CONTINUOUS SOLUTIONS OF THE FUNCTIONAL EQUATION $f^{n}(x)=f(x)$

G. M. EWING AND W. R. UTZ

In this note the authors find all continuous real functions defined on the real axis and such that for an integer $n \geqslant 2$, and for each x,

$$
\begin{equation*}
f^{n}(x)=f(x) \tag{1}
\end{equation*}
$$

The symbol f^{n} denotes f iterated n times.
The following two classes of functions occur as solutions.
Class I.
(a_{1}) The function $f(x)$ is continuous for all real x,
$\left(\mathrm{b}_{1}\right) f(x) \equiv x$ on a connected subset S of the x-axis, and
$\left(\mathrm{c}_{1}\right) g \leqslant f(x) \leqslant G$, in which g and G denote, respectively, the infinum and supremum of $f(x)$ on S.

The set S must be a point, a closed interval, a closed ray, or the entire x-axis. Thus Class I includes all constants and the function x. If S is a closed interval $[a, b]$ then $f(x)$ is arbitrary outside of $[a, b]$ except for continuity and the cond tion $a \leqslant f(x) \leqslant b$. If S is a ray, $f(x)$ is similarly described.

Class II.
(a_{2}) The function $f(x)$ is continuous for all real x and either,
$\left(\mathrm{L}_{2}\right) f^{2}(x) \equiv x$, or
$\left(c_{2}\right) f^{2}(x) \equiv x$ on a non-degenerate closed interval $[a, b], f(a)=b, f(b)=a$, and $a \leqslant f(x) \leqslant b$.

A function satisfies $\left(\mathrm{b}_{2}\right)$ if and only if $y=f(x)$ implies $x=f(y)$. Its graph is, accordingly, symmetric with respect to the line $y=x$. If $f(x)$ is a solution of $\left(\mathrm{b}_{2}\right)$, then the inverse of the transformation $x \rightarrow f(x)$ is clearly single valued and continuous. Hence the transformation $x \rightarrow f(x)$ defines a homeomorphism of the x-axis onto itself.

One can easily see that Classes I and II have only the function x in common.
Lemma 1. $f(x)$ is a continuous solution of $f^{2}(x)=f(x)$ if, and only if, $f(x)$ is of Class I.

Proof. That every Class I function is a solution is easily verified. Conversely, if $f(x)$ is a continuous solution then $x=f(r)$ satisfies $f(x)=x$ for every real r. In case $f(x)=x$ has only one solution, $f(x)$ is constant and hence of Class I. If $f(x)=x$ has two solutions a and $b, a<b$, then $f(a)=a$ and $f(b)=b$; and given c between a and b there exists, from the continuity of $f(x)$,
a number $m, a<m<b$, such that $f(m)=c$. It follows that $f(c)=f f(m)=$ $f(m)=c$, and hence if $f(x)=x$ at the ends of an interval the relation holds identically on the interval. The maximal set S on which $f(x)=x$ is thus connected. The continuity of $f(x)$ implies that S is closed. Finally $f(x)$ has property (c_{1}), for if there exists an r not in S such that $f(r)$ does not satisfy (c_{1}), the relation $f(x)=f f(x)=f^{2}(x)$ with $x=r$, contradicts the fact that S is maximal.

Lemma 2. If $f^{n}(x)=x$ on a non-degenerate closed connected subset S of the real axis and if $f(x)$ maps S continuously into S, then
(i) $f(x)$ is a homeomorphism of S onto itself,
(ii) if S is an interval $[a, b], f(x) \equiv x$ on S or $f^{2}(x) \equiv x$ on S and $f(x)$ is equivalent to a reflection of $[a, b]$ about the single fixed point p,
(iii) if S is a ray, $f(x) \equiv x$ on S, and
(iv) if S is the entire axis, $f(x) \equiv x$ on S or $f^{2}(x) \equiv x$ on S and $f(x)$ is equivalent to a reflection of S about the single fixed point p.

Proof. Conclusions (i) for the case of an interval and (ii) are special cases of results in Whyburn [2, pp. 240, 264].

If S is a ray, the mapping [$2, \mathrm{p} .240$] is $(1-1)$ and onto. Thus $f(x)$ is monotone on the ray and the end point is fixed under $f(x)$. If there were an interior point b of the ray such that $f(b) \neq b$, the monotonicity of $f(x)$ would imply that $f^{n}(b) \neq b$. Hence (iii), which implies (i) for the ray.

If S is the real axis, the mapping is again (1-1) and onto and $f(x)$ is monotone. If $f(x)$ increases with x, we see that $f(x) \equiv x$ by the argument employed for the ray. If $f(x)$ is monotone decreasing its graph cuts $y=x$ in exactly one point and $f(x)$ is topologically equivalent to a reflection of the x-axis about the abscissa of this point.

