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TOPOLOGICAL SEPARABILITY AND AXIOMS OF
COUNTABILITY IN GPO-SPACES

J.C.R. ALCANTUD

In this paper we obtain characterisations of first and second countability and sep-
arability for GPO-spaces, a class of topological spaces that include LOTS and
GO-spaces. Some additional results concerning the transmission of these proper-
ties to weaker/finer topologies are derived in this framework.

1. INTRODUCTION

A LOTS (for "Linearly Ordered Topological Space") is a triple (X, <,ro r(<)),
where (X, <) is a linearly ordered set and Tor(<) denotes the usual order topology
obtained from <. If Y is a subset of X, it may happen that the subspace topology
ror(<)|y is strictly larger than the order topology associated with the restricted lin-
ear order < |y. Subspaces of LOTS are called GO-spaces (for "Generalised Ordered
Space"), and have been studied, for example, by Cech [2], Faber [5], Heath, Lutzer
and Zenor [7] and Lutzer [8]. Besides their intrinsic interest, we mention that they
have provided many pathological examples in general topology: the Sorgenfrey line, the
Michael line (see Michael [10]), and the example of a Michael Space constructed under
the Continuum Hypothesis by this author in [11] are GO-spaces.

A more general type of order than a linear order is a preference (asymmetric, neg-
atively transitive). The latter have applications in a number of fields, which include
mathematical economics (see Fishburn [6], Debreu [3] and [4] among others). The
author and Gutierrez introduced in [1] generalisations of both LOTS and GO-spaces
for spaces ordered by preferences, namely POTS (for "Preference-Ordered Topological
Space") and GPO-spaces (for "Generalised Preference-Ordered Space") respectively.
Such topological spaces were shown to exhibit properties similar to those of their linear
analogues. In particular, GPO-spaces are monotonically and hereditarily normal, and
completely regular. The technique that was used to obtain such results produces charac-
terisations of many other topological properties through the study of certain associated
GO-spaces.
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132 J.C.R. Alcantud [2]

This paper is concerned with the study of first and second countability and sepa-
rability in GPO-spaces, which constitute a more general framework than that of G0-
spaces. Every separable GPO-space is first countable (see Alcantud and Gutierrez [1]).
Separability and second countability may be characterised in terms of separation prop-
erties of the order for POTS (see Mehta [9]), but we have not found a similar result
for first countability in the literature. In this work the three properties considered will
be characterised for GPO-spaces. Some additional results are derived. Given a space
ordered by a preference, and considering the topologies on it that produce a GPO-space,
then it is shown that first countability is preserved when the topology is strengthened,
and second countability is preserved when it is weakened.

2. DEFINITIONS AND REVIEW OF RESULTS

Unless otherwise specified, in this section we follow the terminology of Wilansky
[12].

We recall some definitions. An asymmetric, negatively transitive binary relation <
on a set is a preference. If a preference < satisfies that either x < y or y < x for two
different elements x and y, then < is called a linear (or total) order. We say that X is
a set ordered by a preference < and X is linearly ordered by < respectively. We may
associate with a preference < an equivalence relation called the indifference relation; it
is denoted by ~ and defined by x ~ y if and only if not x < y, not y < x. By x <y

we shall mean x < y or x ~ y; this relation is complete and transitive. If < is a linear
order we shall use the more explicit notation x ^ y if and only if x < y or x = y,

since the indifference is trivial in this case. Therefore the relation ^ is antisymmetric
for any linear order <.

The quotient set by the indifference ~ will be denoted by X/ ~ . Its elements

(equivalence relations) will be denoted by [x]^.

Two immediate properties of preferences that we shall make use of are (see Fishburn

[6, Theorem 2.1]:

(i) for every a,x,y,z £ X: a ~ y < z implies a < z and x < y ~ a implies
x < a

(ii) for every x,y £ X: exactly one of z < y, z ~ j / o r y < x i s true.

