ON FUNCTIONS WITH DERIVATIVE OF BOUNDED VARIATION: AN ANALOGUE OF BANACH'S INDICATRIX THEOREM

by WOLFGANG STADJE

(Received 5th December, 1984)

1. Statement of the result

A simple, but nice theorem of Banach states that the variation of a continuous function $F:[a, b] \rightarrow \mathbb{R}$ is given by $\int_{-\infty}^{\infty} t(y) d y$, where $t(y)$ is defined as the number of $x \in[a, b]$ for which $F(x)=y$ (see, e.g., [1], VIII.5, Th. 3). In this paper we essentially derive a similar representation for the variation of F^{\prime} which also yields a criterion for a function to be an integral of a function of bounded variation. The proof given here is quite elementary, though long and somewhat intriciate.

$$
\text { Let }-\infty<a<b<\infty, \quad F:[a, b] \rightarrow \mathbb{R} \text { be continuous. }
$$

For any real function G on $[a, b]$ we denote by $v(G)$ its variation and by $l(G)$ the length of its graph; further $\|G\|:=\sup \{\mid G(x) \| x \in[a, b]\}$.

$$
\text { Let } a_{n j}:=a+(b-a) j 2^{-n}, \quad D_{n}:=\left\{a_{n j} \mid j=1, \ldots, 2^{n}-1\right\} .
$$

For $\alpha>0$ we define $\mathscr{F}_{a}(F):=\{G:[a, b] \rightarrow \mathbb{R} \mid\|F-G\| \leqq \alpha, G(a)==F(a), G(b)=F(b)\}$.
We consider $F_{\alpha}^{n}:[a, b] \rightarrow \mathbb{R}$ which is defined to be that function H satisfying $H(a)=$ $F(a), \quad H(b)=F(b), \quad F\left(a_{n j}\right)-\alpha \leqq H\left(a_{n j}\right) \leqq F\left(a_{n j}\right)+\alpha \quad\left(j=1, \ldots, 2^{n}-1\right)$ which has minimal length. Clearly F_{α}^{n} is piecewise linear and continuous (see Fig. 1). We shall show that

$F_{\alpha}:=\lim _{n \rightarrow \infty} F_{\alpha}^{n}$ exists (pointwise), and F_{α} is uniquely determined by

$$
\begin{equation*}
l\left(F_{\alpha}\right)=\inf \left\{l(G) \mid G \in \mathscr{F}_{\alpha}(F)\right\} . \tag{1}
\end{equation*}
$$

F_{α} can be visualized as a thread fastened to the point $(a, F(a))$ and drawn as tautly as possible in the region

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid x \in[a, b], F(x)-\alpha \leqq y \leqq F(x)+\alpha\right\}
$$

such that it passes through $(b, F(b))$.
Let $F^{0}(x)$ be the straight line joining $(a, F(a))$ and $(b, F(b))$,

$$
\alpha_{0}:=\sup \left\{\mid F(x)-F^{0}(x) \| x \in[a, b]\right\} .
$$

Suppose $\alpha_{0}>0$. It will be proved that for $\alpha \in\left(0, \alpha_{0}\right)$ there is a finite number of open intervals $J_{1 a}, \ldots, J_{k_{\alpha}, \alpha} \subset[a, b]$ (ordered from left to right) with the following properties:
(i) $\left|F_{\alpha}(x)-F(x)\right|<\alpha$ for all $x \in \bigcup_{i=1}^{k_{\alpha}} J_{i \alpha}$
(ii) Let $J_{i \alpha}=\left(x_{i \alpha}, x_{i \alpha}^{\prime}\right)$. Then for $i=2, \ldots, k_{\alpha}-1$ either

$$
\begin{aligned}
& F_{\alpha}\left(x_{i \alpha}\right)-F\left(x_{i \alpha}\right)=\alpha \text { and } F_{\alpha}\left(x_{i \alpha}^{\prime}\right)-F\left(x_{i \alpha}^{\prime}\right)=-\alpha \text { or } \\
& F_{\alpha}\left(x_{i \alpha}\right)-F\left(x_{i \alpha}\right)=-\alpha \text { and } F_{\alpha}\left(x_{i \alpha}^{\prime}\right)-F\left(x_{i \alpha}^{\prime}\right)=\alpha ; \text { further } \\
& x_{1 \alpha}=a, F_{\alpha}\left(x_{1 \alpha}^{\prime}\right)-F\left(x_{1 \alpha}^{\prime}\right)= \pm \alpha \text { and } x_{k_{\alpha}, \alpha}^{\prime}=b, \\
& F_{\alpha}\left(x_{k_{\alpha}, \alpha}\right)-F\left(x_{k_{\alpha}, \alpha}\right)= \pm \alpha .
\end{aligned}
$$

