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GEODESIC FLOW ON IDEAL POLYHEDRA

CHARALAMBOS CHARITOS AND GEORGIOS TSAPOGAS

ABSTRACT. In this work we study the geodesic flow on n-dimensional ideal poly-
hedra and establish classical (for manifolds of negative curvature) results concerning
the distribution of closed orbits of the flow.

1. Introduction and statements of results. The geodesic flow on Riemannian
manifolds has been studied extensively through the development of geometry. Early this
century Hedlund, Hopf, Morse and others studied geodesi cs on surfaces of constant neg-
ative curvature partially answering a basic dynamical question, namely, the distribution
of periodic vectors of geodesic flow. Thiswork was extended and generalized in various
ways until P. Eberlein in [7] proved Theorems 1 and 2 below for complete manifolds
with finite volume and sectional curvature < 0 which satisfy the property that for any
two points x # y in the boundary 9 M of the universal cover of M there exists a unique
geodesicjoining x with y. The line of approachin [7] wasto analyze the action of 71(M)
on the boundary @ M. Then the limit set of the action of (M) on d M, which is actually
equal to the whole @ M, was linked to the geodesic flow.

In the present work, following the same approach asin [ 7] we study the geodesic flow
on finite ideal polyhedra of any dimension n. These complete spaces consist of finitely
many ideal hyperbolic polytopes glued together by isometries along their (n — 1)-faces.
Important examples of ideal polyhedrahave appeared in Thurston’swork, see[12], [11,
Section 10.3], where 3-manifolds, which are complements of links and knots in 2,
are constructed by gluing together finitely many ideal tetrahedra. In consegquence, these
finite volume 3-manifolds are equipped by a complete hyperbolic structure. Moreover,
the 2-skeleton of these 3-manifolds are examples of 2-dimensional ideal polyhedra.

If X is an-dimensional ideal polyhedron (or, more generally, a hyperbolic metric
space) the geodesic flow is defined by the map

®:R x GX — GX

where the action of R is given by right trandlation, i.e. for all t € R and v € GX,
D(t,7) = P(7) =V, wherey: R — Xisthe geodesic defined by 7i(s) = v(s+t),s € R.
Recall that GX consists of al (local) isometries v:R — X, when X is (not) simply
connected. The topology on GX is the topology of uniform convergence on compact
sets. We will be calling g € GX aclosed geodesic, if it is a periodic map. Each closed
geodesic g induces a local isometry S'(r) — X where S'(r) is a circle with radius
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r= '%91 For the geodesic flow on GX, we prove the following results, when X is
a finite complete n-dimensional ideal polyhedron (see Section 2 below for a precise
definition).

THEOREM 1. Thereexistsa geodesicy in GX whose orbit Ry under the geodesic flow
isdensein GX.

THEOREM 2. The closed geodesicsare densein GX.

Let X be aproper geodesic CAT(—1) space, 9 X its boundary (see for instance[1] for
definitionsand first properties) and I" beadiscrete group of isometries of Xacting properly
discontinuously on X. Thelimit set A of such an action is studied by M. Coornaertin [4],
using the classification of the isometries of X into three types, namely, elliptic, parabolic
and hyperbolic, as in the manifold case (cf. [8]). Following the geometrical approach of
[7] and using results from [4], collected in the next paragraph, we carry out the proofs
of Theorems 1 and 2. A key element in the proof is the fact that the non-wandering
set Qy is equal to the whole GX (see Proposition 10 below). This fact is equivalent to
A(m1(X)) = aX, where X is the universal cover of X. We show the latter equality by
constructing a continuous surjective map

fr0A — o X

whereA (resp. A) is t~he infinite graph (resp. finite graph) obtained by joining the centers
of the polytopes of X (resp. X). We then use the fact that the limit set of the action of
m1(X) on A isthewhole d A, and themap f to show that A(m1(X)) = 9 X.

2. Preliminaries. An n-dimensional ideal polyhedron is a complete localy finite
union of ideal hyperbolic polytopesglued together isometrically along their (n— 1)-faces
with at least two germs of polytopes along each (n — 1)-face. Thisis naturally a metric
space (see[2]).

If Xisanideal polyhedron of dimension n then X has curvature less or equal to —1
(see [3, Proposition 1]). Its universal covering X satisfies the CAT(—1) inequality (see
[10, Corollary 2.11]). Moreover, X has the property (see [3, Proposition 2])

(@) Vx,y € XUaX. Jaunique geodesic vy joining X with y.