A transitive, asymmetric (or irreflexive) binary relation < is called a partial order.
Preferences are examples of partial orders. The order topology associated with a partial
order < (denoted by T o r (< ) , or simply ro r if no confusion is possible) is the topology
which has the family formed by X and all the subsets

{a E X : a < x} and {a £ X : x < a}

with x £ X as a subbase of open sets.
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[3] Topological separability in GPO-spaces 133

For a partially ordered space (X, <) we adopt the following convention: given A C
X and x E X, x < A (.A < a:) if and only if x < a (a < x) for all a G A; consequently
x < 0 (and 0 < z). We denote A1 = {x e X : x < A}, Au = {x G X : A < x};
consequently 0' = 0" = X. The base B of ror(<) formed by finite intersections of
elements from the defining subbase above is

B = {{x e X : S < x < T} with S,T C X finite } = {5" D T' with S,T Q X finite }.

Notice that T = 0 and 5 = 0 account for the cases when all the elements intersected
are of the type {x £ X : a < x} or the type {x £ X : x < b}.

The following convention was introduced in Alcantud and Gutierrez [1] in order to
obtain a simple expression for B in the preference case. When we refer to the order
topology derived from a preference the use of the symbols +oo and —oo will be defined
by: each x 6 X satisfies x < +oo and —oo < x. The base B of ror(<) will be
expressed simply by

B = {{x£X :a<x <b} with a, b £ X U {±oo}} .

We now proceed to define the topological spaces to be studied here. Firstly we
recall that a subset C of a space ordered by a preference {X, <) is convex if

p ^ z ^ 9 and p,q € C imply z £ C.

For linear orders, this definition may be restated as follows:

p ^ z ^ q and p,q 6 C imply z G C.

Then the following definitions were introduced in Alcantud and Gutierrez [1]:

DEFINITION 1: A GPO-space (for "Generalised Preference-Ordered space") is a
triple (X, < , T ) where < is a preference on X and T is a topology on X such that
Tor ^ T and r has a base formed by convex sets. A POTS (for "Preference-Ordered
Topological Space") is a triple (X, <,ror(<)) where < is a preference on X.

If < is a linear order we obtain a GO-space and a LOTS respectively (as defined,
for example, in Faber [5]).

The following result also appeared in Alcantud and Gutierrez [1], and generalises
the classical result of Cech [2] (see Lutzer [8] Theorem 2.9) that the class of GO-spaces
coincides with the class of subspaces of LOTS:

PROPOSITION 1. Tie dass of GPO-spaces and the class of subspaces of POTS
coincide.

Furthermore, in [1] we provided a useful characterisation of GPO-spaces in terms
of bases:
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i

PROPOSITION 2 . Let X be a set ordered by a preference < and r a topology

on X . Then (X, <,T) is a GPO-spa.ce if and only if T has a base consisting of all the

sets

{x G X : a < x < b} with a, b G X U {±00}

and possibly some sets of any of the following three types:

{x G X : a < x -< b} with aeXU {-00} and be X

{x G X : a ^ x < b} with b G X U {+00} and a G X

{x G X : a ^ x < b} with a,beX.

3. CHARACTERISATIONS OF SEPARABILITY AND COUNTABILITY AXIOMS

We begin by characterising separability in GPO-spaces. The following concept

of order-separability was used in Mehta [9] to characterise topological separability in

POTS:

DEFINITION 2: A set X ordered by a partial order < is weakly separable if there
exists a countable set Z C X such that if x,y E X, x < y and {a G X : x < a < y} ^ 0 ,
then there exists some z G Z such that x < z < y.

In the above mentioned paper, Mehta showed that topological separability and
weak separability of the preference are equivalent in any partially ordered set endowed
with the order topology; particularly, in any POTS. This result may be generalisi-d to
consider GPO-spaces, in the following way:

PROPOSITION 3 . Let (X,<,r) be a GPO-space. Then, T is separable if and
only if < is weakly separable and {[x]^ £ X/~: [x]^ G T} is countable.

PROOF: We first prove the necessity of the condition. Since rO7.(<) is obviously
separable, Mehta's characterisation implies that < is weakly separable. Furthermore,
there are at most countably many open equivalence classes: given a countable dense set
D for T , every two different open classes contain different elements of D.