Let for $\alpha \geqq \alpha_{0} s(\alpha):=0$ and for $\alpha \in\left(0, \alpha_{0}\right)$

$$
\begin{align*}
s(\alpha):= & {\left[4\left(x_{1 \alpha}^{\prime}-a\right)\right]^{-1}+\left(x_{2 \alpha}^{\prime}-x_{2 \alpha}\right)^{-1}+\cdots+\left(x_{k_{\alpha}-1, \alpha}^{\prime}-x_{k_{\alpha}-1, \alpha}\right)^{-1} } \\
& +\left[4\left(b-x_{k_{\alpha}, \alpha}\right)\right]^{-1} . \tag{2}
\end{align*}
$$

$s(\alpha)$ will be seen to be monotone decreasing. It measures how often F_{α} varies from $F+\alpha$ to $F-\alpha$ and vice versa and how fast this happens.

Now we can formulate the result.
Theorem. If $\int_{0}^{\varepsilon} s(\alpha) d \alpha<\infty$ for some $\varepsilon>0$, there is a $f:[a, b] \rightarrow \mathbb{R}$ such that

$$
\begin{gather*}
F(x)=F(a)+\int_{\alpha}^{x} f(t) d t \quad \text { for all } x \in[a, b] \tag{3}\\
v(f)=4 \int_{0}^{\infty} s(\alpha) d \alpha . \tag{4}
\end{gather*}
$$

If there is a $f:[a, b] \rightarrow \mathbb{R}$ of bounded variation satisfying (3), there exists a $7:[a, b] \rightarrow \mathbb{R}$ such that $f=\tilde{f}$ almost everywhere and $v(\tilde{f})=4 \int_{0}^{\infty} s(\alpha) d \alpha<\infty$.

