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GEODESIC FLOW ON IDEAL POLYHEDRA

CHARALAMBOS CHARITOS AND GEORGIOS TSAPOGAS

ABSTRACT. In this work we study the geodesic flow on n-dimensional ideal poly-
hedra and establish classical (for manifolds of negative curvature) results concerning
the distribution of closed orbits of the flow.

1. Introduction and statements of results. The geodesic flow on Riemannian
manifolds has been studied extensively through the development of geometry. Early this
century Hedlund, Hopf, Morse and others studied geodesics on surfaces of constant neg-
ative curvature partially answering a basic dynamical question, namely, the distribution
of periodic vectors of geodesic flow. This work was extended and generalized in various
ways until P. Eberlein in [7] proved Theorems 1 and 2 below for complete manifolds
with finite volume and sectional curvature � 0 which satisfy the property that for any
two points x 6= y in the boundary ] M̃ of the universal cover of M there exists a unique
geodesic joining x with y. The line of approach in [7] was to analyze the action of ô1(M)
on the boundary ] M̃. Then the limit set of the action of ô1(M) on ] M̃, which is actually
equal to the whole ] M̃, was linked to the geodesic flow.

In the present work, following the same approach as in [7] we study the geodesic flow
on finite ideal polyhedra of any dimension n. These complete spaces consist of finitely
many ideal hyperbolic polytopes glued together by isometries along their (n � 1)-faces.
Important examples of ideal polyhedra have appeared in Thurston’s work, see [12], [11,
Section 10.3], where 3-manifolds, which are complements of links and knots in S3,
are constructed by gluing together finitely many ideal tetrahedra. In consequence, these
finite volume 3-manifolds are equipped by a complete hyperbolic structure. Moreover,
the 2-skeleton of these 3-manifolds are examples of 2-dimensional ideal polyhedra.

If X is a n-dimensional ideal polyhedron (or, more generally, a hyperbolic metric
space) the geodesic flow is defined by the map

Φ:R ð GX ! GX

where the action of R is given by right translation, i.e. for all t 2 R and ç 2 GX,
Φ(tÒ ç) � Φt(ç) := çt, where çt:R ! X is the geodesic defined by çt(s) = ç(s + t)Ò s 2 R.
Recall that GX consists of all (local) isometries ç:R ! X, when X is (not) simply
connected. The topology on GX is the topology of uniform convergence on compact
sets. We will be calling g 2 GX a closed geodesic, if it is a periodic map. Each closed
geodesic g induces a local isometry S1(r) ! X where S1(r) is a circle with radius
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GEODESIC FLOW ON IDEAL POLYHEDRA 697

r = period(g)
2ô . For the geodesic flow on GX, we prove the following results, when X is

a finite complete n-dimensional ideal polyhedron (see Section 2 below for a precise
definition).

THEOREM 1. There exists a geodesicç in GX whose orbit Rç under the geodesic flow
is dense in GX.

THEOREM 2. The closed geodesics are dense in GX.

Let X be a proper geodesic CAT(�1) space, ] X its boundary (see for instance [1] for
definitions and first properties) and Γ be a discrete group of isometries of Xacting properly
discontinuously on X. The limit set Λ of such an action is studied by M. Coornaert in [4],
using the classification of the isometries of X into three types, namely, elliptic, parabolic
and hyperbolic, as in the manifold case (cf. [8]). Following the geometrical approach of
[7] and using results from [4], collected in the next paragraph, we carry out the proofs
of Theorems 1 and 2. A key element in the proof is the fact that the non-wandering
set ΩX is equal to the whole GX (see Proposition 10 below). This fact is equivalent to
Λ
�
ô1(X)

�
= ] X̃, where X̃ is the universal cover of X. We show the latter equality by

constructing a continuous surjective map

f : ] ∆̃ ! ] X̃

where ∆̃ (resp. ∆) is the infinite graph (resp. finite graph) obtained by joining the centers
of the polytopes of X̃ (resp. X). We then use the fact that the limit set of the action of
ô1(X) on ∆̃ is the whole ] ∆̃, and the map f to show that Λ

�
ô1(X)

�
= ] X̃.

2. Preliminaries. An n-dimensional ideal polyhedron is a complete locally finite
union of ideal hyperbolic polytopes glued together isometrically along their (n�1)-faces
with at least two germs of polytopes along each (n � 1)-face. This is naturally a metric
space (see [2]).

