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1. Introduction 

During the seventeenth century, in the wake of the discovery of the 
solar differential rotation, some scientists argued that stellar varia
bility was a direct consequence of axial rotation, the spinning body 
showing alternately its bright Unspotted) and dark Spotted) hemispheres 
to the observer (Brunet 1931). Although this idea did not withstand 
the passage of time, it is nevertheless an interesting one because it 
is clearly indicative of the kind of fascination stellar rotation has 
aroused since its inception. And yet, at this writing there is no 
longer any doubt that spherically symmetric models do explain the major 
observed properties of stars. Moreover, if one excepts the very early 
and very late moments of a starTs lifetime, the effects of rotation on 
stellar structure are apparently dynamically unimportant (e.g., Tassoul 
1978, hereafter T.R.S.; Moss and Smith 1981, and references therein). 
What is the purpose, then, to discuss the role of rotation on the main-
sequence and post-main-sequence phases of stellar evolution? 

As we shall see below, perhaps the most interesting effect of ro
tation is to generate small-scale, eddy-like motions as well as large-
scale meridional currents wherever radiative equilibrium prevails. 
The importance of these motions lies in the fact that, under certain 
conditions, they may lead to some degree of mixing of the stellar mate
rial, or that they may prevent the gravitational sorting of the elements 
in the surface layers of most (but not all!) early-type stars. However, 
since I disagree with the current habit of placing the cart in front 
of the horse, I shall not discuss these practical implications without 
making first a thorough discussion of the state of motion in a stellar 
radiative zone. This is definitely not an exhaustive review of the 
recent literature. Rather, I shall try to summarize in nontechnical 
terms the theoretical work ITm pursuing in collaboration with my wife 
(Tassoul and Tassoul 1982a, b, c, 1983a, b, c, 1984a, b; hereafter 
Papers I, II, ..., VIII, respectively). Our personal approach, which 
we borrowed from geophysics, resolves in a very simple manner the many 
contradictions and inconsistencies that have beset the theory of rotat
ing stars. 
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2. Stability Considerations 

In principle, by making use of the basic equations of astrophysi-
cal fluid dynamics, one should be able to obtain at every instant the 
angular momentum distribution within a star. For evident reasons, this 
is an impossible task, even were the initial conditions known. The 
standard procedure is to calculate in an approximate manner an equili
brium structure that corresponds to some prescribed rotation law, rul
ing out (in principle) those configurations that are dynamically or 
thermally unstable with respect to axisymmetric disturbances. Although 
such an ad hoc approach may be used to estimate the gross effects of 
rotation on stellar evolution, it is totally inadequate for the follow
ing two reasons: (i) the instantaneous angular momentum distribution 
does not follow from the equations of motion, and (ii) no dynamically 
stable model can possibly exist when non-axisymmetric disturbances are 
taken into account. Because the role of these ever-present dynamical 
instabilities has been overlooked in astrophysics, a brief review of 
the relevant concepts is thus in order. 

If a rotating star was a barotrope, then its angular velocity ft 
would be constant on cylinders centered on the rotation axis, i.e., 
ft = ft ((JO, t), where oo is the distance from the rotation axis. In this 
case, the dynamical stability of the configuration depends on the spe
cific angular momentum j = ftco and the Richardson number Ri = N2/S2, 
where N is the buoyancy frequency and S is the shear in the linear ve
locity ftco. (Since we consider radiative zones only, we have N^>0 every
where.) Instability with respect to axisymmetric disturbances occurs 
wherever the j-distribution decreases outward, that is, dj /doj<0. In 
geophysics, it is called the condition for symmetric instability, and 
it merely generalizes the Rayleigh criterion for an incompressible 
fluid (e.g., T.R.S., p. 167). As was shown by Lorimer and Monaghan (1980), 
the symmetric instability is a violent one in the sense that, given an 
initially unstable j-distribution, a slowly rotating barotrope will at 
once generate meridional currents and non-axisymmetric motions in the 
nonlinear regime, the resulting flow becoming chaotic with a very slow 
trend to equilibrium. Equally well known is the fact that a rotating 
barotrope may also become dynamically unstable with respect to non-
axisymmetric disturbances. It is the so-called shear-flow instability 
that occurs wherever Ri ^ 1/4. This instability is a mild one in the 
sense that it merely generates turbulence when the shear is large enough 
to overcome the stabilizing influence of the density stratification. No 
dynamical instability occurs in a rotating barotrope when Ri % 1/4 and 
dj2/do)>0 (e.g., Turner 1973; see also Chimonas 1979). 