Corollary 1. If n is odd, the functional equation $f^{n}(x)=x$ has only the function x as a continuous solution. If n is even, the continuous solutions of $f^{n}(x)=x$ are those of $f^{2}(x)=x$.

Proof. By conclusion (iv) of Lemma 2, there are two possibilities. If $n=2 m+1$ and if $f^{2}(x) \equiv x$ then $f^{2 m}(x) \equiv f^{2} f^{2} \ldots f^{2}(x) \equiv x$, and hence $f^{2 m+1}(x) \equiv f(x) \equiv x$. If n is even, the stated result is immediate from Lemma 2 since $f(x) \equiv x$ is a solution of $f^{2}(x)=x$.

Theorem 1. The continuous real solutions of $f^{n}(x)=f(x), n \geqslant 2$, are the functions of Class I if n is even and the functions of Classes I and II if n is odd.

Proof. If $f(x)$ is of Class I then $f^{2}(x)=f(x)$. Whence

$$
f^{3}(x)=f^{2}(x)=f(x), \ldots
$$

If $f(x)$ is of Class II we verify that $f^{3}(x)=f(x)$. Then

$$
f^{5}(x)=f^{3}(x)=f(x), f^{7}(x)=f^{5}(x)=f(x), \ldots
$$

Conversely, let $f(x)$ be a continuous solution of $f^{n}(x)=f(x)$. Then

$$
f^{n-1} f^{n-1}(x)=f^{n-2} f^{n}(x)=f^{n-2} f(x)=f^{n-1}(x)
$$

so that $f^{n-1}(x)$ if of Class I by Lemma 1. Let S be the maximal subset of the x-axis on which $f^{n-1}(x) \equiv x$.

If S is a point, then $f^{n-1}(x) \equiv c$ and $f(x) \equiv f f^{n-1}(x) \equiv f(c)$, so that $f(x)$ is of Class I.

If S is the closed interval $[a, b]$ then $f^{n-1}(x) \equiv x$ on $[a, b]$ and $a \leqslant f^{n-1}(x) \leqslant b$ by (b_{1}) and (c_{1}). Moreover $a \leqslant f(x) \leqslant b$, as a consequence of the relations

$$
\begin{equation*}
f(x)=f^{n}(x)=f^{n-1} f(x) \tag{2}
\end{equation*}
$$

Thus $f(x)$ maps the real axis into $[a, b]$. In particular $[a, b]$ goes into $[a, b]$ and Lemma 2 is applicable. If $f(x) \equiv x$ on $[a, b], f(x)$ is of Class I. The other possibility is that $f^{2}(x) \equiv x$ on $[a, b]$, and that $f(a)=b, f(b)=a$, in which event $f(x)$ is of Class II.

If $f^{n-1}(x) \equiv x$ on a ray, we see that $f(x)$ maps the reals into $[a, \infty]$ or $[-\infty, b]$. Hence $f(x) \equiv x$ on the ray by Lemma 2 and is of Class I.

Finally, if S is the x-axis, the desired conclusion is given by Corollary 1.
The functional equation

$$
\begin{equation*}
f^{n}(x)=f^{m}(x) \tag{3}
\end{equation*}
$$

m and n integers, $1<m<n$, has among its continuous solutions the functions of Classes I and II if $m+n$ is even and those of Class I if $m+n$ is odd. In either case, if $f(x)$ is a solution of (3) there exists an integer k such that $f^{k}(x)$ is of Class I. However, each equation (3) has continuous solutions in neither of our classes. For example $f^{3}(x)=f^{2}(x)$ has the solution

$$
f(x)=\left\{\begin{array}{cr}
\sin \pi x & x>1 \\
0 & |x| \leqslant 1 \\
-x-1 & -2 \leqslant x<-1 \\
1 & x<-2
\end{array}\right.
$$

Let $y=f(x)$ denote a transformation of a topological space X into itself. A necessary and sufficient condition that $f^{2}(x)=f(x)$ have $f(x)$ as a continuous solution is that the set S of fixed points under $f(x)$ be non-vacuous and that $f(x)$ map X continuously into S. That $f(x)$ be a continuous solution of $f^{2}(x)$ $=f(x)$ is a restriction on both S and $f(x)$. If X is the real axis these restrictions are given by our Lemma 1. In general the solutions of $f^{2}(x)=f(x)$ are the "retractions" of the space X. These have been studied by Borsuk [1] but results for higher-dimensional or abstract cases comparable to those of Lemma 1 do not seem to be available and appear difficult to achieve.

References

1. K. Borsuk, Sur les retractes, Fund. Math., 17 (1931), 152-170.
2. G. T. Whyburn, Analytic topology (Amer. Math. Soc. Colloquium Publications, vol. 28, 1942).

The Sandia Corporation
and
The University of Missouri