We now gather results from [4] which we will use in the sequel. Let Y denote a
proper hyperbolic metric space and I a discrete group of isometries of Y. Lety € Y
be arbitrary point. The limit set A(I") of the group I' is defined to be A(N) =Ty N aY.
The limit set has been studied extensively (see [4, Chapter 1], [6, Chapter 2.1]). Each
isometry of Y is either lliptic or, parabolic or, hyperbalic. If ¢ is hyperbalic then ¢"(y)
convergesto a point ¢(+oo) € 9Y (resp. ¢p(—oo) € 9Y) asn — +oo (resp. n — —oo)
with ¢(+00) # ¢(—00). If ¢ isparabolic then ¢"(y) convergesto asingle pointin oY for
|n| — 0Q.

Denote by Fix;, the set of pointsin d'Y which are fixed by hyperbolic elementsof I".

We will usethe following three results from [4]:
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PROPOSITION 3. Fixy, is countable and I-invariant. Moreover, if |A()| = oo, then
Fixp isdensein A(IN).

PrROPOSITION 4. Thereexistsanorhitof I' densein A(I) x A(I"), provided |A(T")| = oo.

PROPOSITION 5. The set {(¢(+00). ¢(—o0)) : ¢ € T is hyperbolic} is dense in
A(T) x A(I), provided |A(T)| = oo.

Note that the action of ' ondY x dY is given by the product action, i.e. for ¢ € I

and (§1.£2) € Y X Y, ¢(&1. §2) = (€1. 9€2).

Denote by @ the geodesic flow on GX, as described in the introduction, by Q the
non-wandering set of ® and by p the covering projection X — X. Recall that apoint xin
GX belongs to the non-wandering set Q of the geodesic flow ®: R x GX — GX; if there
exist sequences {x,} C GX and {tn} C R, suchthat t, — 00, X, — X and @ (X,) — X.

PROPOSITION 6. Let X be an n-dimensional ideal polyhedronand I" a discrete group
of isometries acting on X such that X ~ X/I" and |A(T)| = co. Let ¥ € GX,¥ € GX be
given suchthat po ¥ = . Then

YeQ & (o) e A(IN and H(—o0) € A(N)

PrROOF. Assuming 7 € Q, there exists sequences {Vn} C GX and {t,} C R, such
that t, — 00, Yo — ¥ and @y, (Yn) — 7. Set 6n = Py, (Yn) and let {Tn}. {on} be lifts of
{n}, {én}, respectively, such that v, — ¥ and 6, — 7. For eachn € N,

p("/wn(tn)) =6n(0) = p(g;(O))

and, hence, there exists ¢, € T such that ¢n(Tn(tn)) = 81(0). Therefore, for some
sequence {¢n} C T.(¢n o Tn)(tn) — F(0). Thus, dg((¢gl(“7(0)).%(tn)) — 0. Since
Vn(tn) — F(00), it follows from [4, Chapter |, Proposition 3.1] that ¢, %(7(0)) — (c0).
Similarly we show ¢,(7(0)) — 5(—00).

Assume now (§(c0).5(—o0)) € A(I) x A(). By Proposition 5, there exists a
sequence {¢n} C T:¢n(+oo) — F(+o0) and ¢n(—o0) — J(—00). Let 7, be the
geodesic joining ¢n(+o0o) with ¢,(—o0c). Parametrize each 7, such that v, — 7. Set
t = d(%(O), (qﬁn)‘“(v”n(O))) and Y, = po Vy. Clearly, ¥, — 7 and t, — oo. Moreover,
sincepo ¢n =p,

@, (Yn) = p(n(Tn)) = p(Tn) — P() = 7.
which completesthe proof of the proposition. ]