As we shall see below, a real rotating star is not a barotrope but 
a barocline; that is, the isothermal surfaces are in general inclined 
over the isobaric surfaces so that, in cylindrical coordinates (co, $, 
z), one has ft = ft (OJ, z, t) or 3ft/8z i= 0. In this case, then, the 
violent symmetric instability occurs wherever the j-distribution de
creases outward on the surfaces of constant specific entropy (e.g., 
T.R.S., p. 168), and the mild shear-flow instability sets in wherever 
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Ri ^ 0(1). In sharp contrast to the ideal case of a barotrope, however, 
a barocline is also dynamically unstable with respect to non-axisymme-
tric disturbances wherever Ri £ 0(1). It is the so-called baroclinic 
instability, depending essentially upon the difference between the iso
thermal and isobaric surfaces. This instability, which draws its kine
tic energy mainly from the potential energy of the unperturbed rota
tional motion, has received the most attention in geophysics because of 
its importance to the dynamics of the Earth's atmosphere and oceans 
(e.g., Charney 1973; see also Paper VI, n. 3, and references therein). 
It is a mild instability in the sense that it continuously generates 
small-scale, time-dependent motions that propagate in the azimuthal di
rection. As it is done in geophysics, we shall merely assume that the 
ever-present baroclinic instability produces anisotropic turbulence 
in the radiative zone of a rotating star. Lacking any better descrip
tion of these irregular motions, we shall further assume that the eddy 
flux of momentum can be represented parametrically by means of suitable 
coefficients of eddy viscosity. Evidently, in this representation the 
ever-present thermal instabilities (such as the feeble GSF instability) 
play no important role because they are overshadowed by the ever-present 
shear-flow and baroclinic instabilities, which have time scales of the 
order of the rotation period (Paper I, pp. 337-338). 

3. Rotation and Circulation 

All theoretical speculations about the angular momentum distribu
tion within a rotating star have their roots in von Zeipel's paradox, 
which states that the conditions of hydrostatic and radiative equili
brium are in general incompatible in a rotating barotrope. This para
dox can be solved in two different ways: either one allows for a slight 
departure from barotropy and choose the angular velocity 0, = Q (oo, z, t) 
so that strict radiative equilibrium prevails at every point, or_ one 
allows for large-scale motions in meridian planes. The first alterna
tive (originally developed by M. Schwarzschild) is mainly of academic 
interest because, as we pointed out in Paper I (p. 341), these circula
tion-free models are dynamically unstable with respect to non-axisymme-
tric motions; hence, the slightest disturbance will generate three-
dimensional motions and, as a result, a large-scale meridional circula
tion will commence. The second alternative was independently suggested 
by Vogt and by Eddington, who pointed out that the breakdown of strict 
radiative equilibrium tends to set up slight rises in temperature and 
pressure over some areas of any given level surface and slight falls 
over other areas, the ensuing pressure gradient between the poles and 
the equator causing a flow of matter along the level surfaces. In other 
words, it is the small departures from spherical symmetry in a rotating 
star that lead to unequal heating along the polar and equatorial radii, 
which in turn causes large-scale circulatory currents in meridian planes. 
Eddington's (1925) farsightedness is particularly apparent from the fol
lowing remark: "The coefficient of viscosity in a star is rather high, 
and it seems likely that when the currents attain a moderate speed a 
steady rate will result; of course, the fundamental equations of equi-
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librium are then modified by the addition of viscous stresses to the 
pressure-system, and the star is relieved from von Zeipel's condition." 
It is my purpose to show that this sentence contains the essence of our 
global solution, although obviously the nature of this "rather high 
viscosity" has to be specified more clearly. 

I have already referred to the many inconsistencies that can be 
found in the literature on meridional streaming in a stellar radiative 
zone (T.R.S., pp. 198-207; Paper IV, p. 301). As is well known, in 
most papers the main consensus is that viscous friction can be neglected 
in a radiative zone because: (i) the microscopic (molecular and radia
tive) viscosity is negligibly small in a star, and (ii) laminar motions 
always prevail outside a (turbulent) convective zone. The first state
ment is correct, as we showed in Paper I. The second one, which most 
probably stems from man's propensity to idealize what he cannot see, 
is an unacceptable oversimplification in the present context. Our glo
bal solution rests essentially on a dynamical linkage between the ever-
present eddy-like motions (which we called "anisotropic turbulence" 
because they are predominantly two-dimensional) and the mean flow (that 
is, the differential rotation and concomitant meridional currents). To 
be more specific, strict radiative equilibrium prevents a rotating star 
from being a barotrope; hence, a radiative zone is necessarily filled 
with small-scale transient motions that are caused by the non-axisym-
metric instabilities. This anisotropic turbulence, in turn, generates 
viscous boundary layers so that the circulation velocities do not be
come infinite near the boundaries of the radiative zone. (The presence 
of unwanted singularities was the main defect of Sweet's [1950] laminar, 
inviscid solution.) Moreover, the turbulent friction acting on the 
differential rotation can be made to balance (in part or in toto) the 
transport of angular momentum by the large-scale meridional currents 
(Papers IV and VI). 

