,

the result follows from a verbatim repetition of the argument in §A.1.
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