2. Proof of the Theorem

We have subdivided the proof into a number of separate steps.
(a) It is clear that $\sup _{n} l\left(F_{a}^{n}\right)<\infty$ so that also $\sup _{n} v\left(F_{a}^{n}\right)<\infty$. By Helly's extraction theorem ([1], p. 250), there is a pointwise convergent subsequence $F_{\alpha}^{n_{j}} \rightarrow F_{\alpha}$, and we have $l\left(F_{\alpha}\right) \leqq \liminf _{j \rightarrow \infty} l\left(F^{n j a}\right)$. Each G: $[a, b] \rightarrow$ for which $\|F-G\| \leqq \alpha$ and $G(a)=F(a), G(b)=$ $F(b)$ satisfies $l(G) \geqq l\left(F_{\alpha}^{n}\right)$ for all $n \in \mathbb{N}$ so that $l(G) \geqq l\left(F_{\alpha}\right)$. Thus (1) holds. We shall show that (1) uniquely determines F_{α} thus getting $F_{\alpha}^{n} \rightarrow F_{\alpha}$.
(b) F_{α} is continuous on $[a, b]$. Indeed, since $v\left(F_{\alpha}\right)<\infty, F_{\alpha}(x+)$ and $F_{\alpha}(x-)$ exist for all $x \in(a, b)$. Suppose, e.g., $F_{\alpha}\left(x_{1}-\right)<F_{\alpha}\left(x_{1}+\right)$ for some $x_{1} \in(a, b)$. Define $\tilde{F}_{\alpha}^{\varepsilon}(x):=F_{\alpha}(x)$ for $x \notin\left[x_{1}, x_{1}+\varepsilon\right), \quad \tilde{F}_{a}^{\varepsilon}\left(x_{1}\right):=\frac{1}{2} F_{\alpha}\left(x_{1}-\right)+\frac{1}{2} F_{\alpha}\left(x_{1}+\right), \quad \tilde{F}_{\alpha}^{\varepsilon} \quad$ linear on $\quad\left[x_{1}, x_{1}+\varepsilon\right)$ and $\lim _{x \rightarrow x_{1}+\varepsilon-} \tilde{F}_{a}^{\varepsilon}(x):=F_{\alpha}\left(x_{1}+\varepsilon-\right)$.
Then $\tilde{F}_{\alpha}^{\varepsilon} \in \mathscr{F}_{\alpha}(F)$ for small $\varepsilon>0$ and $l\left(\tilde{F}_{\alpha}^{\varepsilon}\right)<l\left(F_{\alpha}\right)$, a contradiction. The continuity of F_{α} in a and b is proved similarly.
(c) By (b), $A_{\alpha}:=\left\{x \in[a, b] \mid F_{\alpha}(x)-F(x)<\alpha\right\}$ is open. F_{x} is concave on each component of A_{α}. To see this, let $x_{1}, x_{2} \in D_{N}$ for some N with the properties $U:=\left(x_{1} \cdot x_{2}\right) \subset A_{\alpha}$ and $\sup _{U}(F(x)-\alpha)<\inf _{U}(F(x)+\alpha)$. For $n \geqq N$ let G_{n} be the smallest concave function on U satisfying $\quad G_{n}(x) \geqq F(x)-\alpha$ for all $x \in D_{n} \cap\left(x_{1}, x_{2}\right), \quad G_{n}\left(x_{1}\right)=F_{\alpha}\left(x_{1}\right), \quad G_{n}\left(x_{2}\right)=F_{\alpha}\left(x_{2}\right)$. Obviously we have $G_{n} \leqq F+\alpha$ and $G_{n} \leqq F_{a}$ (in U); G_{n} is an increasing sequence, and the limit $G:=\lim _{n \rightarrow \infty} G_{n}$ is a concave function on U for which $G \leqq F_{\alpha}, F-\alpha \leqq G \leqq F+\alpha$, $G\left(x_{1}\right)=F_{\alpha}\left(x_{1}\right), G\left(x_{2}\right)=F_{\alpha}\left(x_{2}\right)$. So we must have $G=F_{\alpha}$ on U.
(d) Similarly as in (c) it is seen that F_{α} is convex on each component of the (by (a)) open set $B_{\alpha}:=\left\{x \in[a, b] \mid F_{\alpha}(x)-F(x)>-\alpha\right\}$. Let $\mathscr{I}_{\alpha}\left(\widetilde{\mathscr{F}}_{\alpha}\right)$ be the set of all intervals $[x, y] \subset[a, b]$ such that $x, y \in A_{\alpha}^{c}$ and $[x, y] \cap B_{\alpha}^{c}=\varnothing\left(x, y \in B_{\alpha}^{c}\right.$ and $\left.[x, y] \cap A_{\alpha}^{c}=\varnothing\right)$. Let $I_{\alpha}:=\bigcup\left\{I \mid I \in \mathscr{I}_{\alpha}\right\}, \tilde{I}_{\alpha}:=\bigcup\left\{I \mid I \in \widetilde{\mathscr{I}}_{\alpha}\right\}, J_{\alpha}:=[a, b] \backslash\left(I_{\alpha} \cup \tilde{I}_{\alpha}\right)$. On the components of $I_{\alpha} \cup J_{\alpha}$ resp. $\tilde{I}_{a} \cup J_{a}$ resp. $J_{a} F_{a}$ is convex resp. concave resp. linear. The number of components of $I_{\alpha}, \tilde{I}_{\alpha}$ and J_{α} is finite (otherwise there exist sequences $x_{i} \in \partial I_{\alpha}, \tilde{x}_{i} \in \partial \tilde{I}_{\alpha}$ such that $x_{i}-\tilde{x}_{i} \rightarrow 0$ $(i \rightarrow \infty)$ so that $F_{a}\left(x_{i}\right)-F_{a}\left(\tilde{x}_{i}\right) \rightarrow 0$; this yields a contradiction, because $F_{a}\left(x_{i}\right)=F\left(x_{i}\right)-\alpha$, $\left.F_{a}\left(\tilde{x}_{i}\right)=F\left(\tilde{x}_{i}\right)+\alpha\right)$.
(e) By (d), F_{α} is absolutely continuous. If \bar{F}_{α} is a solution of (1) for which $F_{\alpha} \equiv \bar{F}_{\alpha}, \bar{F}_{\alpha}$ is also absolutely continuous, and