By making use of the eddy-mean flow interaction which takes place 
continuously in a radiative zone, one can obtain a simple but adequate 
description of the mean state of motion in a rotating star. For exam
ple, in Papers I, IV,and VI we have considered the case of a chemical
ly homogeneous, nonmagnetic, early-type star, assuming that departures 
from spherical symmetry are not too large. As we have shown, if one ex
cludes the most rapid rotators on the verge of equatorial break-up, one 
can rightfully expand about hydrostatic equilibrium in powers of the 
small parameter e = ft2 R /GM, neglecting all terms of 0 (e2) or smaller. 
Here ft is the (constant) overall angular velocity, R the radius, G the 
constant of gravitation, and M the mass. (Note that e « 0.4 at the 
centrifugal limit.) To make a long story short, let us say that the 
overall rotation, of 0 (e 2), generates a large-scale meridional circu
lation, which is of 0 (e) because the centrifugal force is of that or
der; these currents, in turn, react back on the overall rotation so that, 
correct to 0 (e^/2)^ t-jcie actual angular velocity takes the form 

ft = ft [ 1 + e (A + B sin2 9)] , (1) 
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in spherical coordinates (r, 6, <j>) . The problem of evaluating the mean 
circulation velocities is thus neatly separated from that of evaluating 
the mean departure from solid-body rotation, i.e., the functions A(r) 
and B(r) in equation (1). Th^s fact explains why some of the early 
results remain partially valid, even though their meanings are changed 
because of the essential eddy-mean flow interaction. 

In Paper I we have illustrated the meridional currents in the tur
bulent radiative envelope of a 3M early-type star. Clearly, to 0 (e) 
the circulation pattern does not depend on the overall rotation rate; 
it consists of a single cell extending from the core-envelope interface 
to the surface, with rising motions at the poles and sinking motions at 
the equator. Because of the presence of viscous boundary layers, there 
are no singularities in the mean flow; hence, the circulation velocities 
remain uniformly small everywhere in the radiative zone. The typical 
speed of these currents is of the order of e LR /GM , where L is the 
total luminosity. This result confirms the belief that the time scale 
of the large-scale circulatory currents established by rotation in a 
chemically homogeneous radiative zone is everywhere of the order or the 
Eddington-Sweet time, trc = tVXJ/e, where tvlJ (= GM /RL) is the Kelvin-
Helmholtz time. 

The nicest feature of our mean circulation pattern is that the 
meridional velocities do not depend on the (largely unknown) eddy vis
cosities in the bulk of a radiative zone. Of course, these velocities 
depend on the radial (i.e., along gravity) coefficient of eddy viscosi
ty (y., say) in the core and surface boundary layers. Fortunately, 
they depend respectively on vr'' and VZ: in these layers. Hence, 
because of the presence of the small exponents 1/7 and 1/10, the depen
dence on the poorly understood coefficient u is appreciably~reduced 
near the boundaries. To be specific, an uncertainty of 0 (10 ), say, on 
u near the surface leads to an error of 0 (10^*^) ̂  2 on the meridional 
velocities. The same accuracy was achieved in our discussions of meri
dional streaming in tidally distorted stars (Papers II and III) and 
cooling white dwarfs (Paper V). In all cases, there are no singulari
ties in the meridional flow, the circulation velocities remaining uni
formly small everywhere in the star. Owing to the extreme smallness 
of these currents, however, they are without any doubt dynamically unim
portant. Yet, because they continuously transport angular momentum, 
they play a crucial role in establishing the actual amount of differen
tial rotation in a star. 

The derivation of the rotation law is a much more intricate problem 
(see eq. [.lj). In principle, the function ft may be obtained by merely 
stating that the transport of angular momentum by the meridional flow is 
balanced by the turbulent friction acting on the differential rotation 
and a change in time of the mean azimuthal motion. (This is the meaning 
of the (^-component of the equations for the mean motion, see eq. [4 ] 
of our Paper VI.) Even assuming that a mean steady state has been reach
ed (8ft/8t = 0), one is still faced with the inescapable fact that the 
functions A and B are roughly proportional to 1/y . Since it is impos-
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sible at this time to perform a meaningful evaluation of the eddy coef
ficients in a radiative zone, there is thus no hope to calculate the 
departure from solid-body rotation with any accuracy. (A similar diffi
culty occurs in the theory of the solar rotation in the outer convecti-
ve envelope; but, then, it is at least possible to adjust the theoreti
cal rotation law to the observed surface rotation; see, e.g,,Monin and 
Simuni 1982, and references therein.) The problem is even more severe 
when one considers a radiative zone in which the mean rotation is not 
steady in time (because the star is very young or rapidly evolving, or 
because it loses angular momentum). In this case, as we showed in 
Papers VI and VIII, the (non-uniform) overall angular velocity, of 
0 (e2), must be derived also from the ^-component of the Reynolds equa
tions. Hence, until such time as the anisotropic turbulence in a radia
tive zone has been thoroughly investigated, it is impossible to derive 
from first principles only the instantaneous rotation law in a star. 
Perhaps the only sure thing is that, although the departure from uniform 
rotation may be quite small (if y is quite large), there is no longer 
any reason to believe that a radiative zone is spinning exactly like a 
solid body, no more than there is to claim that strict uniform rotation 
is forced upon a star by the simple presence of a magnetic field. Uni
form rotation may be a convenient (and reassuring) assumption in some 
cases; in no case is it compatible with the conservation principles of 
astrophysical fluid dynamics. 

