COMMUTATIVE ABSOLUTE SUBRETRACTS

E. JESPERS and M. M. PARMENTER

(Received 13 May 1991)

Communicated by P. Schultz

Abstract

Directly indecomposable absolute subretracts that are commutative Noetherian rings are described. This is an application of our main result characterizing unital directly indecomposable absolute subretracts which contain a maximal ideal with nonzero annihilator.

1991 Mathematics Subject Classification (Amer. Math. Soc.): Primary 16 D 50.

Throughout this paper, all rings are associative and commutative. The variety generated by a ring R is denoted $\operatorname{Var}(R)$ (cf. [7]).

Recently, several authors [2, 4,5] have studied the notion of absolute subretract. Recall that a ring R is said to be an absolute subretract if for every ring S in $\operatorname{Var}(R)$ and every ring monomorphism $f: R \rightarrow S$, there exists a ring morphism $g: S \rightarrow R$ such that $g f$ is the identity mapping on R. In [4], Gardner and Stewart characterized directly indecomposable absolute subretracts R with $R^{2}=\{0\}$, and gave an example of a special principal ideal ring which is an absolute subretract. Then Jespers [5] obtained necessary and sufficient conditions for a finite special principal ideal ring (of characteristic different from 2^{n}) to be an absolute subretract, also obtaining results for the infinite and characteristic 2^{n} cases.

We first show that in a unital directly indecomposable absolute subretract R, the set of zero divisors is a maximal ideal M and R / M is finite. If, moreover, M has nonzero annihilator (denoted $\operatorname{Ann}(M)$), we obtain necessary and sufficient conditions for R to be an absolute subretract. As an immediate consequence, a characterization of Noetherian directly indecomposable

[^0]absolute subretracts is obtained. The latter is then applied to Noetherian contracted monoid algebras.

Lemma $1[2,4]$. Let R be a directly indecomposable absolute subretract. If I and J are nonzero ideals of R, then $I \cap J \neq\{0\}$.

Proposition 2. Let R be a unital ring. If R is a directly indecomposable absolute subretract, then the set of zero-divisors of R is a maximal ideal M and R / M is finite.

Proof. Let M be the set of zero divisors. Because of Lemma 1, one easily verifies that M is an ideal of R. Clearly R / M is a domain. If R / M is finite, then R / M is a field and thus M is a maximal ideal. In the remainder, we show that R / M has to be finite.

Suppose the contrary. Then R / M, being an infinite domain, satisfies only identities $f(X)=0$ where $f(X) \in p \mathbf{Z}[X], p=\operatorname{char}(R / M)$. If $p=0$, we have shown that R / M, and hence R, satisfies no nontrivial polynomial identities. If $p \neq 0$, any nontrivial polynomial identity satisfied by R must be of the form $0=p^{n} f(X) \in \mathbf{Z}[X], n \geq 1$, where $f(X) \notin p \mathbf{Z}[X]$. We claim that in this case char $(R) \mid p^{n}$. If not, then $p^{n} \neq 0$ in R so $f(X)$ is in M for all choices of X and $f(X)=0$ in R / M. But we saw before that this implies $f(X) \in p \mathbf{Z}[X]$, a contradiction.

In either case (cf. [6]), $\operatorname{Var}(R)$ contains all central extensions of R. As in [8] and [4], we focus our attention on the localization of the polynomial ring in one variable $R[x]$ obtained by inverting all monic polynomials, and denote this by T. Since R is an absolute subretract, there is a homomorphism $g: T \rightarrow R$ extending the identity map on R. Say $g(x)=r$. Then, $g(x-$ $r)=0$, a contradiction since $x-r$ is invertible. This finishes the proof.

Corollary 3. Let R be a unital directly indecomposable absolute subretract and let M be the ideal of zero divisors. If $\operatorname{Ann}(M) \neq 0$, then $\operatorname{Ann}(M)$ is the minimum nonzero ideal of R.

Proof. Say $\operatorname{Ann}(M) \nsubseteq I$ for some nonzero ideal I of R. Choose $0 \neq$ $m \in \operatorname{Ann}(M)$ with $m \notin I$. By Lemma 1 , there exists $r \in R$ such that $0 \neq$ $r m \in I$. Proposition 2 then says that $r^{n-1}=1+\alpha$ for some $\alpha \in M$ where $n=|R / M|$. But this implies that $m=r^{n-1} m \in I$, a contradiction.

Lemma 4. Let R be a unital directly indecomposable absolute subretract with M the ideal of zero divisors. Assume $M \neq\{0\}$ and $\operatorname{Ann}(M) \neq\{0\}$. If $|R / M|>2$, then $M=\operatorname{Ann}(M)$, that is $M^{2}=\{0\}$.