$$
\begin{align*}
l\left(\frac{1}{2} F_{\alpha}+\frac{1}{2} \bar{F}_{a}\right) & =\int_{a}^{b}\left[1+\left(\frac{1}{2} F_{a}^{\prime}(x)+\frac{1}{2} \bar{F}_{a}^{\prime}(x)\right)^{2}\right]^{1 / 2} d x \\
& <\int_{a}^{b}\left[\frac{1}{2}\left[1+F_{a}^{\prime}(x)^{2}\right]^{1 / 2}+\frac{1}{2}\left(1+\bar{F}_{a}^{\prime}(x)^{2}\right)^{1 / 2}\right] d x \\
& =\frac{1}{2} l\left(F_{a}\right)+\frac{1}{2} l\left(\bar{F}_{\alpha}\right)=l\left(F_{a}\right) . \tag{5}
\end{align*}
$$

Since $\frac{1}{2} F_{a}+\frac{1}{2} \bar{F}_{a} \in \mathscr{F}_{a}(F)$, (5) contradicts (1). So F_{a} is uniquely determined by (1), and $F_{\alpha}^{n} \rightarrow F_{\alpha}(n \rightarrow \infty)$.
(f) J_{α} is increasing, I_{α} and \tilde{I}_{α} are decreasing with respect to α. Consider for example A_{α}^{c}. Suppose on the contrary that for some $\alpha<\beta$ and $x_{0} \in(a, b)$ we have $F_{\beta}\left(x_{0}\right)=F\left(x_{0}\right)+\beta$ and $F_{\alpha}\left(x_{0}\right)<F\left(x_{0}\right)+\alpha$. Let $U=\left(x_{1}, x_{2}\right)$ be the maximal interval in $[a, b]$ containing x_{0} such that $F_{\beta}(x)-\beta>F_{\alpha}(x)-\alpha$ for $x \in U$. Clearly $a<x_{1}<x_{0}<x_{2}<b$, and F_{α} is concave on U (otherwise there is a $x_{3} \in U$ for which $F_{\alpha}\left(x_{3}\right)=F\left(x_{3}\right)+\alpha$, but then $F_{\beta}\left(x_{3}\right)-\beta>F\left(x_{3}\right)$, a contradiction). Note that for $x \in U$

$$
\begin{gather*}
F_{\beta}(x)-\beta>F_{\alpha}(x)-\alpha \geqq F(x)-2 \alpha \\
>F(x)-2 \beta \tag{6}
\end{gather*}
$$

so that $F_{\beta}(x)>F(x)-\beta$. Consequently $U \subset B_{\beta}$, and F_{β} is convex on U. The convex F_{β} coincides with the concave $F_{\alpha}+\beta-\alpha$ at x_{1} and at x_{2}, so $F_{\beta}=F_{\alpha}+\beta-\alpha$ on U. This is a contradiction to the definition of U.
(g) It follows from (f) that s, as defined by (2), is a monotone decreasing function (note that the construction of F_{α}^{n} shows that $J_{\alpha} \neq \varnothing$ for $\alpha<\alpha_{0}$).
(h) For the rest of the proof we assume without restriction of generality that

$$
\inf I_{\alpha}<\inf \tilde{I}_{\alpha}
$$

Thus F_{α} "has a convex start".
(i) J_{α} is a finite disjoint union of open intervals $J_{1, \alpha}, \ldots, J_{k_{\alpha}, \alpha}$ (ordered from left to right). Denote their lengths by $l_{1, a}, \ldots, l_{k_{\alpha}, \alpha}$ and set

$$
\begin{align*}
h_{\alpha}:= & -l_{1, \alpha}^{-1} 1_{J_{1, \alpha}}+2 l_{2, \alpha}^{-1} 1_{J_{2, \alpha}}-\cdots+(-1)^{k_{\alpha}-1} 2 l_{k_{\alpha}-1, \alpha}^{-1} 1_{J_{k_{\alpha}-1, \alpha}} \\
& +(-1)^{k_{\alpha} l_{k_{\alpha}, \alpha}^{-1} 1_{J_{k_{\alpha}, \alpha}}, \quad \alpha \in\left(0, \alpha_{0}\right)} \tag{7}\\
h_{\alpha}:= & 0, \quad \alpha \geqq \alpha_{0} .
\end{align*}
$$