4. The Effects of a y-gradient 

As is well known, Mestel (e.g., 1965) has convincingly argued that 
the nonspherical distribution of mean molecular weight y set up by meri
dional streaming in a rotating star tends to choke back the motion in 
meridian planes. According to Mestel, then, there should be no tenden
cy for spontaneous mixing of matter between a chemically inhomogeneous 
region and the rest of a star (except perhaps for rapidly rotating stars 
on the verge of equatorial break-up). Since MestelTs analysis is mainly 
a qualitative one, in Paper VII we have discussed the effects of a 
y-gradient on the meridional currents that pervade the turbulent radia
tive zone of a single, nonmagnetic, main-sequence star. To the best of 
my knowledge, this is the first attempt to actually solve the time-de
pendent differential equations that govern the meridional flow in an 
evolving star. 

To illustrate the main features of meridional streaming in a chemi
cally inhomogeneous star, we have considered the simple problem of a 
hydrogen-burning core for which the y-gradient develops quasi-statical-
ly from the center outwards. In (almost) agreement with Mestelfs find
ing, we found that the meridional flow is the superposition of "ft-cur-
rents1,1 (i.e., rotationally-driven currents that are nevertheless modifi
ed by the radial component of the y-gradient) and "y-currents" (i.e., 
currents that try to restore spherical symmetry to the y-distribution). 
When the departure from spherical symmetry is not too large, the cor
responding speeds-v (ft) and v (y), say - are of the order of eLR /GM2 
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and (eLR /GM ) (Ay/y), respectively, where eAy/y is a measure of the 
latitudinal y-variations over the isothermal surfaces. As was expected, 
both speeds are proportional to the ratio e because both currents are 
caused by the nonsphericity of the rotating star. Hence, to 0 (e) the 
streamlines of the meridional flow do not depend on the overall rota
tion rate. 

The numerical work indicates further that, almost from the start, 
the y-currents oppose the ^-currents, the large-scale currents dying 
out as the y-gradient spreads through the core of a solar-type star. 
Within the numerical accuracy of our calculations, then, a y-gradient 
virtually kills off the meridional flow. Yet, although no substantial 
mixing of matter may take place between the inner (inhomogeneous) and 
outer (homogeneous) regions, it is found that the y-gradient does not 
perfectly insulate these regions. Evidently, to 0 (e) we were unable 
to substantiate Mestel's claim that, in spite of a y-gradient, ^-cur
rents do exist in stars on the verge of equatorial break-up. This con
jecture is plausible but, short of a second-order analysis in e, it 
remains unproven. 

How do we explain, then, that Kippenhahn (1974) was able to derive 
a simple, first-order criterion for rotational mixing in chemically in-
homogeneous zones? His argument is as follows. To 0 (e), the speed of 
the ^-currents is v (ft) =eLR^/GM2, which is Sweet! s original result. 
As for the y-currents, Kippenhahn evaluates v (y) by means of a local 
analysis, claiming that v (y) is about equal to (LR^/GM2) (Dy/y), where 
Dy is the difference in molecular weight between a blob of matter and 
its surroundings. In this crude picture, a y-gradient kills off the 
meridional currents if v (ft) ̂  v (y); hence, it follows at once that 
no mixing will occur if e ^ Dy/y. The fallacy of this criterion lies 
in the fact that, as I said, to 0 (e) one has v (y) = (cLR2/GM2) (Ay/y). 
Accordingly, because both speeds are proportional to e in a first-order 
calculation, no critical value of c can possibly be found to this order. 
In other words, Kippenhahn's derivation is incorrect because his local 
analysis does not include the fact that departure from spherical geome
try is the ultimate cause of the global y-currents. This is also the 
reason why Huppert and Spiegel (1977)!s analysis did not confirm 
Kippenhahn? s. 