Conversely, let us take a countable subset Z of X given by the definition of weak
separability. Let us take a further countable subset A of X that contains some element
of each open equivalence class and the maximum and minimum elements of X (if such
exist). Define the countable subset D :— ZU A of X. We shall show that D is dense in
T: for every U G T we shall find an element of D contained in U. Indeed, if U G T then
there exists an open set B from a base given by Proposition 2 that satisfies B C JJ,
and two cases arise:

CASE 1. Suppose that we may select such a B of the type {y G X : a < y < b} with
a,b G X U {±00}. If a = —00 : either there exists the minimum of X and therefore it
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[5] Topological separability in GPO-spaces 135

is in B ( l D , o r w e may assume without loss of generality that a £ X by choosing any
a < b. It is similar if 6 = -foo. Therefore, we may restrict the argument to the case
a, b £ X; but in this case there exists z £ Z C D such that z £ B C U.

C A S E 2. Suppose that no such B can be selected. Then we show that B contains an
open equivalence class:

- If B = {y £ X : a ^ y < b}, since {y £ X : a < y < b} — 0 by the nega-
tion of Case 1, we obtain B = [a]^ S T .

- Similarly, if B = {y £ X : a < y < b} then B - [b]^ £ T .
- If B = {y £ X : a ^ y •< 6}, the subset B' := {y £ X : a < y •< b} is open

because

B ' = { y € X : a ± y ± b } n { y E X : a < y } = B n { y £ X : a < y } .

It follows that B' - [6]_ because {y £ X : a <y <b) = $, and B' Q B C U.
Therefore there exists a £ D belonging to such an open class and then o £ B C U.

This completes the proof. U

The following further concept of order-separability was used in Mehta [9] to char-
acterise second countability in POTS:

DEFINITION 3: A set X ordered by a preference < is called perfectly separable if
it contains a countable subset Z such that if x,y £ X and x < y then there exists
z £ Z such that i ^ z X y .

In [9], Mehta showed that second countability of the topology and perfect separabil-
ity of the preference are equivalent in any POTS, and therefore that perfect separability
implies weak separability for any preference. We now proceed to generalise the former
result to GPO-spaces:

PROPOSITION 4 . Let (X,<,T) be a GPO-spa.ce. Then T is second countable
if and only if < is perfectly separable and the set

T := {[a;]^ £ X/~: {y £ X : x -<y} £ r or {y £ X : y < x} £ r}

is countable.

PROOF: We first prove the sufficiency of the condition. Let D be a countable
subset of X obtained by selecting a member of each class belonging to T; thus
{y £ X : x < y} £ T or {y £ X : y •< x} £ T imply that there exists d £ D such
that d ~ x. Let Z be a countable subset obtained from the perfect separability of <,
and assume that Z contains the following elements (if such exist): the minimum of X,
the minimum of X without that minimum, the maximum of X and the maximum of
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X without that maximum. Define Z' := Z U D; let B be the union of the following

countable collections of open sets:

{y £ X : Zi < y < ZJ} with Zi,Zj £ Z'

all the {y £ X : Zi <y < Zj) that are open in r with Zi,Zj £ Z'

all the {y £ X : Zi < y •< Zj} that are open in r with z,-, Zj £ Z'

all the {y £ X : Zi ^ y ^ ZJ} that are open in r with Zi, Zj £ Z'.

We shall prove that B is a base of T. For any x' £ U £ r there exists an open set

B of a base as obtained by Proposition 2 that satisfies x' £ B C. U. We shall find a

V £ i? such that x' £ V C. B C U. Without loss of generality we assume that X is

non-finite.

CASE 1. Suppose that we can select B = {y £ X : a < y < b} with a, b £ X U {±00}.

Then we may further assume a, b £ X. If a = —00, either there exists a' £ X such

that a' < x' and thus we may redefine a := a' £ X, or x' is the minimum. In

this case z := x' £ Z, B = {y £ X : z •< y < 6}, and we may assume b £ X (X

is not finite). Now, if there exists c £ X such that x' < c < b then there exists

z' £ Z such that x' < z', otherwise we have z' := b £ Z because this element is

the minimum of X without the minimum; in any case we reach the conclusion since

V := {y £ X : z <y < z'} £ B satisfies the requirement. A similar argument may be

used if b = +00.