If s is defined by (2), it is easy to verify that

$$
\begin{equation*}
4 s(\alpha)=v\left(h_{\alpha}\right) \tag{8}
\end{equation*}
$$

Further, for all $\varepsilon>0$,

$$
\begin{equation*}
4 \int_{\varepsilon}^{\infty} s(\alpha) d \alpha=\int_{\varepsilon}^{\infty} v\left(h_{\alpha}\right) d \alpha=v\left(\int_{\varepsilon}^{\infty} h_{\alpha} d \alpha\right) \tag{9}
\end{equation*}
$$

To establish the second equation in (9), consider an arbitrary partition $a=$ $x_{0}<x_{1}<\cdots<x_{N}=b$ with the property that no interval $\left[x_{j-1}, x_{j}\right]$ contains points from
I_{ε} and \tilde{I}_{ε}. We notice that for each $\alpha \geqq \varepsilon$ the set of points at which h_{α} jumps upwards (resp. downwards), is contained in I_{ε} (resp. \tilde{I}_{ε}). Thus the sign of $h_{\alpha}\left(x_{j}\right)-h_{\alpha}\left(x_{j-1}\right)$ only depends on j (not on $\alpha \geqq \varepsilon$). Therefore the approximating sums for $\int_{\varepsilon}^{\infty} v\left(h_{\alpha}\right) d \alpha$ and $v\left(\int_{\varepsilon}^{\infty} h_{\alpha} d \alpha\right)$ belonging to the above partition are equal:

$$
\begin{aligned}
& \sum_{j=1}^{N}\left|\int_{\varepsilon}^{\infty} h_{\alpha}\left(x_{j}\right) d \alpha-\int_{\varepsilon}^{\infty} h_{\alpha}\left(x_{j-1}\right) d \alpha\right|=\sum_{j=1}^{N} \int_{\varepsilon}^{\infty}\left|h_{\alpha}\left(x_{j}\right)-h_{\alpha}\left(x_{j-1}\right)\right| d \alpha \\
& =\int_{\varepsilon}^{\infty}\left(\sum_{j=1}^{N}\left|h_{\alpha}\left(x_{j}\right)-h_{\alpha}\left(x_{j-1}\right)\right|\right) d \alpha .
\end{aligned}
$$

This proves the second equation of (9).
(j) We next derive the equation

$$
\begin{equation*}
F_{\alpha}(x)=\int_{\alpha}^{\infty} \int_{a}^{x} h_{\beta}(u) d u d \beta+F^{0}(x) . \tag{10}
\end{equation*}
$$

First note that F_{α} is absolutely continuous with respect to α. Indeed, it follows from the proof in (f) that $F_{\beta}(x)-\beta \leqq F_{\alpha}(x)-\alpha$ for $\alpha \leqq \beta$, and a similar argument shows that $F_{\alpha}(x)+$ $\alpha \leqq F_{\beta}(x)+\beta$ for $\alpha \leqq \beta$.

Thus the limit of

$$
H_{\alpha}^{\ell}(x):=\varepsilon^{-1}\left(F_{\alpha}(x)-F_{\alpha-\ell}(x)\right),
$$

as $\varepsilon \rightarrow 0+$, exists almost everywhere. By the Lipschitz continuity of $\alpha \rightarrow F_{a}(x)$ we have $\left|H_{\alpha}^{\varepsilon}\right| \leqq 1$. Further for $x \in A_{\alpha}^{c} \cup B_{\alpha}^{c}$

$$
H_{a}^{e}(x)=-\int_{a}^{x} h_{x}(u) d u=\left\{\begin{align*}
1, & x \in A_{\alpha}^{c} \tag{11}\\
-1, & x \in B_{\alpha}^{c} .
\end{align*}\right.
$$