Proof. Since R / M has more than two elements, there exist $u, u^{\prime} \notin M$ with $u-u^{\prime} \notin M$. Also, by Corollary 3 , Ann $(M)=R x$ for some $0 \neq x \in R$.

Let $S=\{(a, a+j) \in R \times R \mid j \in M\}$ and let I be the principal ideal generated by $\left(u x, u^{\prime} x\right)$ in S. Note that, since $M x=0, I=$ $\left\{\left(a u x, a u^{\prime} x\right) \mid a \notin M\right\} \cup\{0\}$, and that $T=S / I$ is in $\operatorname{Var}(R)$. Define $f: R \rightarrow T$ by $f(r)=(r, r)+I$. Clearly f is a homomorphism. Suppose $f(r)=0$ for some $r \neq 0$, that is $(r, r) \in I$. Then $0 \neq r=a u x=a u^{\prime} x$ for some $a \notin M$, so $a\left(u-u^{\prime}\right) x=0$. Since $a\left(u-u^{\prime}\right) \notin M$, that is, $a\left(u-u^{\prime}\right)$ is not a zero divisor, it follows that $x=0$, a contradiction. Thus f is a monomorphism.

We now show that every principal ideal $T t$ of T intersects $f(R)$ nontrivially, where $0 \neq t=(a, b)+I$.

First consider the case where $a, b \in R x$, that is, $a=v x, b=w x$ and either v or w is not in M. Let $s=\left(u^{\prime}-u\right)^{n-2}(v-w)$ where $n=|R / M|$. Note that $s\left(u^{\prime}-u\right) x=\left(u^{\prime}-u\right)^{n-1}(v-w) x=(1+\alpha)(v-w) x$ for some $\alpha \in M$. Hence

$$
s\left(u^{\prime}-u\right) x=(v-w) x
$$

Therefore $(v+s u) x=\left(w+s u^{\prime}\right) x$, and so $0 \neq(a, b)+I=(v x, w x)+$ $s\left(u x, u^{\prime} x\right)+I=\left((v+s u) x,\left(w+s u^{\prime}\right) x\right)+I \in f(R)$.

Next assume that either $a \notin R x$ or $b \notin R x$, for example, say, $a \notin R x$. Because $M a \neq 0$ and $R x$ is minimum, there exists $r \in M$ with $r a=x$. Hence $(r, 0) \in S$ and $(r, 0)(a, b)+I=(x, 0)+I$ belongs to $T t$. Note that $(x, 0) \notin I$ since $(x, 0)=\left(a u x, a u^{\prime} x\right)$ implies $a u^{\prime} x=0$. As u^{\prime} is not a zero divisor, this yields $a x=0$ and thus $x=a u x=0$, a contradiction. By the previous case, we know that $(x, 0)+I$ belongs to $f(R)$.

Since R is an absolute subretract, it follows that $f(R)=T$. Hence, for every $m \in M,\left(u m+x, u^{\prime} m+x\right)+I \in f(R)$. Thus $\left(u m+x, u^{\prime} m+x\right)=$ $(r, r)+\left(a u x, a u^{\prime} x\right)$ for some $r \in R$. It follows that $u m-u^{\prime} m \in \operatorname{Ann}(M)$. Since $u-u^{\prime}$ is not a zero divisor, we conclude that $m \in \operatorname{Ann}(M)$, so $M \subseteq$ $\operatorname{Ann}(M)$. Since $M \neq 0, \operatorname{Ann}(M) \subseteq M$, and the result follows.

We next show that the characteristic 2 case can be settled in the same way.
Lemma 5. Let R be a unital directly indecomposable absolute subretract with M the ideal of zero divisors. Assume $M \neq\{0\}$ and $\operatorname{Ann}(M) \neq\{0\}$. If $|R / M|=2$, then $M=\operatorname{Ann}(M)$.

Proof. Let $S=\{(a, b, c) \mid a, b, c \in R, a-b$ and $b-c \in M\}$. Note that $S \in \operatorname{Var}(R)$. Let $\operatorname{Ann}(M)=R x, x \neq 0$, and define

$$
I=\{(0,0,0),(0, x, x),(x, 0, x),(x, x, 0)\}
$$

Observe that I is an ideal of S and let $T=S / I$.

Define $f: R \rightarrow T$ by $f(r)=(r, r, r)+I$. Clearly f is a monomorphism. We claim that every nonzero principal ideal of T intersects $f(R)$ nontrivially. For this, let $0 \neq t=(a, b, c)+I$. If a, b, c are all in $R x=\{0, x\}$, then since $t \neq 0$, we have $t=(x, x, x)+I=f(x)$. So assume, for example, that $a \notin R x$. Then $M a \neq 0$ and thus $M a \supseteq R x$ since $R x$ is minimum. So $r a=x$ for some $r \in M$. Hence $(r, 0,0) \in M$ and $(r, 0,0)(a, b, c)+I=(x, 0,0)+I=(x, x, x)+I=f(x)$ is in $T t$, and the claim is proved. Since R is an absolute subretract, we conclude that $f(R)=T$. Hence for every $m \in M,(m, m, 0)+I \in f(R)$. Consequently, $m \in R x$ so $M \subseteq \operatorname{Ann}(M)$. Since $M \neq 0, \operatorname{Ann}(M) \subseteq M$ and the result follows.