By hypothesis there exist Zi,Zj £ Z with a •< Zi •< x' X ZJ •< b. Notice that

whenever we find Zi,zj £ Z such that a •< Zi < x' < Zj < b we can establish the claim

by arguing that V :— {y £ X : z,- < y < Zj} satisfies x £ V C B C U.

Suppose firstly that neither {y £ X : a < y < z;} nor {y £ X : ZJ < y < b} is

empty. Then we may establish the claim as above since there exist c,d £ X such

that a < c < Zi, Zj < d < b, and therefore there exist zjb,zj £ Z such that

a ^ *k •< c < x' < d -< zi < b.

Suppose, on the contrary, that {y £ X : a < y < zi} = 0. According to the condi-

tion Zi ^ x' ^ Zj we have the following cases:

(l.a) If x' < Zj then V := {y £ X : Zi •< y < Zj} satisfies the requirement,

because V — {y £ X : a < y < Zj} £ T and thus V £ B .

(l.b) If x' ~ Zj then two cases arise:

(l.b.i) If Zi < x' ~ ZJ then Zj < b because x' < b. If there exists c £ X such

that Zj < c < b, then there exists Zk £ Z such that Zj < c •< z* •< b,

and V := {y £ X : Zi <2/<z*} £ T satisfies the requirement since x' £

V £ B. Otherwise we may take V :— fy £ X : z,- < y •< ZJ}, because

V = {y £ X : Zi <y <b} £r and thus V £ B.
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(l.b.ii) If Zi ~ x' ~ ZJ then we have x' £ [zi]^ = {y £ X : Zi -< y < ZJ} and
also [zi]^ = {y £ X : a < y •< Zj}. If there exists c £ X such that
Zj < c < b then there exists zjt 6 Z such that 2j < c ^ z* ^ 6,
and V := {y £ X : Zi •< y < Zk} satisfies the condition because V —
{y G X : a < y < zjt} £ r and thus V £ B. Otherwise we may take
V := {y £ X : a < y -< Zj), because V = {y £ X : a < y < 6} £ r and
thus V £B.

CASE 2. Suppose now B — {y £ X : a ^ y < b}. If a < x' < 6 we reason as in Case
1 with B' = {y £ X : a < y < 6}. Therefore we may assume without loss of generality
that a ~ a;' (the case a;' ~ 6 is similar); thus B = {y £ X : x' <y <b} £ T. The
following cases arise:

(2.a) If furthermore x' ~ b then B = {y £ X : y ~ x'} £ T. Therefore

{y £ X : x •< y} = {y £ X : y ~ z'} U {y £ X : x' < y} £ r

and (by definition of £>) we have x' ~ z for some z £ Z'. The open set
F := B satisfies the requirement since B = {y£X: z<y<z}£B.

(2.b) Suppose, on the contrary, that x' < b. The following cases arise:
(2.b.i) If there is no x such that x' < x < b then

{y £ X : s' ~ y} = {y £ X : x' ± y < b} ;

therefore

{y £ X : x' ~ y} = {y £ X : x' •< y ± b} H {y £ X : y < b} £ r

and thus V :~ {y £ X : x' ~ y} satisfies the requirement (as above).
(2.b.ii) If there exists x such that x' < x < b then {y £ X : x' •< y} £ T because

{y £ X : x' < y} = {y £ X : x' ^ y d 6} U {y £ X : x < y} £ r

and thus (by definition of D) we have x' ~ ZJ for some z,- £ Z'. Further-
more there exists Zj £ Z' such that x •< Zj -< b (by definition of Z), and
therefore the set V := {y £ X : Zi < y < Zj} satisfies x' £ V C i? and
V = B n { y 6 X : y < z , - } e T ; consequently F £ B.