If X is an ideal polyhedron of dimension n then X has curvature less or equal to �1
(see [3, Proposition 1]). Its universal covering X̃ satisfies the CAT(�1) inequality (see
[10, Corollary 2.11]). Moreover, X̃ has the property (see [3, Proposition 2])

8xÒ y 2 X̃ [ ] X̃Ò 9 a unique geodesic çxy joining x with y(1)

We now gather results from [4] which we will use in the sequel. Let Y denote a
proper hyperbolic metric space and Γ a discrete group of isometries of Y. Let y 2 Y
be arbitrary point. The limit set Λ(Γ) of the group Γ is defined to be Λ(Γ) = Γy \ ] Y.
The limit set has been studied extensively (see [4, Chapter II], [6, Chapter 2.1]). Each
isometry of Y is either elliptic or, parabolic or, hyperbolic. If û is hyperbolic then ûn(y)
converges to a point û(+1) 2 ] Y (resp. û(�1) 2 ] Y) as n ! +1 (resp. n ! �1)
with û(+1) 6= û(�1). If û is parabolic then ûn(y) converges to a single point in ] Y for
jnj ! 1.

Denote by Fixh the set of points in ] Y which are fixed by hyperbolic elements of Γ.
We will use the following three results from [4]:
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698 C. CHARITOS AND G. TSAPOGAS

PROPOSITION 3. Fixh is countable and Γ-invariant. Moreover, if jΛ(Γ)j = 1, then
Fixh is dense in Λ(Γ).

PROPOSITION 4. There exists an orbit of Γ dense in Λ(Γ)ðΛ(Γ), provided jΛ(Γ)j = 1.

PROPOSITION 5. The set
n�
û(+1)Ò û(�1)

�
: û 2 Γ is hyperbolic

o
is dense in

Λ(Γ) ð Λ(Γ), provided jΛ(Γ)j = 1.

Note that the action of Γ on ] Y ð ] Y is given by the product action, i.e. for û 2 Γ
and (ò1Ò ò2) 2 ] Y ð ] Y, û(ò1Ò ò2) = (ûò1Ò ûò2).

Denote by Φ the geodesic flow on GX, as described in the introduction, by Ω the
non-wandering set of Φ and by p the covering projection X̃ ! X. Recall that a point x in
GX belongs to the non-wandering set Ω of the geodesic flow Φ:R ðGX ! GX, if there
exist sequences fxng ² GX and ftng ² R, such that tn !1, xn ! x and Φtn(xn) ! x.

PROPOSITION 6. Let X be an n-dimensional ideal polyhedron and Γ a discrete group
of isometries acting on X̃ such that X ³ X̃ÛΓ and jΛ(Γ)j = 1. Let ç 2 GXÒ ç̃ 2 GX̃ be
given such that p Ž ç̃ = ç. Then

ç 2 Ω , ç̃(1) 2 Λ(Γ) and ç̃(�1) 2 Λ(Γ)

PROOF. Assuming ç 2 Ω, there exists sequences fçng ² GX and ftng ² R, such
that tn ! 1, çn ! ç and Φtn(çn) ! ç. Set én � Φtn(çn) and let ffçngÒ fféng be lifts of
fçngÒ féng, respectively, such that fçn ! ç̃ and fén ! ç̃. For each n 2 N,

p
�fçn(tn)

�
= én(0) = p

�fén(0)
�

and, hence, there exists ûn 2 Γ such that ûn

�fçn(tn)
�

= fén(0). Therefore, for some

sequence fûng ² ΓÒ (ûn Ž fçn)(tn) ! ç̃(0). Thus, dX̃

�
û�1

n

�
ç̃(0)

�
Ò fçn(tn)

�
! 0. Since

fçn(tn) ! ç̃(1), it follows from [4, Chapter I, Proposition 3.1] that û�1
n

�
ç̃(0)

�
! ç̃(1).

Similarly we show ûn

�
ç̃(0)

�
! ç̃(�1).

Assume now
�
ç̃(1)Ò ç̃(�1)

�
2 Λ(Γ) ð Λ(Γ). By Proposition 5, there exists a

sequence fûng ² Γ:ûn(+1) ! ç̃(+1) and ûn(�1) ! ç̃(�1). Let fçn be the
geodesic joining ûn(+1) with ûn(�1). Parametrize each fçn such that fçn ! ç̃. Set

tn = d
�
fçn(0)Ò (ûn)�n

�fçn(0)
��

and çn = p Ž fçn. Clearly, çn ! ç and tn !1. Moreover,

since p Ž ûn = p,
Φtn (çn) = p

�
ûn(fçn)

�
= p(fçn) ! p(ç̃) = çÒ

which completes the proof of the proposition.