3. Thelimit set. This section is devoted into establishing Corollary 9 below i.e.,
that the limit set of the action of I on X is the whole 9 X. Let X be a finite complete
n-dimensional ideal polyhedron and X its universal cover. Denote by A the (infinite)
graph obtained by joining the centers of the polytopes of X and by A the (finite) graph
obtained by joining the centers of the polytopes of X. Set ' = 71(X). The action of
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I on X restricts to an action of I on A such that A/T ~ A. Observe that A is not
necessarily a tree i.e., A is not necessarily the universal covering of A. However, the
action of I on A admits a fundamental domain of finite diameter. Consider a maximal
tree T in A. The natural inclusion T < A is a cobounded (i.e. the distance function
d(-. T) isboundedin A) quasi-isometry. Hence, A isa (—1)-hyperbolic spacein the sense
of Gromov (see [6, Chapter 3, Theorem 2.2]). Hence, " acts cocompactly and properly
discontinuously on the hyperbolic space A. It follows (see [6, Chapter 4 Theorem 4.1])
that 9 A ishomeomorphicto d I, where d I” denotesthe boundary of I". On the other hand,
I" acts on itself and the limit set Ar(I") of this action is equal to I". Consider the map
I — A given by v — 7(p) for some p € A fixed. This map is a quasi-isometry, hence
induces a homeomorphism " — a A which takes Ar() into Nz (). It follows that

@ A;(M) =9

We next construct a continuous surjective map d A — a X (cf. Proposition 8 below) in
order to obtain property 2 for the action of I' on X.

Let 6: [0, 00) — A be ageodesic ray. § can be viewed as a piece-wise geodesic ray in
X. Let {T;} be the (infinite) sequence of polytopesin X intersected by the image of 6.
Write [0, 0o) as a union of subintervals, [0, 0o) = | J; I;, and enumerate {T;} such that Vi

6(Ii)) C Ty and I; N lj41 consists of asingle point, say tj, and

T, Ti+1 have acommon (n — 1)-face containing (t;).
This procedure can always be performed because § does not have a back and forth in X
and the intersection of its image with the skeleta of X is transverse. Recall that a curve
v:1 — X has a back and forth if Jt;,t; € | : 7((t1.t2)) lies in the interior of a single
polytope T of X andv(t1), Y(t2) belong to the same k-face of T, for somek < n— 1.

We will be calling {T;} the ordered sequence of polytopes intersected by 4. Glue
together these polytopesalong their faces asfollows: identify isometrically the face of T;
which containsé(t;) with theface of Ti.; which containsé(t;) such that thesetwo pointsare
identified after gluing. Wecall the resulting spacethe devel oping hyper surfaceassociated
to the curve 6 and denote it by . As § isisometric to a subset of the hyperbolic ball
H", namely, a (infinite) ideal hyperbolic polytope, we may view & as a subset of H".
As o H" is homeomorphic with S™1, we will identify o H" with S, by means of this
homeomaorphism.

LEMMA 7. Given ageodesicray ¢: [0, co) — A, the set of ideal verticesof § c K",
A={a € 9H" /& isanideal vertex of some polytope T;}

has exactly one accumulation point in 9 H", denoted by v(). Moreover, if

(i) v € 9H" such that v is the ideal vertex of infinitely many polytopes of & then
v = Vv()).

(i) if {xn}isasequencein § = U Ti : Xn € Tn, VN, then x, — V(6).
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(b)

Figure 1

PrROCOF. We first prove the lemmain the case the dimension n = 2, since the general
case is reduced to it. By construction of S;, it is easy to see that A has at most two
accumulation points in @ H2. Denote them by ¢ and 7. If 5 # ¢, we may write A =
{am | m=21.2....} U{ly | j = L2....}, such that an1 (resp. bj+1) belongs to the
subarc of 9 H? defined by a,, and ¢ (resp. by and 1) and not containing 1 (resp. {)—(see
Figure 1a). For each triangle T? in S; let C; denote the unique inscribed circlein T2. Let
pis \i be the points of tangency of C;. Ci.1, respectively, to the common side of T2, T2,
(see Figure 14). By choosing, if necessary, a subsequence we may assume that i — 7
and )\ — £. Asaconseguenced(ui, Ai) — oo. Thedistance d(ui, Ai) (called the gluing
weight, cf. [3]) is determined by the isometry used to glue together T2, T2 ;. Since X isa
finite polyhedron the set

{d(ui, M) :i=1,2,...00}

isfinite. It followsthat = &.

We next consider arbitrary dimension n. Let {an}, {b;} be (infinite) sequencesin A
converging to 1. £ € dH? respectively, with 1) # ¢. By passing if necessary to subse-
quencesof {am}. {bj}, we may choose an ordered sequence { TZ}xew Of ideal 2-facesin
S such that

o T2, TZ,; are glued together along (a unique) common 1-face of S

o eacham, b, mj=1,2,...isanideal vertex of some T2
Set S, = Ux T2. The embedding S, «— S inducesamap S, — 9S which is a
homeomorphism onto its image. By the previous case, i.e. whendimensionn=2,0&
has exactly one accumulation point. It follows that the set {am,bj | m.j = 1,2....} has
exactly one accumulation point, contradicting the assumption i # €.