CASE 3. Suppose now B ~ {y £ X : a < y < 6}. I f a < x ' < 6 then Case 1 applies
to B' = {y £ X : a < y < b}. We may therefore assume a ~ x'. Thus it follows
that B = {y £ X : x' •< y < 6} £ T, and therefore x' ~ z,- for some Zi £ Z' because
{y £ X : x1 •< y} = B U {y G X : x1 < y} £ T . The following cases arise:

(3.a) If there exists x such that x' < x < b then there exists Zj £ Z with
a:' < x r< Zj X 6. Therefore V := {y £ X : z; ^ y < z,} £ T (V =
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B <1 {y £ X : y < Zj}) and thus V £ B. The open set V satisfies the
requirement.

(3.b) If there is no x such that x' < x < b then B — {y £ X : x' ~ y} € T, and
reasoning as in (2.a) we conclude that B itself satisfies the requirement
for V.

CASE 4. Finally, suppose B = {y £ X : a < y ^.b}. This case is similar to Case 3.

We now proceed to prove the necessity of the condition. Let us fix a countable
base B of r .

In order to prove that < is perfectly separable we apply the argument used by
Mehta for POTS, which proceeds as follows. Firstly, we check that the set C of ordered
pairs of equivalence classes ([a]^ , [b]^) such that a < b and {y £ X : a < y < 6} = 0 is
countable: we may associate to any pair ([a]^ , [b]^) of that type an open set Bb of the
countable base B of r , in such a way that the map C —> B thus defined is injective.
Indeed, given ([a]^ , [b]^) £ C the set {y £ X : y < b} is open and contains a, thus
there exists an open set Bb £ B satisfying a £ Bb C {y £ X : y < b}. Now, given two
different pairs ([a]^,[6]^) and ([a']^ , [6']^) in C, we may assume a < b ^ a' < b'

(the other possible case is a' < b' •< a < b, and a similar argument would apply); from
a' £ By, a! £ Bb we deduce that the open sets assigned to those pairs are different.
Secondly, we define a countable set Z in the following way. We form a countable
dense set D for r by selecting an element from each member of the base B, and we
form another countable set Z' by selecting an element from each class [a]^ such that
( [°L J 6 L ) € C for s o m e [&]-• Define Z = D U Z'. We show that < is perfectly
separable through this set: given a, b £ X such that a < b, \{ {y £ X : a < y < b} ^ %

then there exists d £ D C Z such that d £ {y £ X : a < y < 6} £ r because D is
dense; on the other hand, if {y £ X : a < y < b} — % then ([o]^ , [6]^) £ C and by
definition there exists z £ Z' such that z £ [a]^, that is, z ~ a and thus a < z <b.

We now prove that the second property claimed holds too. Given an equivalence
class [x]^ that satisfies {z £ X : x < z} £ r , there exists Bx £ B such that x £ Bx C
{z £ X : x ^ z} . If [x]^ and [y]^ are two different classes of T then the basic open
sets Bx and By assigned in this way are different, since we may assume x < y and
thus x£Bx,x$By. It follows that the set T is countable. D

In general, it is not true that a second countable topological space remains second
countable if the topology is weakened. However, this property does hold in the class
of the topologies r on a space ordered by a preference (X, <) such that (X, <,r) is a
GPO-space:

COROLLARY 1 . If (X,<,T) is a GPO-space such that T is second countable,

T' is a topology such that r' ^ r and (X, < , r ' ) is a GPO-space, then T' is second
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[9] Topological separability in GPO-spaces 139

countable (in particular, TOT(<) is second countable).

PROOF: From the characterisation above, since (X, < , T ) is a GPO-space such
that T is second countable, it follows that < is perfectly separable (a condition
which depends on the order alone and therefore is satisfied by (X, <,T') too) and
{[x]^ € X/~: {y £ X : x ^ y} £ r or {y £ X : y < x} £ r } is countable. This latter
condition will also be satisfied by T' because T' ^ T. It follows that T' is second
countable. D

We now consider the first countability axiom. This property will be characterised
in GPO-spaces in terms of the following known concepts:

DEFINITION 4: If < is a preference on X, the subset A of X is cofinal in X if
X = {x £ X : there exists a €. A with x < a}. We define dually coinitial subset in X.