3. The limit set. This section is devoted into establishing Corollary 9 below i.e.,
that the limit set of the action of Γ on X̃ is the whole ] X̃. Let X be a finite complete
n-dimensional ideal polyhedron and X̃ its universal cover. Denote by ∆̃ the (infinite)
graph obtained by joining the centers of the polytopes of X̃ and by ∆ the (finite) graph
obtained by joining the centers of the polytopes of X. Set Γ = ô1(X). The action of
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GEODESIC FLOW ON IDEAL POLYHEDRA 699

Γ on X̃ restricts to an action of Γ on ∆̃ such that ∆̃ÛΓ ³ ∆. Observe that ∆̃ is not
necessarily a tree i.e., ∆̃ is not necessarily the universal covering of ∆. However, the
action of Γ on ∆̃ admits a fundamental domain of finite diameter. Consider a maximal
tree T in ∆̃. The natural inclusion T !̈ ∆̃ is a cobounded (i.e. the distance function
d(Ð ÒT) is bounded in ∆̃) quasi-isometry. Hence, ∆̃ is a (�1)-hyperbolic space in the sense
of Gromov (see [6, Chapter 3, Theorem 2.2]). Hence, Γ acts cocompactly and properly
discontinuously on the hyperbolic space ∆̃. It follows (see [6, Chapter 4 Theorem 4.1])
that ] ∆̃ is homeomorphic to ] Γ, where ] Γ denotes the boundary of Γ. On the other hand,
Γ acts on itself and the limit set ΛΓ(Γ) of this action is equal to ] Γ. Consider the map
Γ ! ∆̃ given by ç ! ç(p) for some p 2 ∆̃ fixed. This map is a quasi-isometry, hence
induces a homeomorphism ] Γ ! ] ∆̃ which takes ΛΓ(Γ) into Λ∆̃(Γ). It follows that

Λ∆̃(Γ) = ] ∆̃(2)

We next construct a continuous surjective map ] ∆̃ ! ] X̃ (cf. Proposition 8 below) in
order to obtain property 2 for the action of Γ on X̃.

Let é: [0Ò1) ! ∆̃ be a geodesic ray. é can be viewed as a piece-wise geodesic ray in
X̃. Let fTig be the (infinite) sequence of polytopes in X̃ intersected by the image of é.
Write [0Ò1) as a union of subintervals, [0Ò1) =

S
i Ii, and enumerate fTig such that 8i

é(Ii) ² Ti and Ii \ Ii+1 consists of a single point, say ti, and
TiÒTi+1 have a common (n � 1)-face containing é(ti).

This procedure can always be performed because é does not have a back and forth in X̃
and the intersection of its image with the skeleta of X̃ is transverse. Recall that a curve
ç: I ! X has a back and forth if 9t1Ò t2 2 I : ç

�
(t1Ò t2)

�
lies in the interior of a single

polytope T of X and ç(t1)Ò ç(t2) belong to the same k-face of T, for some k � n � 1.
We will be calling fTig the ordered sequence of polytopes intersected by é. Glue

together these polytopes along their faces as follows: identify isometrically the face of Ti

which contains é(ti) with the face of Ti+1 which contains é(ti) such that these two points are
identified after gluing. We call the resulting space the developing hypersurfaceassociated
to the curve é and denote it by Sé. As Sé is isometric to a subset of the hyperbolic ball
Hn, namely, a (infinite) ideal hyperbolic polytope, we may view Sé as a subset of Hn.
As ]Hn is homeomorphic with Sn�1, we will identify ]Hn with Sn�1, by means of this
homeomorphism.

LEMMA 7. Given a geodesic ray é: [0Ò1) ! ∆̃, the set of ideal vertices of Sé ² Hn,

A = fak 2 ]HnÛak is an ideal vertex of some polytope Tig

has exactly one accumulation point in ]Hn, denoted by v(é). Moreover, if
(i) v 2 ]Hn such that v is the ideal vertex of infinitely many polytopes of Sé then

v = v(é).
(ii) if fxng is a sequence in Sé =

S1
i=0 Ti : xn 2 Tn, 8n, then xn ! v(é).

https://doi.org/10.4153/CJM-1997-033-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-033-8


700 C. CHARITOS AND G. TSAPOGAS

am am+1

ò

ë

bj+1

bj

bj�1

ïi�1

ïi

ñi

Ci

Ci+1

T2
i T2

i+1

v

v(é)

...