For if $x \in A_{\alpha}^{c}, F_{\alpha}(x)=F(x)+\alpha$ and, by (f), $F_{\alpha-\varepsilon}(x)=F(x)+\alpha-\varepsilon$; the assertion for h_{α} follows from the definition (7) and (h). As F_{α} is linear on the components of $A_{\alpha} \cap B_{\alpha}$, $F_{\alpha-\varepsilon}$ is concave on the components of $A_{\alpha-\varepsilon}$ and (by (f)) $A_{\alpha-\varepsilon} \subset A_{\alpha}$, we can conclude that H_{α}^{ε} is convex on the components of $\left(A_{\alpha} \cap B_{\alpha}\right) \cap A_{\alpha-\varepsilon}=A_{\alpha-\varepsilon} \cap B_{\alpha}$. On B_{α}^{c} we have $H_{\alpha}^{\varepsilon} \equiv$ -1 , so that H_{α}^{e} is convex on the components of $A_{\alpha-\varepsilon}$. Similarly it is seen that H_{a}^{e} is concave on the components of $B_{a-\varepsilon}$.

It is easily seen that $A_{\alpha-\varepsilon} \uparrow A_{\alpha}, B_{\alpha-\varepsilon} \uparrow B_{\alpha}, J_{\alpha-\varepsilon} \uparrow J_{\alpha}$, as $\varepsilon \downarrow 0$. If $x \in I_{\alpha}$, there are $x_{1}, x_{2} \in A_{\alpha}^{c}$ such that $x \in\left[x_{1}, x_{2}\right]$. Since $A_{\alpha}^{c} \subset B_{\alpha}=\bigcup_{0<\varepsilon<\alpha} B_{\alpha-\varepsilon}$, there is a $\varepsilon_{0}>0$ such that $x_{1}, x_{2} \in B_{\alpha-\varepsilon_{0}}$; as H_{α}^{ε} is concave on $B_{\alpha-\varepsilon}$ and $H_{\alpha}^{\varepsilon}\left(x_{1}\right)=H_{\alpha}^{\varepsilon}\left(x_{2}\right)=1$, we have $H_{\alpha}^{e}(x)=1$ for $\varepsilon \in\left(0, \varepsilon_{0}\right]$. Thus $H_{\alpha}^{e}(x) \rightarrow 1$ for $x \in I_{\alpha}$. Similarly we get $H_{\alpha}^{e}(x) \rightarrow-1$ for $x \in \tilde{I}_{\alpha}$, as $\varepsilon \rightarrow 0+$.

Now let (x_{0}, x_{1}) be a component of $J_{\alpha}, x_{0} \in A_{a}^{c}, x_{1} \in B_{\alpha}^{c}$, so that $H_{a}^{e}\left(x_{0}\right)=1, H_{a}^{e}\left(x_{1}\right)=-1$. Then for small $\varepsilon>0$ there are $\delta(\varepsilon)>0, \eta(\varepsilon)>0$ such that H_{α}^{ε} is concave and decreasing on $\left[x_{0}, x_{1}-\eta(\varepsilon)\right]$, convex and decreasing on $\left[x_{1}+\delta(\varepsilon), x_{1}\right]$ and linear on $\left[x_{0}+\delta(\varepsilon)\right.$, $\left.x_{1}-\eta(\varepsilon)\right]$, and

$$
\lim _{\varepsilon \rightarrow 0+} \delta(\varepsilon)=\lim _{\varepsilon \rightarrow 0+} \eta(\varepsilon)=0 .
$$

Hence $\lim _{\varepsilon \rightarrow 0^{+}} H_{\alpha}^{\varepsilon}(x)$ exists for $x \in\left[x_{0}, x_{1}\right]$ and is linear and continuous. Thus

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0+} H_{\alpha}^{\varepsilon}(x)=-\int_{a}^{x} h_{\alpha}(u) d u \tag{12}
\end{equation*}
$$

by (11) and the fact that the right-hand side is piecewise linear and continuous.
(k) By (10) and Fubini's theorem (note that $\left|h_{\beta}\right| \leqq\left(2 / \min _{i} l_{i, \alpha}\right.$) for $\beta \geqq \alpha$),

$$
F_{\alpha}^{\prime}(x)=\int_{\alpha}^{\infty} h_{\beta}(x) d \beta+\frac{F(b)-F(a)}{b-a} \text { a.e. }
$$

