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Abstract

Suppose H is a complex Hilbert space and K is a nonempty closed convex subset of H. Suppose T:
K -» H is a monotonic Lipschitzian mapping with constant L > 1 such that, for x in K and h in //,
the equation x + Tx = h has a solution <7 in AT. Given x0 in K\ let { Q } " _ 0 be a real sequence
satisfying: (i) Co = 1, (ii) 0 < Cn < L~2 for all n > 1, (iii) E n Q ( l - C J diverges. Then the sequence
{Pn)f-o m H defined by pn = (1 - Cn)xn + CnSxn, n > 0, where {xn}JL0 in K is such that, for
each n > 1, ||xn - /"„_!!! — infjteKllPn-i ~ xll» converges strongly to a solution q of x + Tx = h.
Explicit error estimates are given. A similar result is also proved for the case when the operator T is
locally Lipschitzian and monotone.

1980 Mathematics subject classification (Amer. Math. Soc): 47 H 15, 47 H 10.

Let X be an arbitrary Banach space. An operator T with domain D(T) and
range R(T) in A" is said to be monotone [7] if

(1) \\x-y\\<\\x-y +t(Tx- Ty)\\ for every x, y e D(A) and t> 0.

If A' = #, a complex Hilbert space, condition (1) reduces to Re(x - y,Tx - Ty)
3* 0 for all x, y in H. Operators satisfying (1) are sometimes referred to as
accretive (see e.g. [2]). The accretive operators were introduced by T. Kato [7] and
F. E. Browder [2] in 1967. In 1968, Browder proved that if T: X -» X is locally
Lipschitzian and accretive, then (/ + T)(X) = X; this result was subsequently
generalized by R. H. Martin [12] in 1970 to the continuous accretive operators. In
1974 K. Deimling [5] generalized Martin's result by showing that if V is an open
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subset of X and T a continuous mapping of V into X, and if T is locally closed,
locally one-to-one and locally accretive, then T{V) is open. For some interesting
applications of this result the reader may consult [9] or [10].

An early fundamental result in the theory of monotone operators on Hilbert
space due to Zarantonello [14] states that the operator equation x + Tx = h has
a unique solution x in H for each h in H, provided that T is monotonic and
Lipschitzian. Recently Dotson [6] has shown that if T: H -» H is monotonic and
has Lipschitz constant 1 (in this case the operator T is called nonexpansive in the
terminology of [8]), then an iterative process of the type introducd by W. R.
Mann [11], under certain conditions, converges strongly to the unique solution of
the equation.

Our object in this paper is to construct an iterative process which converges
strongly to a solution of the operator equation x + Tx = f for / in H and x in
K where T: K -* H is a monotonic Lipschitzian operator with Lipschitz constant
L > 1, and where K is a nonempty closed convex subset of H. Thus, our result
generalizes Dotson's theorem both in the domain of definition of the operator
and in the range of its Lipschitz constant. Furthermore, we prove a convergence
result for the equation x + Tx = f when T is locally Lipschitzian and monotone.

THEOREM 1. Suppose H is a complex Hilbert space and K a nonempty closed
convex subset of H. Suppose T: K —> H is a monotonic Lipschitzian mapping with
constant L > 1 such that, for x in K, and h in H, the equation x + Tx = h has a
solution q in K. Define S: K -> H by Sx = —Tx + h for all x in K. Given x0 in K,
let {Cn-}"_0 be a real sequence satisfying: (i) Co = 1, (ii) 0 < Cn < L'2 for all
n > 1, (iii) T.nCn(l - Cn) diverges. Then the sequence {pn}™=o m H defined by
pn = (1 - Cn)xn + CnSxn, n > 0, where {xn}™_0 in K is such that, for each
n > 1, \\xn - j V i l l = inixercWPn-i ~ x\\> converges strongly to a solution q of
x + Tx = h.

PROOF. We observe that q is a fixed point of S and that \\Sx - Sy\\ < L\\x - y\\
for all x, y in K. Moreover, monotonicity of T implies that Re(Sx - Sy, x - y)
< 0 for all x, y in K. Let R: H -* K be the map which assigns to each point x
of H the unique point of K which is nearest to x. Then R is nonexpansive [4].
Starting with x0 e K we obtain Sx0 in H and so compute p0 from p0 = (1 -
CQ)x0 + C0Sx0 in H. Then x1 = ^(^0) Ues i n K> s o t n a t Pi = d ~ c i )*i +
C1Sxl. By continuing this process we generate the sequence {pn}™=0 in H.
Observe that

(2) \\xn-q\\ = \\R(Pn.l)-R(q)\\<\\pn.1-q\\ f o r e a c h « > l .
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Moreover,