Ti

Ti0Ti0�1

...

x

xi

xi0
xi0�1

(a) (b)

Figure 1

PROOF. We first prove the lemma in the case the dimension n = 2, since the general
case is reduced to it. By construction of Sé, it is easy to see that A has at most two
accumulation points in ]H2. Denote them by ò and ë. If ë 6= ò, we may write A =
fam j m = 1Ò 2Ò   g [ fbj j j = 1Ò 2Ò   g, such that am+1 (resp. bj+1) belongs to the
subarc of ]H2 defined by am and ò (resp. bj and ë) and not containing ë (resp. ò)—(see
Figure 1a). For each triangle T2

i in Sé let Ci denote the unique inscribed circle in T2
i . Let

ñiÒ ïi be the points of tangency of CiÒCi+1, respectively, to the common side of T2
i ÒT

2
i+1

(see Figure 1a). By choosing, if necessary, a subsequence we may assume that ñi ! ë
and ïi ! ò. As a consequence d(ñiÒ ïi) ! 1. The distance d(ñiÒ ïi) (called the gluing
weight, cf. [3]) is determined by the isometry used to glue together T2

i ÒT
2
i+1. Since X is a

finite polyhedron the set
fd(ñiÒ ïi) : i = 1Ò 2Ò    1g

is finite. It follows that ë = ò.
We next consider arbitrary dimension n. Let famg, fbjg be (infinite) sequences in A

converging to ëÒ ò 2 ]H2 respectively, with ë 6= ò. By passing if necessary to subse-
quences of famgÒ fbjg, we may choose an ordered sequence fT2

kgk2N of ideal 2-faces in
Sé such that

Ž T2
k , T2

k+1 are glued together along (a unique) common 1-face of Sé
Ž each am, bj, mÒ j = 1Ò 2Ò    is an ideal vertex of some T2

k

Set SòÒë =
S

k T2
k . The embedding SòÒë !̈ Sé induces a map ] SòÒë ! ] Sé which is a

homeomorphism onto its image. By the previous case, i.e. when dimension n = 2, ] SòÒë
has exactly one accumulation point. It follows that the set famÒ bj j mÒ j = 1Ò 2Ò   g has
exactly one accumulation point, contradicting the assumption ë 6= ò.

Assume next that v 6= v(é) is an ideal point in ]Hn which is the ideal vertex of infinitely
many polytopes Ti. By construction of Sé, these polytopes are, necessarily, consecutive.
Let çvv(é) be the geodesic determined by v and v(é). Pick a point x on the image of

https://doi.org/10.4153/CJM-1997-033-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-033-8


GEODESIC FLOW ON IDEAL POLYHEDRA 701

çvv(é) and choose a sequence fxig such that xi lies on a common 1-face of Ti and Ti+1

and xi ! x. We will be viewing fxig as a sequence in HnÒ Sé and X̃. fxig is a Cauchy
sequence in Hn and, hence, it is Cauchy in Sé ² X̃. Since X̃ is complete fxig converges
to some point y 2 X̃. Let fVy be a neighborhood of y in X̃. Then fVy \ X̃(1), where X̃(1)

denotes the 1-skeleton of X̃, has infinitely many components. Figure 1b demonstrates
this situation in the hyperbolic disc H2 with polytopes drawn using triangles. Then p(fVy)
is a neighborhood of p(y) in X. Moreover, p(fVy) \ X(1) has infinitely many components.
This is a contradiction since X is a finite polyhedron.

Finally, let fxng be a sequence Sé with xn 2 TnÒ 8n. Then, the distance of each
xn from the (n � 1)-skeleton S(n�1)

é of Sé is bounded above for all n. Hence, we may
choose a sequence fx0ng ² S(n�1)

é such that d(xnÒ x0n) is bounded for all n and the x0n’s
belong to pairwise distinct (n � 1)-faces of Sé. The sequence fx0ng converges, necessar-
ily, to a boundary point which, by the first part of this lemma, is v(é). Consequently,
xn ! v(é).

PROPOSITION 8. There exists a continuous surjective map f : ] ∆̃ ! ] X̃.