Assumenext that v # v(§) isanideal pointin d H" whichistheideal vertex of infinitely
many polytopes T;. By construction of S, these polytopes are, necessarily, consecutive.
Let Yw(s) be the geodesic determined by v and v(5). Pick a point x on the image of
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Yw(s) @d choose a sequence {x; } such that x; lies on a common 1-face of T; and Ti+1
and i — x. We will be viewing {x} as a sequencein H". S and X. {x} is a Cauchy
sequencein H" and, hence, it is Cauchy in § C X. Since X is complete {x.} converges
to some point y € X. Let V, be a neighborhood of y in X. Then Vi, N X®, where X®
denotes the 1-skeleton of 5(, has infinitely many components. Figure 1b demonstrates
this situation in the hyperbolic disc H? with polytopes drawn using triangles. Then p(Vy)
is a neighborhood of p(y) in X. Moreover, p(Vy) N X® hasinfinitely many components.
Thisis acontradiction since X is afinite polyhedron.

Finaly, let {x,} be a sequence § with x, € T,, ¥n. Then, the distance of each
X, from the (n — 1)-skeleton S of S is bounded above for all n. Hence, we may
choose a sequence {x,} ¢ S"™ " such that d(x,. X,) is bounded for &l n and the x/’s
belong to pairwise distinct (n — 1)-faces of §. The sequence {x/,} converges, necessar-
ily, to a boundary point which, by the first part of this lemma, is v(6). Consequently,
Xn — V(0). L]

PROPOSITION 8. There exists a continuous surjectivemap f: 9 A — a X.

PROOF. Let¢ € aAandé: [0, 00) — A ageodesicray representing €. § can beviewed
as a piece-wise geodesic ray in X and, as explained above, the developing hypersurface
S = U% Ti of 6 exists with the base point xo € To. Denote by ¢; the center of each
polytope T;. By Lemma 7, 9§ is homeomorphic to AU {v(§)}. Identifying 9 S with
AU {v(6)} by means of this homeomorphism, the sequence {c;} represents a unique
elementin 9 S, namely v(6). By Theorem 2.2 of [6, Chapter 3], the isometric embedding
S — X induces a homeomorphism of 4 S onto its image in 8 X. This homeomorphism
simply maps a sequence in S to itself in X. Hence {c;} determines an element in 4 X
which we define to be the image of ¢ under f. To see that thismap f iswell defined, let
¢’ be an other geodesic ray representing ¢ and defining a sequenceof centers {c{}. Since
Im& and Imé’ intersect the same sequence of fundamental domains of A (which are of
finite diameter), we may assume (by choosing, if necessary, subsequences) that for each
i, both ¢; and ¢/ belong to the same fundamental domain of A. Then, dy(ci, ¢f) isbounded
for all i and, hence, represent the same element in X.

We next show that f is continuous. Since X U 3 X is metrizable (see [6, page 134]), it
sufficesto consider sequences. Assume {&, } isasequencein d A converging to apoint &
suchthat {f (¢,)} does not convergeto f (€). By considering, if necessary, a subsequence
we may assumethat f(¢n) — 1 # £(€) for somen € 9 X.

Letrp, r:[0, 00) — AneN begeodesic raysrepresenting &y, &, respectively. Viewing
again each rp, r as a piece-wise geodesic in X, each intersects an infinite sequence of
polytopes {Tr }%p. {Tj 1S, of X, respectively. Let ¢y and d; be the centers of the ideal
polytopes Ty; and T;, respectively. Apparently, asj — oo

(3) Gy — Enandd, — ¢ inAUAA
and, by definition of f
(4) oy — f(En)andd, — () inXUaX

https://doi.org/10.4153/CJM-1997-033-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-033-8

702 C. CHARITOSAND G. TSAPOGAS

asj — oo. Foreachn € N, Jjp € N & dg ;%(Crjp F(€n)) < 1/nand dy z(Cri,» €n) <
1/n. Set b, = cy,. It follows that

(5) by—n inXUdXandb, — ¢ inAUIA
By (3) and (5) the sequences {b,} and {d; } define the same point in aA and, therefore,
(6) (bn.d)z — 00 asn,j— oo

where (-, -) denotesthe hyperbolic product in the sense of Gromov. Denote by Wénd; (resp.
Wf}ndj) the geodesic segment in A (resp. 5<)~j oining by, with dj.
It is easy to seethat the infinite graph A has the following property:

@) any two paths in A with the same endpoints and which are length mini-
mizing in their homotopy class (with end points fixed) intersect the same
ordered sequence of fundamental domains of A.