We are now ready to prove our main result.
Theorem 6. Let R be a unital ring with maximal ideal M such that $\operatorname{Ann}(M) \neq\{0\}$. Then R is a directly indecomposable absolute subretract if and only if R is finite and $M=R x, x^{2}=0$, for some x in R.

Proof. First we show that the conditions are sufficient. If $M \neq\{0\}$, this follows from Proposition 2 in [5]. The case $M=\{0\}$, that is R is a finite field, is proved in the same way, but we will sketch it here for completeness. So let R be a finite field and say $f: R \rightarrow T$ is a monomorphism where $T \in \operatorname{Var}(R)$. Although T itself may not have a multiplicative identity, it has a direct summand T_{1} such that $f(R) \subseteq T_{1}$ and T_{1} shares the same multiplicative identity as $f(R)$. Choose N an ideal of T_{1} maximal such that $f(R) \cap N=\{0\}$. Then T_{1} / N is a field satisfying the same polynomial identities as R and R is embedded in T_{1} / N. Hence $R \simeq T_{1} / N$ and the result follows.

To prove the necessity of the conditions, note that because of Proposition 2 and the assumptions, M is the set of zero divisors of R and R / M is a finite field. The result then follows from Lemmas 4 and 5.

Corollary 7. Let R be a unital directly indecomposable ring. Then R is a Noetherian absolute subretract if and only if R is a finite field or R is a finite local ring with maximum ideal $M=R x$ and $x^{2}=0$ for some $0 \neq x \in R$.

Proof. Assume R is a Noetherian absolute subretract. Then by the assumptions and Proposition 2, the set of zero divisors M is a finitely generated maximal ideal. Hence by Lemma $1, \operatorname{Ann}(M) \neq\{0\}$. The result now follows from Theorem 6.

We conclude with an application to contracted monoid algebras. For terminology and notation we refer to [1].

Corollary 8. Let k be a field and S a commutative monoid with identity element e and zero element $\theta \neq e$. Then the contracted monoid algebra is a Noetherian directly indecomposable absolute subretract if and only if k is a finite field and one of the following conditions is satisfied.
(i) $S=\{e, s, \theta\}, s^{2}=\theta, s \neq \theta, s \neq e$. In particular, $k_{0}[S]=$ $k[x] /\left(x^{2}\right)$.
(ii) $\operatorname{char}(k)=2, S=\{e, s, \theta\}, s^{2}=e$. In particular, $k_{0}[S] \cong k\left[\mathbf{Z}_{2}\right], a$ group algebra of the cyclic group of order 2.
(iii) $S=\{e, \theta\}$. In particular, $k_{0}[S] \cong k$.

Proof. First note that $k_{0}[S]$ is a field if and only if $S=\{e, \theta]$, which is precisely case (iii). Because of Corollary 7 and the results in [3], the proof now goes exactly as the proof of Corollary 4 in [5].

References

[1] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, vol. I (Amer. Math. Soc., Providence, RI, 1961).
[2] B. A. Davey and L. G. Kovács, 'Absolute subretracts and weak injectives in congruence modular varieties', Trans. Amer. Math. Soc. 297 (1986), 181-196.
[3] F. Decruyenaere, E. Jespers and P. Wauters, 'On commutative principal ideal semigroup rings', Semigroup Forum 43 (1991), 367-377.
[4] B. J. Gardner and P. N. Stewart, 'Injective and weakly injective rings', Canad. Math. Bull. 31 (1988), 487-494.
[5] E. Jespers, 'Special principal ideal rings and absolute subretracts', Canad. Math. Bull. 34 (1991), 364-367.
[6] R. N. McKenzie, G. F. McNulty and W. F. Taylor, Algebras, Lattices, Varieties, vol. I (Wadsworth, Belmont, CA, 1987).
[7] C. Procesi, Rings with polynomial identities (Marcel Dekker, New York, 1973).
[8] R. Raphael, 'Injective rings', Comm. Algebra I (1974), 403-414.

Department of Mathematics and Statistics
Memorial University of Newfoundland
St. John's, Newfoundland
Canada A1C 5S7

[^0]: The authors are supported by NSERC grants 0GP0036631 and A8775.
 (c) 1993 Australian Mathematical Society 0263-6115/93 \$A2.00 +0.00