PROOF. Let ò 2 ] ∆̃ and é: [0Ò1) ! ∆̃ a geodesic ray representing ò. é can be viewed
as a piece-wise geodesic ray in X̃ and, as explained above, the developing hypersurface
Sé =

S1
i=0 Ti of é exists with the base point x0 2 T0. Denote by ci the center of each

polytope Ti. By Lemma 7, ] Sé is homeomorphic to A [ fv(é)g. Identifying ] Sé with
A [ fv(é)g by means of this homeomorphism, the sequence fcig represents a unique
element in ] Sé, namely v(é). By Theorem 2.2 of [6, Chapter 3], the isometric embedding
Sé !̈ X̃ induces a homeomorphism of ] Sé onto its image in ] X̃. This homeomorphism
simply maps a sequence in Sé to itself in X̃. Hence fcig determines an element in ] X̃
which we define to be the image of ò under f . To see that this map f is well defined, let
é0 be an other geodesic ray representing ò and defining a sequence of centers fc0ig. Since
Im é and Im é0 intersect the same sequence of fundamental domains of ∆̃ (which are of
finite diameter), we may assume (by choosing, if necessary, subsequences) that for each
i, both ci and c0i belong to the same fundamental domain of ∆̃. Then, dX̃(ciÒ c0i) is bounded
for all i and, hence, represent the same element in X̃.

We next show that f is continuous. Since X̃ [ ] X̃ is metrizable (see [6, page 134]), it
suffices to consider sequences. Assume fòng is a sequence in ] ∆̃ converging to a point ò
such that ff (òn)g does not converge to f (ò). By considering, if necessary, a subsequence
we may assume that f (òn) ! ë 6= f (ò) for some ë 2 ] X̃.

Let rnÒ r: [0Ò1) ! ∆̃, n 2 Nbe geodesic rays representing òn, ò, respectively. Viewing
again each rn, r as a piece-wise geodesic in X̃, each intersects an infinite sequence of
polytopes fTnjg1j=0Ò fTjg1j=0 of X̃, respectively. Let cnj and dj be the centers of the ideal
polytopes Tnj and Tj, respectively. Apparently, as j !1

cnj ! òn and dj ! ò in ∆̃ [ ] ∆̃(3)

and, by definition of f

cnj ! f (òn) and dj ! f (ò) in X̃ [ ] X̃(4)
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702 C. CHARITOS AND G. TSAPOGAS

as j ! 1. For each n 2 N, 9jn 2 N : dX̃[] X̃

�
cnjn Ò f (òn)

�
Ú 1Ûn and d∆̃[] ∆̃(cnjn Ò òn) Ú

1Ûn. Set bn = cnjn . It follows that

bn ! ë in X̃ [ ] X̃ and bn ! ò in ∆̃ [ ] ∆̃(5)

By (3) and (5) the sequences fbng and fdjg define the same point in ] ∆̃ and, therefore,

(bnÒ dj)∆̃ !1 as nÒ j !1(6)

where (Ð Ò Ð) denotes the hyperbolic product in the sense of Gromov. Denote byç∆̃
bndj

(resp.

çX̃
bndj

) the geodesic segment in ∆̃ (resp. X̃) joining bn with dj.

It is easy to see that the infinite graph ∆̃ has the following property:

any two paths in ∆̃ with the same endpoints and which are length mini-
mizing in their homotopy class (with end points fixed) intersect the same
ordered sequence of fundamental domains of ∆̃.

(7)

The ordered sequence of polytopes intersected by çX̃
bndj

gives rise to a (not necessarily

unique) segment with endpoints bnÒ dj in ∆̃, denoted by é∆̃
bndj

. This segment is length
minimizing in its homotopy class with endpoints fixed and intersects, in the same order,
all polytopes (maybe more) intersected by Im çX̃

bndj
. Properties (6) and (7) imply that

d∆̃(x0Ò Im ç∆̃
bndj

) !1 as nÒ j !1

Since ç∆̃
bndj

and é∆̃
bndj

are uniformly bounded it follows

d∆̃(x0Ò Im é∆̃
bndj

) !1 as nÒ j !1(8)

Let xnj be the projection of x0 on çX̃
bndj

and let çX̃
x0xnj

be the geodesic segment joining xnj

with x0. As before, denote by é∆̃
x0

the geodesic in ∆̃ joining x0 with the center cnj of the

polytope containing xnj. Finally, denote by ç∆̃
x0

the geodesic in ∆̃ which projects x0 on

é∆̃
bndj

. Then (8) implies that

#(of fundamental domains intersected by Im ç∆̃
x0

) !1

as nÒ j !1. Property (7) implies that cnj and the projection of x0 on é∆̃
bndj

lie in the same

fundamental domain of ∆̃. Hence,

#(of fundamental domains intersected by Im é∆̃
x0

) !1

nÒ j !1. Apparently the same holds true for the geodesic segment çX̃
bndj

and, therefore,

dX̃(x0Ò Im çX̃
bndj

) !1 as nÒ j !1(9)
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Since X̃ is a (�1)-hyperbolic geodesic space, Lemma 2.7 of [6, Chapter 3] asserts that

dX̃(x0Ò Im çX̃
bndj

) � (bnÒ dj)X̃ + 4(�1)(10)