The ordered sequence of polytopes intersected by Wf;(ndi givesrise to a (not necessarily
unique) segment with endpoints by, d; in A, denoted by ‘5§nd,' This segment is length

minimizing in its homotopy class with endpointsfixed and intersects, in the same order,
all polytopes (maybe more) intersected by Im wf)‘ndj . Properties (6) and (7) imply that

d; (%o, Im’yéndj) — 00 asn,j — oo
Since “/éndl and 5§nd, are uniformly bounded it follows

(8) di(%. M85 4) — 00 asn.j— oo

Let X, be the projection of xp on Wf;(ndj and let “/f(fmj be the geodesic segment joining Xy
with xo. As before, denote by 65,(0 the geodesic in A joining xo with the center Cy of the
polytope containing X . Finally, denote by “/AXO the geodesic in A which projects X, on
Eﬁndj . Then (8) implies that

#(of fundamental domainsintersected by Im“/ﬁxo) — 00

asn, j — oo. Property (7) impliesthat ¢, and the projection of xg on 6§ndj liein the same
fundamental domain of A. Hence,

#(of fundamental domainsintersected by Im&éo) — 00

n,j — oco. Apparently the same holdstrue for the geodesic segment Wf;(ndj and, therefore,

) dy(%. IM75g) — 00 asn.j — oo
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Since X isa (—1)-hyperbolic geodesic space, Lemma 2.7 of [6, Chapter 3] asserts that
(10) dy(%o. IMY5g) < (br. ch)x + 4(—1)
Hence, by (9) and (10), we have that
(bn, )y — 00 @sn,j— oo

and, hence, {b,} and {d;} represent the same point in o X. By (4) and (5) thisis a
contradiction, sincen # f(¢). Hencef is continuous.

We next show that f isonto. Let ¢ € 9 X and Yx¢ theunique geodesicray from xg to €.
Itsimage ¢ ([0, 00)) either intersects an infinite sequence of polytopes U5, Ti = S,,
or, there exists a polytope T;, and a positive real M such that “/Xog([M, oo)) C Ti,. Inthe
first case, pick a sequence {z} representing ¢ € aX with z € TN Vot ([0. 00)). Join
the centers¢; of the polytopes T; to obtain a broken geodesicé. In S, the sequences{c; }
and {z} determine, by Lemma 7, the same boundary element, namely v(§). So do their
images under the topological embedding 9 «— 9 X. Since {z} represents ¢ € X, &
represents a pre-image of .

In the latter case, i.e., when there exists a polytope T;, and 0 < M € R such that
Yot (M 00)) C T denoteby vtheidesl vertex of T;, determined by ¥, and let Tiy+ be
an ideal polytope of X having one (n — 1)-face in common with T;, so that this common
face contains v as an ideal vertex. Continuing this way we obtain an infinite sequence
of polytopes whose centers {c;} determine a broken geodesic é. v is as an ideal vertex
of all polytopesT;,i > ip. Hence, by Lemma7, v = v(). Asin the previous case, pick
sequence {z } representing ¢ € d Xwith z € Yy, ([0. 00)). In S, the sequences {c; } and
{z } both represent the boundary point v(§) € 9 S. Therefore, {c;} and {z} represent the
same element in 8 X. Since {z} represents £,  represents a pre-image of ¢. ]

COROLLARY 9. Let X be a finite n-dimensional ideal polyhedron and X its universal
covering. Then the limit set of the action of 71 (X) on X isthe whole d X.

PROOF. Let 57 € 9X. We will show that i € Fixp(X), where Fixn(X) is the set of
boundary points of X which are fixed by hyperbolic elements of I". Then 5 N ()
since by Corollary 12 proven below and Proposition 3, Fix,(X) = Ng(T). We need the
following property
(11) ¢ € Fixy(B) = (¢) € Fixn(X)

To seethisassumethat ¢ € I isahyperbolic isometry with ¢(+o00) = (. Pick ageodesic
ray oy,c: [0, +o0) — A representing ¢ with the base point x, being acenter of apolytope. ¢
may not translated,,.. However, wemay choosethebase point xo sothat ¢"(Xo) € 1Moy,
¥n € N. In particular, {¢"(X0)} is a subsequence of the sequence of the centers {c; } of
the polytopes intersected by Iméy, (cf. proof of Proposition 8). Hence, by definition of
f, the points ¢"(xo), n € N represent f (¢).