To sum up, in Paper VII we have found that the large-scale meri
dional currents virtually die out from the center outwards as the y-
gradient steadily grows in a late-type star. Correct to order e, our 
quantitative discussion thus amply confirms Mestelfs picture of y-bar-
riers that prevent substantial mixing rates in slowly rotating stars, 
although these barriers may be penetrated to some extent. We have not 
yet calculated the circulatory currents in the radiative envelope of an 
evolving early-type star. Technically speaking, however, the two pro
blems are quite similar. Accordingly, one readily sees from the appro
priate equations that, to 0 (e), the pattern of meridional streaming 
in an early-type star does not depend on the overall rotation rate; 
that is, to this order there is no critical rotation rate above which 
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unimpeded mixing may take place in its turbulent radiative envelope. 
(This obvious fact was overlooked by Mestel and Kippenhahn because 
they did not make the proper scaling and ordering in powers of e.) 
Moreover, the y-gradient should inhibit the large-scale currents in 
the bulk of the radiative shell interior to the initial core boundary. 
However, in view of our numerical results, there is no reason to be
lieve that this region cannot be penetrated to some degree. Hence, one 
must allow for some rotational mixing between the homogeneous and inho-
mogeneous parts of the radiative envelope. Of course, the ability of 
the circulatory currents to bring CNO-processed material to the outer 
surface will depend primarily on their speed, which is proportional to 
the squared overall angular velocity ft2. Hence, ±f_ t n e radiative enve
lope of an early-type star is rotating almost uniformly, abnormal abun
dances could be observed at some stage, when the mixing time tgs (= 
G2M3/LR2v2 ) is shorter than the starfs main-sequence lifetime, the 
mixing efficiency of the9meridional circulation increasing as the squar
ed equatorial velocity v (= ft2R2). As I pointed out in Section 3, howeve 
there is absolutely no guarantee that the observed equatorial velocity 
v (or, for that matter, v sin i) is a correct measure of the star's 
e e 
inner rotation, which cannot be predicted on pure theoretical grounds 
only. 
5. Applications 

Quite understandingly, an observer would like to receive clear-cut 
answers to the following two questions: (i) how does a star rotate? and 
(ii) what are the effects of this rotation on the observable parameters? 

As far as the first question is concerned, it has long been accept
ed that the detailed rotation law in a connective core is much uncer
tain, because our description of turbulent convection in a rotating 
fluid necessarily involves some free parameters that cannot be calculat
ed from first principles alone. Our knowledge of the state of motion 
in an outer convective envelope is also incomplete; but then, as it is 
done in geophysics, the free parameters may be selected so that the 
theoretical rotation rate agrees with the observed surface motions. 

In the case of a radiative core or envelope, it was implicitly as
sumed that the rotation law would not involve free parameters because, 
as it was thought, motions are always laminar outside a convective zone. 
In this lecture I have advocated the idea that the prevalent baroclinic 
instability in a stellar radiative zone continuously generates aniso-
tropic turbulence, which interacts with both the rotation law and the 
concomitant meridional currents. (A similar eddy-mean flow interaction 
has been known to the geophysicists since the late 1940s!) Because the 
study of transient, eddy-like motions in a radiative zone is a new de
velopment, it is not yet possible to obtain the eddy viscosities and, 
thence, the mean rotation law. (As we pointed out in Paper VI, the geo
physicists themselves cannot evaluate their eddy viscosities from first 
principles alone; unless one is willing to rely upon doubtful hand-
waving arguments, there is thus no hope to evaluate ours at this time!) 
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Fortunately, thanks to a caprice of nature, the slow but inexorable meri
dional currents in a turbulent radiative zone are almost independent of 
the smaller-scale motions. Hence, the circulation velocities presented 
in Papers I and II are amply adequate to discuss the problem of circu
lation versus diffusion in (single and double) early-type stars. This 
was done with great clarity by Michaud and his collaborators; I shall 
not repeat their arguments that point in favor of both the diffusion 
model and large-scale meridional streaming in turbulent radiative enve
lopes (Michaud 1982, Michaud et al. 1983). Of equal importance is the 
problem of rotational mixing in evolving stars, which I will now briefly 
consider. 

Although meridional circulation has the potentially important ef
fect of mixing the composition of the stellar material, it is known that 
most stars do not mix because the assumption of homogeneous stellar evo
lution does not explain the existence of the giant branch in the HR dia
gram. Mestelfs idea that y-barriers prevent the mixing of matter (ex
cept perhaps for stars on the verge of equatorial break-up) was thus all 
the more plausible, and the ill-formulated problem of rotationally-
driven meridional currents could be swept under the rug. By necessity, 
however, the concept of slow rotational mixing was evoked by Paczynski 
(1973) and again by Sweigart and Mengel (1979) to explain CNO anomalies 
in some early-type stars and red giants (see also, e.g., Norris 1981, 
and references therein). What can we add to these phenomenological dis
cussions in the light of the quantitative results presented in Papers 
I-VIII? 