Hence, by (9) and (10), we have that

(bnÒ dj)X̃ !1 as nÒ j !1

and, hence, fbng and fdjg represent the same point in ] X̃. By (4) and (5) this is a
contradiction, since ë 6= f (ò). Hence f is continuous.

We next show that f is onto. Let ò 2 ] X̃ and çx0ò the unique geodesic ray from x0 to ò.
Its image çx0ò

�
[0Ò1)

�
either intersects an infinite sequence of polytopes

S1
i=0 Ti = Sçx0ò

or, there exists a polytope Ti0 and a positive real M such that çx0ò

�
[MÒ1)

�
² Ti0 . In the

first case, pick a sequence fzig representing ò 2 ] X̃ with zi 2
Ž

Ti \ çx0ò

�
[0Ò1)

�
. Join

the centers ci of the polytopes Ti to obtain a broken geodesic é. In Sé, the sequences fcig
and fzig determine, by Lemma 7, the same boundary element, namely v(é). So do their
images under the topological embedding ] Sé !̈ ] X. Since fzig represents ò 2 ] X̃, é
represents a pre-image of ò.

In the latter case, i.e., when there exists a polytope Ti0 and 0 Ú M 2 R such that
çx0ò

�
[MÒ1)

�
² Ti0 , denote by v the ideal vertex of Ti0 determined by çx0ò and let Ti0+1 be

an ideal polytope of X̃ having one (n � 1)-face in common with Ti0 so that this common
face contains v as an ideal vertex. Continuing this way we obtain an infinite sequence
of polytopes whose centers fcig determine a broken geodesic é. v is as an ideal vertex
of all polytopes TiÒ i ½ i0. Hence, by Lemma 7, v = v(é). As in the previous case, pick
sequence fzig representing ò 2 ] X̃ with zi 2 çx0ò

�
[0Ò1)

�
. In Sé, the sequences fcig and

fzig both represent the boundary point v(é) 2 ] Sé. Therefore, fcig and fzig represent the
same element in ] X̃. Since fzig represents ò, é represents a pre-image of ò.

COROLLARY 9. Let X be a finite n-dimensional ideal polyhedron and X̃ its universal
covering. Then the limit set of the action of ô1(X) on X̃ is the whole ] X̃.

PROOF. Let ë 2 ] X̃. We will show that ë 2 Fixh(X̃), where Fixh(X̃) is the set of
boundary points of X̃ which are fixed by hyperbolic elements of Γ. Then ë 2 ΛX̃(Γ)

since by Corollary 12 proven below and Proposition 3, Fixh(X̃) = ΛX̃(Γ). We need the
following property

ê 2 Fixh(∆̃) ) f (ê) 2 Fixh(X̃)(11)

To see this assume that û 2 Γ is a hyperbolic isometry with û(+1) = ê. Pick a geodesic
ray éx0ê : [0Ò+1) ! ∆̃ representing ê with the base point x0 being a center of a polytope.û
may not translate éx0ê . However, we may choose the base point x0 so thatûn(x0) 2 Im éx0ê ,
8n 2 N. In particular, fûn(x0)g is a subsequence of the sequence of the centers fcig of
the polytopes intersected by Im éx0ê (cf. proof of Proposition 8). Hence, by definition of
f , the points ûn(x0), n 2 N represent f (ê).

To complete the proof, let ò 2 ] ∆̃ = Λ∆̃(Γ) (cf. property (2) above) such that f (ò) = ë.
By Proposition 3, there exists a sequence of hyperbolic isometries fûkg ² Γ such that
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õ
õ1 õ2

Figure 2

ûk(+1) ! ò. By property (11) f
�
ûk(+1)

�
2 Fixh(X̃) and by continuity of the map f ,

posited in Proposition 8, f
�
ûk(+1)

�
! ë.

Using Proposition 6 we obtain the following

COROLLARY 10. Let X be a finite n-dimensional ideal polyhedron and ΩX be the
non-wandering set of the geodesic flow. Then ΩX = GX.

