CONTINUOUS SOLUTIONS OF THE FUNCTIONAL
EQUATION f(x) = f(x)

G. M. EWING AND W. R. UTZ

In this note the authors find all continuous real functions defined on the
real axis and such that for an integer n> 2, and for each x,

1) ) = flx).

The symbol f™ denotes f iterated » times.
The following two classes of functions occur as solutions.

Crass I.
(a1) The function f(x) is continuous for all real x,
(by) f(x) = x on a connected subset S of the x-axis, and
(a) g < f(x) < G, in which g and G denote, respectively, the infinum and
supremum of f(x) on S.

The set S must be a point, a closed interval, a closed ray, or the entire
x—axis. Thus Class I includes all constants and the function x. If S is a closed
interval [a, b] then f(x) is arbitrary outside of [a, b] except for continuity and
the cond tion a < f(x) < b. If Sis a ray, f(x) is similarly described.

Crass II.
(a) The function f(x) is continuous for all real x and either,
(ko) f2(x) = x, or
(c2) f2(x) = x on a non-degenerate closed interval [a, b, f(a) = b, f(b) = a,
and a < f(x) < b.

A function satisfies (bs) if and only if y = f(x) implies x = f(y). Its graph is,
accordingly, symmetric with respect to the line y = x. If f(x) is a solution of
(bg), then the inverse of the transformation x — f(x) is clearly single valued
and continuous. Hence the transformation x — f(x) defines a homeomorphism
of the x-axis onto itself.

One can easily see that Classes I and I have only the function x in common.

LeEMMA 1. f(x) 2s a continuous solution of f2(x) = f(x) if, and only if, f(x)
s of Class 1.

Proof. That every Class I function is a solution is easily verified. Con-
versely, if f(x) is a continuous solution then x = f(r) satisfies f(x) = x for
every real 7. In case f(x) = x has only one solution, f(x) is constant and hence
of Class I. If f(x) = x has two solutions ¢ and b, ¢ < b, then f(a) = a and
f(b) = b; and given ¢ between a and b there exists, from the continuity of f(x),
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a number m, a < m < b, such that f(m) = c. It follows that f(c) = ff(m) =
f(m) = ¢, and hence if f(x) = x at the ends of an interval the relation holds
identically on the interval. The maximal set S on which f(x) = x is thus con-
nected. The continuity of f(x) implies that .S is closed. Finally f(x) has property
(c1), for if there exists an 7 not in S such that f(r) does not satisfy (c;), the
relation f(x) = ff(x) = f*(x) withx = r, contradicts the fact that .S is maximal.

LEMMA 2. If f*(x) = x on a non-degenerate closed connected subset S of

the real axis and if f(x) maps S continuously into S, then
(1) f(x) is a homeomorphism of S onto itself,

(ii) #f S is an interval [a, b], f(x) = x on S or f2(x) = x on S and f(x) is
equivalent to a reflection of [a, b] about the single fixed point p,

(iii) of S is a ray, f(x) = x on S, and

(iv) if S is the entire axis, f(x) = x on S or f*(x) = x on S and f(x) is equiva-
lent to a reflection of S about the single fixed point p.

Proof. Conclusions (i) for the case of an interval and (ii) are special cases
of results in Whyburn [2, pp. 240, 264].

If Sis a ray, the mapping (2, p. 240] is (1-1) and onto. Thus f(x) is monotone
on the ray and the end point is fixed under f(x). If there were an interior
point b of the ray such that f(b) = b, the monotonicity of f(x) would imply
that f™(b) & b. Hence (iii), which implies (i) for the ray.

If S is the real axis, the mapping is again (1-1) and onto and f(x) is mono-
tone. If f(x) increases with x, we see that f(x) = x by the argument employed
for the ray. If f(x) is monotone decreasing its graph cuts y = x in exactly one
point and f(x) is topologically equivalent to a reflection of the x-axis about
the abscissa of this point.

COROLLARY 1. If n is odd, the functional equation f™(x) = x has only the
function x as a continuous solution. If n is even, the continuous solutions of
f™(x) = x are those of f*(x) = x.

Proof. By conclusion (iv) of Lemma 2, there are two possibilities. If
n=2m+ 1 and if f?(x) =« then f™™(x) = f%*...f%(x) =x, and hence
fmti(x) = f(x) = x. If n is even, the stated result is immediate from Lemma 2
since f(x) = x is a solution of f2(x) = «x.

THEOREM 1. The continuous real solutions of f*(x) = f(x), n > 2, are the
Sfunctions of Class 1 if n is even and the functions of Classes | and 11 if n is odd.

Proof. 1f f(x) is of Class I then f*(x) = f(x). Whence
Fix) = fix) = flx), . ...
If f(x) is of Class II we verify that f3(x) = f(x). Then
o x) = f3(x) = fx), f1(x) = fo(x) = f(x),....
Conversely, let f(x) be a continuous solution of f*(x) = f(x). Then

P = ) = ) = )
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so that /" !(x) if of Class I by Lemma 1. Let S be the maximal subset of the
x-axis on which f*7(x) = «.

If S is a point, then f* ' (x) = ¢ and f(x) = ff*'(x) = f(c), so that f(x) is
of Class I.

If S is the closed interval [a, 8] then f*"'(x) = xon [a, b]and a < f* ' (x) < b
by (b1) and (c1). Moreover a < f(x) < b, as a consequence of the relations

(2 flx) = fr(x) = fr71f(x).

Thus f(x) maps the real axis into [a, b]. In particular [e, b] goes into [a, b] and
Lemma 2 is applicable. If f(x) = x on [a, b], f(x) is of Class I. The other
possibility is that f*(x) = x on [a, 0], and that f(a) = b, f(b) = a, in which
event f(x) is of Class II.

If f~~'(x) = x on aray, we see that f(x) maps the reals into [a, ©]or[— =, b].
Hence f(x) = x on the ray by Lemma 2 and is of Class I.

Finally, if S is the x-axis, the desired conclusion is given by Corollary 1.

The functional equation

3) frx) = fmx),

m and n integers, 1 < m < n, has among its continuous solutions the functions
of Classes I and II if m + = is even and those of Class I if m 4+ » is odd.
In either case, if f(x) is a solution of (3) there exists an integer k2 such that
f¥(x) is of Class I. However, each equation (3) has continuous solutions in
neither of our classes. For example f3(x) = f2(x) has the solution

sin Tx x> 1

_ 0 x| <1
f@) =1 4 —2<x < —1
1 x < —2.

Let y = f(x) denote a transformation of a topological space X into itself.
A necessary and sufficient condition that f?(x) = f(x) have f(x) as a continuous
solution is that the set S of fixed points under f(x) be non-vacuous and that
f(x) map X continuously into S. That f(x) be a continuous solution of f2(x)
= f(x) is a restriction on both S and f(x). If X is the real axis these restrictions
are given by our Lemma 1. In general the solutions of f*(x) = f(x) are the
“retractions’ of the space X. These have been studied by Borsuk [1] but
results for higher-dimensional or abstract cases comparable to those of
Lemma 1 do not seem to be available and appear difficult to achieve.
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