To completethe proof, let £ € aA = Nz(T) (cf. property (2) above) such that f(£) = 1.
By Proposition 3, there exists a sequence of hyperbolic isometries {¢x} C I such that
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$i(+00) — &. By property (11) f(¢(+00)) € Fixy(X) and by continuity of the map f,
posited in Proposition 8, f (gy(+00)) — 1. n

Using Proposition 6 we obtain the following

COROLLARY 10. Let X be a finite n-dimensional ideal polyhedron and Qx be the
non-wandering set of the geodesic flow. Then Qx = GX.

4. Proofs of theorems on GX. In this section we give the proofs of Theorems 1
and 2. The following proposition is, in fact, a corollary of Theorem 2. However, we
prove it first because it implies that the cardinality of the limit set A(I") isinfinite (see
Corollary 12 below) which is necessary in order to use Propositions 3, 4, 5 and 6.

ProOPOSITION 11. GX contains infinitely many closed geodesics whose images in X
are pair-wise distinct.

ProoF. A (n—1)-dimensional ideal polytopec of Xissaidtohaveindexk,, k, € N, if
k, (n— 1)-facesof hyperbolic n-polytopesof X are glued together toform o. Assumeo is
anideal (n— 1)-polytope of X withindex k, > 4. Thenthere existsafinite n-dimensional
ideal hyperbolic space X’ (not necessarily connected) and ideal (n — 1)-polytopesoy, o2
of X’ such that:
o K, <kj Ky, <k, andk;, +ks, =K,
e Janisometry o3 — o7 suchthat X is obtained from X’ by identifying o1 with o
viathis isometry.
Figure 2 displays (in dimension 2) how an 1-simplex ¢ of X givesrisetotwo 1-simplices
o1, 02 in X' with Ko, =3, k,, = 4.
Applying this procedurefor all ideal (n — 1)-polytopeswith index > 4 repeatedly, we
obtain afinite n-dimensional ideal hyperbolic space Y such that

k, =2 or, 3V idea (n — 1)-polytope o of Y

Denote by 11,72, .. ., Tm the ideal (n — 1)-polytopes of Y which have index 3. We will
construct a n-dimensional manifold M out of Y, having negative curvature and finitely
many cusps. Cutting along each7;,j = 1,....m, we obtain a(not necessarily connected)

n-dimensional ideal hyperbolic space Z containing exactly 3mideal (n — 1)-polytopes,
SaY Tias Tibs Tlcs - - - » Trra» Tmb» Tme, Such that
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® Tia,Tibs Tics - - - » Tmas Trbs Tme &€ precisely the ideal (n — 1)-polytopes which are
free faces of someideal n-polytopes (or polytope)

o Yisobtained from Z by gluing together appropriately each triad 7ja, 7 and 7c.
Consider two copies of Z and label them Z, Z'. We will use primes to indicate to which
copy (Z or Z') aniideal (n — 1)-polytope belongs. Glue Z with Z’' along their free ideal
(n — 1)-polytopes as follows:

e for eachj = 1....,midentify 75 with 'Tj/b, Tjp With Tj’c and 7jc with Tj’a using the

isometry which identifies 7ja with 7p(= 7,) in X
Let M be the resulting space. All (n — 1)-polytopes of M have index 2. This means that
M is afinite volume manifold of negative curvature with cusps.
It is clear from the above construction that each closed geodesic YM in M determines
aclosed curve YX in X which locally minimizes length. Hence, 7YX is a closed geodesic

in X. Moreover, if Y/, v} are two closed geodesicsin M, then
ImYY ZImyY inM & ImyY #Imyy inX

Proposition 11 now follows from the fact (see [7]) that there exist infinitely many closed
geodesicsin M which are pair-wise non-homotopic or, equivalently, whose images are
pair-wise distinct. ]

Let X bean-dimensional ideal polyhedronand I itsfundamental group acting properly
by isometries on the universal cover X. Each closed geodesic g in GX determines two
points in d X, namely §(+oo) and §(—oo). Since g is closed, there exists a hyperbolic
isometry ¢ € I' which translates §. Hence, §(+00), §(—oo) € A(I"). Moreover, any two
closed geodesicsin X with distinct imagesin X are non-homotopic, hence, they determine
distinct pointsin the boundary o X. Therefore, we have the following

COROLLARY 12. Let X be an n-dimensional ideal polyhedronand I' its fundamental
group acting properly by isometries on the universal cover X. Then the cardinality of the
limit set A() isinfinite.