4. Proofs of theorems on GX. In this section we give the proofs of Theorems 1
and 2. The following proposition is, in fact, a corollary of Theorem 2. However, we
prove it first because it implies that the cardinality of the limit set Λ(Γ) is infinite (see
Corollary 12 below) which is necessary in order to use Propositions 3, 4, 5 and 6.

PROPOSITION 11. GX contains infinitely many closed geodesics whose images in X
are pair-wise distinct.

PROOF. A (n�1)-dimensional ideal polytopeõ of X is said to have index kõÒ kõ 2 N, if
kõ (n�1)-faces of hyperbolic n-polytopes of X are glued together to form õ. Assume õ is
an ideal (n�1)-polytope of X with index kõ ½ 4. Then there exists a finite n-dimensional
ideal hyperbolic space X0 (not necessarily connected) and ideal (n� 1)-polytopes õ1, õ2

of X0 such that:
ž kõ1 Ú kõ, kõ2 Ú kõ and kõ1 + kõ2 = kõ
ž 9 an isometry õ1 ! õ2 such that X is obtained from X0 by identifying õ1 with õ2

via this isometry.
Figure 2 displays (in dimension 2) how an 1-simplex õ of X gives rise to two 1-simplices
õ1Ò õ2 in X0 with kõ1 = 3, kõ2 = 4.

Applying this procedure for all ideal (n� 1)-polytopes with index½ 4 repeatedly, we
obtain a finite n-dimensional ideal hyperbolic space Y such that

kõ = 2 or, 38 ideal (n � 1)-polytope õ of Y

Denote by ú1Ò ú2Ò    Ò úm the ideal (n � 1)-polytopes of Y which have index 3. We will
construct a n-dimensional manifold M out of Y, having negative curvature and finitely
many cusps. Cutting along each új, j = 1Ò    Òm, we obtain a (not necessarily connected)
n-dimensional ideal hyperbolic space Z containing exactly 3m ideal (n � 1)-polytopes,
say ú1aÒ ú1bÒ ú1cÒ    Ò úmaÒ úmbÒ úmc, such that
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ž ú1aÒ ú1bÒ ú1cÒ    Ò úmaÒ úmbÒ úmc are precisely the ideal (n � 1)-polytopes which are
free faces of some ideal n-polytopes (or polytope)

ž Y is obtained from Z by gluing together appropriately each triad újaÒ újb and újc.
Consider two copies of Z and label them ZÒZ0. We will use primes to indicate to which
copy (Z or Z0) an ideal (n � 1)-polytope belongs. Glue Z with Z0 along their free ideal
(n � 1)-polytopes as follows:

ž for each j = 1Ò    Òm identify úja with ú0jb, újb with ú0jc and újc with ú0ja using the
isometry which identifies úja with újb(� ú0jb) in X

Let M be the resulting space. All (n � 1)-polytopes of M have index 2. This means that
M is a finite volume manifold of negative curvature with cusps.

It is clear from the above construction that each closed geodesic çM in M determines
a closed curve çX in X which locally minimizes length. Hence, çX is a closed geodesic
in X. Moreover, if çM

1 , çM
2 are two closed geodesics in M, then

Im çM
1 6= Im çM

2 in M , Im çX
1 6= Im çX

2 in X

Proposition 11 now follows from the fact (see [7]) that there exist infinitely many closed
geodesics in M which are pair-wise non-homotopic or, equivalently, whose images are
pair-wise distinct.

Let X be a n-dimensional ideal polyhedron and Γ its fundamental group acting properly
by isometries on the universal cover X̃. Each closed geodesic g in GX determines two
points in ] X̃, namely g̃(+1) and g̃(�1). Since g is closed, there exists a hyperbolic
isometry û 2 Γ which translates g̃. Hence, g̃(+1)Ò g̃(�1) 2 Λ(Γ). Moreover, any two
closed geodesics in X with distinct images in X are non-homotopic, hence, they determine
distinct points in the boundary ] X̃. Therefore, we have the following

COROLLARY 12. Let X be an n-dimensional ideal polyhedron and Γ its fundamental
group acting properly by isometries on the universal cover X̃. Then the cardinality of the
limit set Λ(Γ) is infinite.