First of all, there is some confusion about the fact that, suppo
sedly, there should exist a simple recipe which indicates when rotation
al mixing will or will not occur. As I have explained in Section 4, for 
all stars rotating well below the break-up velocities, the streamlines 
of meridional circulation do not depend on the overall rotation rate. 
Furthermore, our detailed numerical calculations clearly show that, 
although a y-gradient virtually kills off large-scale currents, it 
does not perfectly insulate a chemically inhomogeneous region from its 
surroundings. In other words, some mass exchange may take place, after 
some lapse of time, whenever the Eddington-Sweet time in the homogeneous 
region is smaller than the evolutionary time scale. 

The extreme slowness of the circulatory currents is the main reason 
why rotational mixing is utterly inefficient when it comes to bringing 
a sizable amount of hydrogen-rich material into the burning core of a 
solar-type star (unless, of course, its inner rotation period is no more 
than a fraction of a day!) Accordingly, rotational mixing cannot pos
sibly explain the solar neutrino problem. But then, as I have shown in 
Section 2, one must keep in mind that rotation always generates a whole 
spectrum of eddy-like motions in a radiative zone. Hence, turbulent 
diffusion mixing (as originally suggested by Schatzman) remains a plau
sible explanation to this problem, even though the numerical modelling 
of Schatzman et al. (1981) might appear inadequate, as was shown by 
Ulrich and Rhodes (1983). In my opinion, because the (non-uniform) 
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turbulent transport coefficients in the Sun are still too much uncer
tain, no unequivocal solar model can be made at this time; and there is 
not a single good reason why the corresponding Reynolds number should 
take a universal value in all main-sequence stars. 

In early-type stars one has in general z « 0.01-0.1, whereas in 
solar-type stars e may be two or three orders of magnitude smaller. 
This is the main reason why even a moderate rotation rate can bring 
CNO-processed material to the outer surface in an evolving early-type 
star, in spite of the presence of a y-gradient near the core-envelope 
interface. The idea that slow rotationally-driven currents may be the 
ultimate cause of abnormal atmospheric abundances in some stars is a 
most plausible one, therefore. Not unexpectedly, we found it impossi
ble to derive a precise criterion stating under what condition(s) and 
to what extent meridional streaming may indeed change atmospheric CNO 
abundances, either on the main sequence or on the giant branch. It is 
my firm belief that rio_ simple, black-or-white criterion exists, because 
this problem involves too many (unknown) parameters. (For example, the 
inner rotation rate of a star may be larger than that implied by its 
observed v sin i value, so that the mixing currents may be much faster 
than those expected on the basis of the results presented in Paper I.) 
Yet, ITm looking forward to the time when CNO surface abundances (and 
perhaps other seemingly unrelated observations) will be used to probe 
the inner state of motion in a stellar radiative zone, which always 
consists of highly anisotropic turbulence, rotation, and much slower 
circulatory currents. 

Since mixing has also been mentioned in connection with the blue 
stragglers, I shall conclude this lecture by commenting briefly on 
these puzzling objects. As we know, Saio and Wheeler (1980) and Maeder 
and Mermilliod (1981) have shown empirically that partial ad hoc mixing 
is a viable assumption to account for their existence. On the basis of 
our self-consistent results about meridional 'streaming, it would appear 
most unlikely that slow rotational mixing can indeed play a role in this 
problem, being overshadowed by convective overshooting, which is a much 
more efficient stirring mechanism. However, because there is no compel
ling reason why overshooting should occur in some stars but not in others, 
one should not exclude the possibility that blue stragglers have rapid
ly rotating cores. If so, I do not think that rotational mixing would 
be of much importance either, extended main-sequence lifetime being then 
caused (in part or in toto) by a much reduced temperature in the central 
region (as compared to their slowly rotating counterparts). Of course, 
observation indicates that the blue stragglers do not appear to be ab
normally rapid rotators (e.g., Smith and Hesser 1983). But then, as I 
have already said, these measurements refer to the surface rotation ra
tes, which may not be indicative in all cases of the inner rotation 
rates. Since it is most likely that there exists a spectrum of core 
rotational velocities in stars, the assumption of rapidly rotating cores 
in the blue stragglers is therefore not unreasonable. And, again, it 
could be used as an indirect way to evaluate unobservable inner motions. 
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To sum up, the main leitmotiv of this lecture was that neither an 
observer nor a theoretician can give a firm, direct information about 
the state of motion deep inside an evolving star. The main difficulty 
for the theoretician is tha;t the motions within a rotating star are 
always turbulent; hence, given the present state of knowledge about 
turbulence in a compressible fluid, the mean rotation rate necessarily 
depends on poorly known parameters (such as the eddy viscosities). 
Accordingly, instead of studying the gross effects of ad hoc rotation 
laws on stellar evolution, one should perhaps accept rotation as a 
plausible explanation of some observations and, thence, use the data to 
evaluate the mean and fluctuating motions within a star. In other 
words, one should not overlook the fact that some unrelated phenomena 
(such as the solar 5-minute oscillations, the CNO abundances, or perhaps 
the blue stragglers) might provide a clue as to what is the specific 
angular momentum within an evolving star. Moreover, because direct 
measurements of turbulence and large-scale motions can now be made in 
the EarthTs atmosphere and oceans, the theoretician who has a personal 
interest in stellar rotation should avail himself of the much more rapid 
related advances that are being made in geophysics. A genuine back
ground in fluid mechanics may be of some use too. 
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DISCUSSION 
Tayler: I agree that in principle you need to make the careful time-de
pendent treatment of y-currents. However, is it not true that it is only 
really essential when t „ z t n ; if t << t , the star is ES nuclear \ ES .^nuclear.., _. _ kept homogeneous, if t >> t , the y distribution will evolve ES nuclear independent of the ES circulation and you can then ask what effect the 
prescribed y has on the circulation? 