Seta2X = {(£.n) € 9X x aX: & #n} andlet p: GX — 32X be the fiber bundle with
fiber R givenby p(g) = (g(—oo), g(+oo)) . Thisbundleistrivial (see[9, Section 8.3]) and

let H: GX — 92X x R bethetrivilization of p with respect to abase point xo defined by
(12) H(g) = (9(—00), g(+=), s)

wheresisthereal number such that d(Xo. g(R)) = d(Xo. g(—s)). Wewill becalling g(—s)
the Proj ection of xp onthei mage g([R{)Nof the geodesi cg, and deno:[e it by pry(Xo). Denote
by @ the geodesicflow R x GX — GX and let W: 92X x R — 92X x R bethe composite
of ® with H, given by the formula

(13) Wi(€1.£2.9) = (€1, E2.5+1),  forall (€1.&) € 9°Xands e R.
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PROOF OF THEOREM 1. By Proposition 4 and Corollary 12, there exists an element
14 (& n) € A x N whosel-orbit isdensein A x A.

Letd = H™Y(¢, 7, ) bethe geodesicin GX determined by ¢ and 1 and somes; € R—(cf.
equation (12)). Let é beits projection to X. We will show that the R-orbit of § isdensein
GX.

Let 3 € GX be arbitrary and 3 alifting in GX. Let H(3) = (3(—00). 3(+00).s;) for
somes; € R,—(cf. equation (12)). By Corollary 10, 3 belongsto the non-wandering set
Qx of the flow, and therefore, by Proposition 6, the endpoints 3(—co), 3(+00) of 3 liein
A. Then by (14),

Honp CT (¢n(§) ¢n(n)) - (B(_OO)B("'OO))
Choose {t,} C Rsuchthat t, + s — S Then

(¢n(€) on(n),tn + Sg) — (B(_OO)B(‘*'OO SB)

asn — +oo and, hence, H2(¢n(€), én(n). tn + ) — 3. It follows that & (¢nd) — B,
where @ denotes the geodesic flow on X. Thus, @, (mx(¢nd)) — mx(3) and, hence
q)tn (5) — ﬂ ]

PROOF OF THEOREM 2. Let 3 € GX and 3 € GX alifting. Set = 3(—o0) and ¢ =
B(+oo). By Corollary 10 we may assume that 3 belongs to the non-wandering set Qx of
theflow, and therefore, by Proposition 6, the endpoints ¢, 17 of B liein A. By Proposition 5
and Corollary 12 there exist sequences {Xn}, {yn} C Aand {¢n} C:Xn — 17,¥n — &
and, for eachn € N, ¢, is ahyperbolic element of I" with ¢n(X,) = X, and ¢n(Yn) = Yn.
Let H(3) = (¢.n.9) for some's € R. Denote by 3, the geodesic H=1(X. Yn. Su) Where
S, is chosen so that s, — s. Then 3, — j in the GX-metric. Since ¢, translates jn,
Bn = mx(Bn) = px © fn are closed geodesicsin GX, where py is the covering projection
px: X — X. By continuity of 7, 3, — 3 with 3, being closed geodesicsas required. =

REMARK. It is shown in [5] that F-conform measures exist on the boundary 9 A of
(any tree) A. Moreover, the product measure 1, x i, appropriately adjusted, gives rise
to a M-invariant measure v’ on 92A. If ¢ is the Lebesque measure on R, v/ x ¢ is a
I-invariant and geodesic invariant flow measure on GA ~ 32A x R. The map f defined
by Proposition 8, givesrise to amap GA & 42A x R — 92X x R ~ GX, which can be
used to define a Borel measure on GX which is geodesic flow invariant and I'-invariant.
Its projection to GX turns out to be alocally finite and geodesic flow invariant measure.
It remains to be examined whether there exists a flow invariant probability measure
on GX. Such a measure would be important to a further study of the geodesic flow on
n-dimensional ideal polyhedra.
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