If F_{α} is not differentiable at x, F_{α}^{\prime} denotes the right derivative which exists because of the concavity and convexity properties of F_{α}. As $v\left(F_{\alpha}^{\prime}\right)$ and $v\left(\int_{\alpha}^{\infty} h_{\beta}(). d \beta\right)$ can be computed by only considering partitions of $[a, b]$ contained in a countable dense set, we get

$$
\begin{equation*}
v\left(F_{\alpha}^{\prime}\right)=v\left(\int_{\alpha}^{\infty} h_{\beta}(.) d \beta\right) . \tag{13}
\end{equation*}
$$

By (9), (13) and the assumption $\int_{0}^{\infty} s(\alpha) d \alpha<\infty$, it follows that

$$
\begin{equation*}
\sup _{\alpha>0} v\left(F_{\alpha}^{\prime}\right)<\infty . \tag{14}
\end{equation*}
$$

By Helly's selection principle either there exists a function $f:[a, b] \rightarrow \mathbb{R}$ such that $F_{\alpha_{j}}^{\prime} \rightarrow f$ pointwise for some sequence $\alpha_{j} \rightarrow 0+$ or there is a $x_{0} \in[a, b]$ such that $\left|F_{\alpha_{j}}^{\prime}\left(x_{0}\right)\right| \rightarrow \infty$ for some sequence $\alpha_{j} \rightarrow 0+$. In the second case we have without restriction of generality $F_{\alpha_{j}}^{\prime}(x) \rightarrow \infty$ for all $x \in[a, b]$ (use (14)) so that $F_{\alpha_{j}}(x)=\int_{a}^{x} F_{\alpha_{j}}^{\prime}(u) d u \rightarrow \infty$ for $x \in(a, b]$. Thus this possibility is excluded. In the first case however,

$$
\begin{equation*}
F(x)-F(a)=\lim _{j \rightarrow \infty} F_{\alpha_{j}}(x)-F(a)=\lim _{j \rightarrow \infty} \int_{a}^{x} F_{a_{j}}^{\prime}(t) d t=\int_{a}^{x} f(t) d t . \tag{15}
\end{equation*}
$$

(l) We shall now prove

$$
\begin{equation*}
v(f)=4 \int_{0}^{\infty} s(\alpha) d \alpha \tag{16}
\end{equation*}
$$

Firstly, by (k) and (9),

$$
\begin{equation*}
v(f) \leqq \liminf _{j \rightarrow \infty} v\left(F_{a_{j}}^{\prime}\right)=4 \int_{0}^{\infty} s(\alpha) d \alpha \tag{17}
\end{equation*}
$$

Next we show that

$$
\begin{equation*}
v\left(F_{\alpha}^{\prime}\right) \leqq \sum\left|D^{+} F(x)-D^{-} F\left(x^{\prime}\right)\right|, \tag{18}
\end{equation*}
$$

where D^{+}and D^{-}denote right and left derivative and the sum is taken over all components $\left[x^{\prime}, x\right]$ of $I_{\alpha} \cup \tilde{I}_{\alpha}$. Note that because of $v(f)<\infty$,

$$
\lim _{\varepsilon \rightarrow 0+} \varepsilon^{-1} \int_{x}^{x+\varepsilon} f(t) d t \text { and } \lim _{\varepsilon \rightarrow 0+} \varepsilon^{-1} \int_{x-\varepsilon}^{x} f(t) d t
$$

exist for all $x \in(a, b)$, are continuous from the right resp. left and are both equal to $F^{\prime}(x)$ almost everywhere (see [2]). Especially, the right-hand sum in (18) is well-defined.