J.-L. Tassoul: Let me rephrase our results in another manner. There are 
th ree time s c a l e s : t , , t „ = tT / e , and t = tTrTT/e_ , where / n i \ • _unuclear' _ES , KH ' , 1 _. KH 1, e (z 0.1, say) is the value of e above which our first-order expansions 
break down. We have made a careful discussion of the simultaneous inter
action between the effects of a y-distribution on the meridional currents 
and the effects of this circulation on the y-distribution in an evolving 
1 M star. We have found that, when t > t , the unsteady circulation 
pattern is the same in all cases (t„„ << t or t „ > t . ). „ n * n • ES L nuclear, ES ~ nuclear 
We found almost no penetration across the outwardly moving y-bamer 
because, when t > t , the radial part y of the y-distribution produces 
a large effect on the circulation pattern whereas the back reaction 
ey of the currents on the y-distribution is a small effect only. 
(Incidentally, this is why our first-order expansions are self-consistent) 
In other words, to order e it takes a quite small departure from sphe
rical symmetry in the y-distribution to kill off the meridional currents 
in the central inhomogeneous region, where nuclear burning takes place. 
(McDonald reached exactly the same conclusions in his correct, first-
order discussion of the y-distribution that is needed to obtain steady, 
circulation-free solutions; see Ap. Sp. Sci., JL9, 309, 1972). Now, if 
t < t , second-order series in e are needed. In this more complex 
initial-value problem, one does not expect to find almost perfect in
sulation in all cases, because the streamlines of meridional circulation 
theji depend on e. This is another time-dependent problem that has not 
yet been solved. On physical grounds, new behaviours are previsible when 
t << t . However, unless one is willing to make use of unsound first-
order series in e, these more complex circulation patterns can be des
cribed by second-order expansions only. Our calculation is strictly 
first-order in e. I do not want to claim more than one can achieve on 
the basis of a consistent first-order analysis (see also our Paper VII). 
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Spruit: In the beginning you said that for ordinary microscopic viscosity 
"there is no solution". Does that mean that the mathematical problem 
stated has no solution, or does it mean that the solution just looks 
unappealing? 

J.L. Tassoul: I should have said: "there is no acceptable steady solution 
when ordinary microscopic viscosity is taken into account." The reason 
why we did not want to retain our laminar solutions is that we wanted to 
restrict ourselves to mean steady motions in our Paper I. Later on, we 
realized that one can also obtain consistent solutions with a much 
smaller viscosity, provided one allows for unsteadiness in the mean 
azimuthal motion. This is explained at length in our Papers IV and VI. 

Spruit: From the fact that the solution for low V has large differential 
rotation one cannot conclude that there is turbulence. This has to come 
from a different argument. 

J.L. Tassoul: Our argument that the motions are turbulent rather than 
laminar stems from the fact that, no matter what kind of viscosity one 
assumes, the rotation law necessarily depends on TU and z. Accordingly, 
one must consider baroclinic models, which may easily sustain a wide 
range of small-scale, eddy-like motions. This is shown in our Papers I 
(App. B) and VII (App.). 

Spruit: Your statement that baroclinic instability will always be present 
in a barocline is not justified. Also, when it is present it need not 
produce a significant turbulence in the bulk of the star. See Spruit and 
Knobloch (A & A, 1983, "Baroclinic instability in stars"). This paper 
also describes why baroclinic instability in stars is so much less im
portant than in the Earth's atmosphere and oceans. Only when fi is of the 
order N can baroclinic instability become important in stars. 