Set ] 2X̃ = f(òÒ ë) 2 ] X̃ ð ] X̃ : ò 6= ëg and let ö: GX̃ ! ] 2X̃ be the fiber bundle with
fiber R given by ö(g) =

�
g(�1)Ò g(+1)

�
. This bundle is trivial (see [9, Section 8.3]) and

let H: GX̃
³
�! ] 2X̃ðR be the trivilization of ö with respect to a base point x0 defined by

H(g) =
�
g(�1)Ò g(+1)Ò s

�
(12)

where s is the real number such that d
�
x0Ò g(R)

�
= d

�
x0Ò g(�s)

�
. We will be calling g(�s)

the projection of x0 on the image g(R) of the geodesic g, and denote it by prg(x0). Denote
by Φ̃ the geodesic flow RðGX̃ ! GX̃ and let Ψt: ] 2X̃ðR ! ] 2X̃ðR be the composite
of Φ̃ with H, given by the formula

Ψt(ò1Ò ò2Ò s) = (ò1Ò ò2Ò s + t)Ò for all (ò1Ò ò2) 2 ] 2X̃ and s 2 R(13)
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PROOF OF THEOREM 1. By Proposition 4 and Corollary 12, there exists an element

(òÒ ë) 2 Λ ð Λ whose Γ-orbit is dense in Λ ð Λ(14)

Let é̃ = H�1(òÒ ëÒ sé̃) be the geodesic in GX̃ determined by ò and ë and some sé̃ 2 R—(cf.
equation (12)). Let é be its projection to X. We will show that the R-orbit of é is dense in
GX.

Let å 2 GX be arbitrary and å̃ a lifting in GX̃. Let H(å̃) =
�
å̃(�1)Ò å̃(+1)Ò så̃

�
for

some så̃ 2 R,—(cf. equation (12)). By Corollary 10, å belongs to the non-wandering set

ΩX of the flow, and therefore, by Proposition 6, the endpoints å̃(�1), å̃(+1) of å̃ lie in
Λ. Then by (14),

9fûng � Γ :
�
ûn(ò)Ò ûn(ë)

�
!

�
å̃(�1)Ò å̃(+1)

�

Choose ftng � R such that tn + sé̃ ! så̃. Then
�
ûn(ò)Ò ûn(ë)Ò tn + sé̃

�
!

�
å̃(�1)Ò å̃(+1Ò så̃

�

as n ! +1 and, hence, H�1
�
ûn(ò)Ò ûn(ë)Ò tn + sé̃

�
! å̃. It follows that Φ̃tn(ûn é̃) ! å̃,

where Φ̃ denotes the geodesic flow on X̃. Thus, Φtn

�
ôX(ûné̃)

�
! ôX(å̃) and, hence

Φtn(é) ! å.

PROOF OF THEOREM 2. Let å 2 GX and å̃ 2 GX̃ a lifting. Set ë = å̃(�1) and ò =
å̃(+1). By Corollary 10 we may assume that å belongs to the non-wandering set ΩX of
the flow, and therefore, by Proposition 6, the endpoints ò, ë of å̃ lie in Λ. By Proposition 5
and Corollary 12 there exist sequences fxng, fyng ² Λ and fûng ² Γ: xn ! ëÒ yn ! ò
and, for each n 2 N, ûn is a hyperbolic element of Γ with ûn(xn) = xn and ûn(yn) = yn.
Let H(å̃) = (òÒ ëÒ s) for some s 2 R. Denote by fån the geodesic H�1(xnÒ ynÒ sn) where
sn is chosen so that sn ! s. Then fån ! å̃ in the GX̃-metric. Since ûn translates fån,
ån = ôX(fån) = pX Ž fån are closed geodesics in GX, where pX is the covering projection
pX: X̃ ! X. By continuity of ôX , ån ! å with ån being closed geodesics as required.

REMARK. It is shown in [5] that Γ-conform measures exist on the boundary ] ∆̃ of
(any tree) ∆̃. Moreover, the product measure ñ ð ñ, appropriately adjusted, gives rise
to a Γ-invariant measure ó0 on ] 2∆̃. If ‡ is the Lebesque measure on R, ó0 ð ‡ is a
Γ-invariant and geodesic invariant flow measure on G∆̃ ³ ] 2∆̃ ð R. The map f defined
by Proposition 8, gives rise to a map G∆̃ ³ ] 2∆̃ ð R ! ] 2X̃ ð R ³ GX̃, which can be
used to define a Borel measure on GX̃ which is geodesic flow invariant and Γ-invariant.
Its projection to GX turns out to be a locally finite and geodesic flow invariant measure.
It remains to be examined whether there exists a flow invariant probability measure
on GX. Such a measure would be important to a further study of the geodesic flow on
n-dimensional ideal polyhedra.
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