Let us consider an arbitrary component $\left[x_{1}, x_{2}\right]$ of I_{α}. Then $F_{\alpha}\left(x_{1}\right)=F\left(x_{1}\right)+\alpha$, $F_{\alpha}\left(x_{2}\right)=F\left(x_{2}\right)+\alpha$, and F_{α} is convex on $\left[x_{1}-\varepsilon, x_{2}+\varepsilon\right]$ for $\varepsilon>0$ so small that $\left(x_{1}-\varepsilon, x_{2}+\varepsilon\right) \subset I_{\alpha} \cup J_{\alpha}$. Thus the total variation of F_{α}^{\prime} in $\left[x_{1}-\varepsilon, x_{2}+\varepsilon\right]$ is equal to $F_{\alpha}^{\prime}\left(x_{2}+\varepsilon\right)-F_{\alpha}^{\prime}\left(x_{1}-\varepsilon\right)$. On the other hand, by definition of I_{α} and ε it is clear that for all $\delta \in(0, \varepsilon)$

$$
F_{\alpha}\left(x_{2}+\delta\right)<F\left(x_{2}+\delta\right)+\alpha, \quad F_{\alpha}\left(x_{1}-\delta\right)<F\left(x_{1}-\delta\right)+\alpha
$$

FIGURE 2

Hence,

$$
\begin{align*}
D^{+} F\left(x_{2}\right) & =\lim _{\delta \rightarrow 0+} \delta^{-1} \int_{x_{2}}^{x_{2}+\delta} f(t) d t \\
& =\lim _{\delta \rightarrow 0+} \delta^{-1}\left[F\left(x_{2}+\delta\right)+\alpha-\left(F\left(x_{2}\right)+\alpha\right)\right] \\
& \geqq \lim _{\delta \rightarrow 0+} \delta^{-1}\left[F_{\alpha}\left(x_{2}+\delta\right)-F_{\alpha}\left(x_{2}\right)\right] \\
& =F_{\alpha}^{\prime}\left(x_{2}+\varepsilon\right) \tag{19}
\end{align*}
$$

(the last equation follows, because F_{a} is linear on a set containing $\left[x_{2}, x_{2}+\varepsilon\right]$). Similarly it is seen that $D^{-} F\left(x_{1}\right) \leqq F_{\alpha}^{\prime}\left(x_{1}-\varepsilon\right)$. Therefore the total variation of F_{α}^{\prime} in $\left[x_{1}-\varepsilon, x_{2}+\varepsilon\right]$
is at most as large as $\left|D^{+} F\left(x_{2}\right)-D^{-} F\left(x_{1}\right)\right|$. An analogous argument applies to the components of $\tilde{I}_{\alpha} \cdot v\left(F_{\alpha}^{\prime}\right)$ is the sum of the above estimated total variations.

This yields (18).
Since $D^{+} F(x)\left(D^{-} F(x)\right)$ is continuous from the right (left) and almost everywhere equal to $f(x)$, we obtain from (18) that

$$
\begin{equation*}
v\left(F_{a}^{\prime}\right) \leqq v(f) \quad \text { for all } \alpha>0 \tag{19}
\end{equation*}
$$

(17) and (19) together imply (16).
(m) Finally suppose that there is a $f:[a, b] \rightarrow \mathbb{R}$ with bounded variation for which $F(x)=\int_{a}^{x} f(t) d t$ for all $x \in[a, b]$. As in (1) it is shown that $v\left(F_{\alpha}^{\prime}\right) \leqq v(f)$ for all $\alpha>0$. As in (k) it is then proved that there is a f of bounded variation coinciding with f almost everywhere such that $\tilde{f}(x)=\lim _{j \rightarrow \infty} F_{a_{j}}^{\prime}(x)$ for all $x \in[a, b]$. Note that also

$$
\begin{equation*}
\int_{\alpha}^{\infty} s(\beta) d \beta=v\left(F_{\alpha}^{\prime}\right) \leqq v\left(f^{\prime}\right) \quad \text { for all } \alpha>0 \tag{20}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\int_{0}^{\infty} s(\beta) d \beta<\infty, \tag{21}
\end{equation*}
$$

and the first part of the theorem applies.

REFERENCES

1. I. P. Natanson, Theory of Functions of a Real Variable (Frederick Ungar Publishing Co., New York, 1955).
2. W. Stadje, Bemerkung zu einem Satz von Akcoglu und Krengel, Studia Math. 81 (1985), 307-310.

Universitat Osnabrúck