\\pn - qt = \\{\ - Cn)(xn -q) + Cn(Sxn - Sq)f

( +C2\\S Sf= {\ - Cnf\\xn- q( +C2
n\\Sxn- Sqf

+ 2CB(1 - Cn)Re(Sxn - Sq, xn - q)

since Ke(Sxa - Sq, xn - q) < 0, C n e[0 , l ) and \\Sxn - Sq\\ < L\\xn - q\\.
Thus, using (2) we obtain,

(3) \\pn-q\\2{ }

= (l - [c n ( i - c) + cn(i - L2cn)])\\Pn-i - q\\
2

< f l [1 - (Q( l - Ck) + Q( l - L2Ck)}]\\p0 - q\\\

and for all k, Ck(l - Ck) + Ck(l - L2Ck) < \ + -fe < 1 (since L > 1). More-
over, the divergence of HkCk{\ — Ck) implies that

ft [l - {Q(l - Ck) + Ck{\ - L2Ck)}] -» 0 as n -» oo.

Hence { pn }"_0 converges strongly to q, completing the proof of the theorem.

REMARKS.

(i) Our theorem generalizes the theorem of [6] to mappings with Lipschitz
constant L > 1 and to mappings which may only be defined on nonempty closed
convex subsets K of H and which take values in H.

(ii) With the notation of the theorem, if K = H, the iteration scheme of the
theorem can be simplified to xn+1 = (1 — Cn)xn + CnSxn, x0 £ H, n ^ 0. In
this case, a theorem of Zarantonello [14] guarantees the existence of a unique
fixed point, say q, of S in H. Then, it follows that

II v- _ / j | | 2 < \~\ - ( C (~\ - C ) + C ("[ - C I 2 ) ] ] \ \ x - o i l 2

and, as in the proof of the above theorem, { xn}"_! converges strongly to q.
There are some particular choices of Cn and an alternate method which give the

additional information of an error estimate. Choose Cn = \/(n + L2), n > 1.
Then, clearly, Cn < L'2 for all n > 1. It is easy to see that £Cn(l — Cn) diverges.
Let q denote a solution of x + Tx = h. Then, as in the proof of the theorem,
using the same notation, from (3) we obtain,

U\ II II2 \(n + L2-\)2

(n + L2)2
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Observe that inequality (3) also yields \\pa - q\\ < \\pn-X - q\\ for all n > 1 (since
for all k, Q ( l - Ck) + Ck(l - L2Ck) < 1), so that (4) yields

(5) (n + L2f\\pn - qf -(„ + L2 - ifWp^ - qf < L2\\p0 - q\\\

Summing inequality (5) for n — 1 to N and observing that the left hand side
telescopes, we obtain

(N + L 2 f \ \ p N - q f - L2\\p0 - q f < NL2\\ Po - q \ \ \

so that for each iV = 1,2,3, . . . , we have

Thus, {/?„}"=! converges to q, and for each n we have

DEFINITION. Let D(T) denote the domain of a map T. Then T: D(T) -» H is
called locally Lipschitzian with constant L > 1 if, for each g in D(T), there is an
e > 0 such that

(6) | |7* - 7>|| < L\\x -y\\ whenever \\x - q\\ < B and ||^ - q\\ < e.

THEOREM 2. Supose T: D(T) -^ H is a locally Lipschitzian (with Lipschitz
constant L > 1) monotone operator with D(T) c H open, and let f e /f. Suppose
the equation x + Tx = fhas a solution q in D{T), and define S by Sx = —Tx+f.
Let {Cn}*_0 fo? a rai/ sequence satisfying (i) Co = 1, (ii) 0 < Cn < Lr1 for all
n > 1, and (iii) EnCn(l - Cn) diverges. For q e B c // , w/iere 2? « c/ojeJ an^
convex, define the sequences [pn}™=\ in H and {Xn}^_0 in B by (a) Xo e B
arbitrary, (b) pn + 1 = (1 - Cn)Xn + CnSXn, and (c) Xn is the point in B such that
II xn ~ Pn-\ '\\ = i n fxeBllPn- i - *ll- Then, for any initial guess Xo in B, the
sequence { pn }™_l converges strongly to a solution q in B of x + Tx = f.

PROOF. Let q be a solution of x + Tx = f. Since T is locally Lipschitzian,
given any e > 0, choose e e (0, e) so that (6) is satisfied. Let B = ( I e J / :
\\q - X\\ < £}. Then B is closed and convex. Since {Xn}™_0 is contained in B, we
have

| | S * B - Sq\\ = \\TXn -Tq\\< L\\Xn - q\\ for all n.

The rest of the argument is now exactly as in the proof of Theorem 1 and is,
therefore, omitted.
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