J.L. Tassoul: In the Earth's atmosphere, baroclinicity is caused by the 
pole-equator temperature difference due to solar heating. As we explained 
in our paper I (App. B), the thermal-wind relation and the geostrophic 
approximation do not apply in a stellar radiative zone. Indeed, in such 
a system, baroclinicity is a consequence of strict radiative equilibrium 
at every point, which forces large-scale meridional currents and a mean 
rotation law of the form tt = fi(m,z,t). By virtue of the Poincare-Wavre 
theorem, this condition implies that the isothermal surfaces are in 
general inclined over the isobaric surfaces, so that there always exist 
some unstable baroclinic modes in a stellar radiative zone. In other 
words, because the basic mechanisms that lead to baroclinicity (and, 
hence, to baroclinic instability) are not the same in geophysics and in 
astrophysics, one should not make use of approximations that are valid 
in the former case to discuss baroclinic instability in a rotating star. 
The fact that this instability may be less effective in a star is of no 
concern to us either, because we do not want to describe stellar weather 
waves. In fact, all what we need are some small-scale disturbances super
imposed on the large-scale flow, no matter how large or small these 
eddy-like motions may be (see our Papers IV and VI). 

https://doi.org/10.1017/S0074180900031351 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900031351


488 J.-L. TASSOUL 

Zahn: What I highly appreciate in your model of a rotating star 
(Tassoul and Tassoul, 1982) is its mathematical consistency, achieved 
for the first time. But one has also to worry about its physical con
sistency, as mentioned by I. Roxburgh. I came to the conclusion that the 
conservation of angular momentum, in the stationary state you have des
cribed, requires the turbulent Prandtl number to be of order one 
(13th Advanced Course of Saas-Fee, 1983). This would have dramatic con
sequences on the structure of the star, since the transport of heat by 
turbulent motions would be of the same order as the radiation transfer. 
How can you overcome this difficulty? 
J.L. Tassoul: During the 13th Saas-Fee Course, by making use of an order-
of-magnitude argument, Zahn has explained why he did not believe that 
our solutions were physically consistent. The big flaw in his argument 
can readily be seen as follows. By virtue of equations (121) and (122) 
of our Paper I, one has g. = 0(ur/v ), where v = y /p and j = 1,3. 
According to Zahn, then, one can write ur = 0(R^/t ) = 0(y /pc ), so 
that g. = 0(P -*-), where P = c u /y . His conclusion follows at once 

i. t t v t r 
from this formula because, for consistency, one must have g. = 0(1). Now, 
by making use of the numerical results of our Paper I, one readily sees 
that ur/v is a bounded function that vanishes at r = R and r = R; on 
the contrary, in our models one has P aT, so that P~l varies as the 
inverse of the temperature in the bulk of a stellar radiative zone! 
Since T drops by many orders of magnitude from the core-envelope inter
face to the surface, it is now pretty much obvious that ZahnTs relation 
g. = 0(P""1) is largely in error in a realistic stellar radiative zone. 
In other words, Zahn has routinely made an order-of-magnitude discussion 
that applies to a Boussinesq fluid, without noticing that such an argu
ment does not apply to our solutions because we have considered highly 
non-Boussinesq fluids. The following conclusions can thus be made: 
(i) the solutions reported in our Papers I-VIII are physically and 
mathematically consistent, (ii) because we have shown that the turbulent 
transport of energy is everywhere much smaller than the transport of 
energy by radiation, Sweet!s solution adequately describes the mean 
meridional flow in the bulk of a nonmagnetic, chemically homogeneous 
radiative zone (see our Paper VI), (iii) viscous boundary layers that 
depend weakly on the magnitude of the prevailing eddy viscosity prevent 
the mean circulation velocities from having unwanted singularities at 
the boundaries (see our Paper I), and (iv) the back reaction of meridio
nal streaming on the overall rotation rate can be obtained in a con
sistent manner in a nonmagnetic star, no matter how large or how small 
the prevailing eddy viscosity is (see our Paper IV). 
Frogel: CNO abundance anomalies have been observed in giants that evolve 
from solar-type stars. You said core rotation is too slow in the sun to 
cause mixing. How then can it cause mixing in stars which have solar-type 
stars as their predecessors? 
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J.L. Tassoul: My comment applies only to rotational mixing in the 
radiative core of a main-sequence, solar-type star. Once such a star 
leaves the main sequence, however, the core contraction modifies its 
(unobservable) inner rotation rate, so that rotational mixing may then 
no longer be negligible during some phases of post-main-sequence evo
lution. (Remember that the circulation speeds are proportional to the 
squared overall inner rotation rate). 

R. Cayrel; 1) I was confused about the value of the meridional circu
lation for the sun: was it 10 cm s"-*- or 10~" cm s~ ? 
2) Can you tell us the order of magnitude of the turbulent velocity you 
expect to be associated with your solution? 

-9 -1 J.L. Tassoul: 1) The circulation speed is less than 10 cm s because, 
in our solar models, v(^) = e|u|, where c z 10 and |u| < 10"" cm s *■ ; 
2) At this time, no firm statement can be made about the speed of the 
turbulent eddies (see also our Paper IV, p. 300). 
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