ON THE LATENT ROOTS OF A DOUBLY STOCHASTIC MATRIX

Dedicated to the memory of Hanna Neumann
WALTER LEDERMANN
(Received 27 June 1972)
Communicated by M. F. Newman

1

Under certain general conditions an $n \times n$ stochastic matrix $P=\left(p_{t j}\right)$, where

$$
0 \leqq p_{i j} \leqq 1, \sum_{j} p_{i j}=1 \quad(i, j=1,2, \cdots, n),
$$

is known to possess the "ergodic" property. This means that there exists a finite matrix E such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} P^{k}=E . \tag{1}
\end{equation*}
$$

Clearly one of the latent roots of P is equal to unity. By the FrobeniusPerron Theorem ($[1]$, p. 64), if the $p_{i j}$ are strictly positive, all the other latent roots are of modulus less than unity. Denoting the latent roots by $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ we may therefore assume that

$$
\alpha_{1}=1,1>\left|\alpha_{2}\right| \geqq\left|\alpha_{3}\right| \geqq \cdots \geqq\left|\alpha_{n}\right| .
$$

In the simplest case, in which all the latent roots are distinct, the matrix P possesses a spectral resolution

$$
P=E_{1}+\alpha_{2} E_{2}+\alpha_{3} E_{3}+\cdots+\alpha_{n} E_{n},
$$

in which $E_{1}, E_{2}, \cdots, E_{n}$ are mutually orthogonal idempotents. Hence, for any positive integer k, we have that

$$
P^{k}=E_{1}+\alpha_{2}^{k} E_{2}+\alpha_{3}^{k} E_{3}+\cdots+\alpha_{n}^{k} E_{n} .
$$

It follows that $P^{k} \rightarrow E_{1}$, so that E_{1} is identical with the matrix E mentioned in (1). The speed with which the limit E_{1} is attained, depends on the magnitude of $\left|\alpha_{2}\right|$. Following a verbal suggestion of J. F. C. Kingman it would be desirable
to obtain an upper bound for $\left|\alpha_{2}\right|$, strictly less than unity, so that the speed of convergence can be estimated effectively.

It is the purpose of this note to obtain such a bound for the class of positive doubly stochastic matrices, that is, matrices whose elements satisfy the conditions

$$
0<p_{i j} \leqq 1,1=\sum_{j} p_{i j}=\sum_{i} p_{j j}, \quad(i, j=1,2, \cdots, n) .
$$

2

We begin by considering a positive doubly stochastic matrix $Q=\left(q_{i j}\right)$ which happens to be symmetric. We adopt the convention that all our vectors are column vectors, and we use the dash to denote transposition. Thus if e is a latent vector corresponding to the unit latent root, we may put

$$
\begin{equation*}
e^{\prime}=(1,1, \cdots, 1) \tag{2}
\end{equation*}
$$

Let α be a latent root of Q other than unity, and let t be a corresponding latent vector, thus

$$
\begin{equation*}
Q t=\alpha t \tag{3}
\end{equation*}
$$

where

$$
t^{\prime}=\left(t_{1}, t_{2}, \cdots, t_{n}\right)
$$

Since $Q^{\prime}=Q, \alpha$ and t are real. Moreover, e and t are orthogonal, that is

$$
\begin{equation*}
t_{1}+t_{2}+\cdots+t_{n}=0 \tag{4}
\end{equation*}
$$

If the rows and columns of Q are permuted in the same manner, the latent roots are unchanged. Also, the vector t may be multiplied by an arbitrary non-zero scalar. We may therefore assume that

$$
\begin{equation*}
t_{1}=1,1 \geqq t_{2} \geqq t_{3} \geqq \cdots \geqq t_{n} . \tag{5}
\end{equation*}
$$

On writing out the first component of (3) in full we obtain that

$$
\begin{equation*}
\alpha=\sum_{j=1}^{n} q_{1 j} t_{j}=1-\sum_{j=1}^{n} q_{1 j}\left(1-t_{j}\right) . \tag{6}
\end{equation*}
$$

Now, by hypothesis, Q is a (strictly) positive matrix. Hence there exists a number μ such that

$$
\begin{equation*}
q_{i j} \geqq \mu>0 \tag{7}
\end{equation*}
$$

for all i, j. Clearly

$$
\mu \leqq \frac{1}{n}
$$

because the row (column) sums of Q are equal to unity.

Since $1-t_{j} \geqq 0$, we infer from (6) that

$$
\alpha \leqq 1-\mu \sum_{j}\left(1-t_{j}\right),
$$

which, by (4), reduces to

$$
\begin{equation*}
\alpha \leqq 1-n \mu \tag{8}
\end{equation*}
$$

This estimate is best possible, because the latent roots of

$$
Q=\left[\begin{array}{cccc}
1-(n-1) \mu & \mu & \cdots & \mu \\
\mu & 1-(n-1) \mu & \cdots & \mu \\
\cdots & \cdots & & \cdots \\
\mu & \mu & \cdots & 1-(n-1) \mu
\end{array}\right]
$$

are 1 and $1-n \mu$ (repeated $n-1$ times).

3

We shall now drop the assumption that the matrix is symmetric. If P is any doubly stochastic matrix,

$$
\begin{equation*}
e^{\prime} P=e^{\prime}, \quad P e=e . \tag{9}
\end{equation*}
$$

The matrix

$$
Q=P^{\prime} P
$$

is then both doubly stochastic and symmetric. In order to apply the result of the preceding section, we assume that

$$
\begin{equation*}
\mu=\min _{i, j} \sum_{k=1}^{n} p_{k i} p_{k j}>0 . \tag{10}
\end{equation*}
$$

Let ρ be a latent root of P, other than unity, with latent vector u of unit length in the complex metric. Thus we have that

$$
P u=\rho u, \bar{u}^{\prime} u=1 .
$$

Using (9) we find that

$$
e^{\prime} P u=e^{\prime} u=\rho e^{\prime} u,
$$

whence

$$
e^{\prime} u=0 .
$$

Let the latent roots of Q be

$$
1=\alpha_{1}>\alpha_{2} \geqq \alpha_{3} \geqq \cdots \geqq \alpha_{n} .
$$

It is known ([2], p. 28) that α_{2} can be characterized as the maximum of the Hermitian form

$$
\phi(z)=\bar{z}^{\prime} Q z
$$

subject to the constraints

$$
\begin{equation*}
\bar{z}^{\prime} z=1, e^{\prime} z=0 \tag{11}
\end{equation*}
$$

Since the vector u satisfies (11), it follows that

$$
\bar{u}^{\prime} Q u=\bar{u}^{\prime} P^{\prime} P u=|\rho|^{2} \leqq \alpha_{2} .
$$

On applying (8) to α_{2} we conclude that

$$
|\rho| \leqq(1-n \mu)^{\frac{1}{2}}
$$

This is the estimate we wished to establish. It holds for every doubly stochastic matrix which satisfies (10), whether or not there are multiple roots.

Note (added in proof): My attention hat been drawn to the article "Bounds for Eigenvalues of Doubly Stochastic Matrices" by Miroslav Fiedler (Linear Algebras and its Applications, 5, 297-310 (1972)), in which more elaborate results have been obtained by somewhat different methods.

References

[1] F. R. Gantmacher, Applications of the theory of matrices (Interscience, New York, 1959).
[2] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, (Interscience, New York, 1953).

Department of Mathematics
University of Sussex
England