PROPOSITION 5 . Let (X, < , r ) be a GPO-space. Then, r is first countable il

and only if for each x £ X, both statements (a) and (b) hold:

(a) either {y £ X : y ^ x} £ r or {y £ X : x < y} contains a coinitial se-

quence; and

(b) either {y £ X : x •< y} £ T or {y £ X : y < x} contains a cofinal se-

quence.

PROOF: We first prove the necessity of the condition. Suppose that r is first
countable, and fix x £ X; we shall show that statement (a) holds, and (b) would follow
from a similar argument. We assume that {y £ X : y •< x) £ r (otherwise it is obvious
that (a) is satisfied). Let B be a countable base of neighbourhoods of x that satisfies
the condition given by Proposition 2. We must prove that {y £ X : x < y) contains a
coinitial sequence, that is, a sequence of elements such that if x < z then there exists
an element 6 in the sequence satisfying 6 •< z. Let us observe that, for any x < z, the
set {y £ X : y < z} is open and the following cases may arise:

- There exists U — {y £ X : a < y < b} ({y £ X : a •< y < 6}) an element
from the base B such that x £ U C {y £ X : y < z); then x < b -< z.

- There exists U = {y £ X : a < y ^ 6} ( { y £ J : o ^ i / ^ 6 } ) an element
from the base B such that x £ U C {y £ X : y < z). Then b < z, and if
b ~ x it follows that

(respectively {y £ X : y < x) = {y £ X : a ^y ^. b} I) {y £ X : y < b})
and therefore we have the contradiction {y £ X : y ^ x} £ r ; thus, from
i X l we obtain x < b.
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We have therefore proved that the sequence formed by the right extremes of every
open set of the base B (that is, the elements b considered in any of the described cases)
is coinitial in {y £ X : y < x).

Let us see now the sufficiency of the condition. For any x £ X , we define a
countable collection Bx of neighbourhoods of x according to the following procedure.
From statement (a), we define:

Ao := {y 6 X : y •< x} if {y £ X : y ^ x} £ T; AO := 0 otherwise

and

if {y £ X : x < y} has a coinitial sequence {zn}ncjs

then An := {y £ X : y < zn} for all n; otherwise An :— 0 for all n.

We define BQ and {Bn}n&N by a similar procedure. Obviously all these sets are
neighbourhoods of x.

Let us define Bx := {A{ (~l Bj : i,j £ J\T}. We show that Bx is a base of neighbour-
hoods of x.

If U £ r and x £ U then we can take a convex open set V that satisfies x £ V C U.

We now find a member W of B^ that satisfies x £ W C V. To this end we define two
neighbourhoods A and B of x, in the following way.

If {y £ X : y ;< x} £ T then we define A = {y £ X : y •< x} . If this is not the
case: because {y £ X : x < y} has a coinitial sequence {zn}n&// by (a) and, on the
other hand, there must exist z £ V such that x < z (otherwise {y €. X : y < x} = V \J

{y £ X : y < x} £ r , a contradiction), then there exists n £ Af such that x < zn •< z,

and by convexity of V it follows that zn £ V; let us define A := {j/ £ X : 1/ < zn}.

Notice that such A is one of the neighbourhoods of x appearing in the definition of
Bx, and it satisfies AH {y G X : x ^ y} C U.

We define B in a similar way, and thus it satisfies B C\ {y £ X : y ^ x} Q U.

Now the neighbourhood W := A D B of x belongs to Bz by definition, and it

satisfies AnB CU. D

The following Corollary will permit us to extend first countability to certain finer
topologies, a property which does not hold in general:

COROLLARY 2 . If (X, <,r) is a GPO-spa.ce such that T is first countable, r ' is
a topology such that T ^ T' and (X,<,r') is a GPO-space, then T' is first countable.
In particular, if < is a preference on X such that Tor(<) is first countable then all the
topologies r such that (X, < , T ) is a GPO-space are first countable.

PROOF: In order to prove that r ' is first countable we shall check that the charac-
terisation in Proposition 5 is satisfied. By symmetry, we only need show that the first
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statement holds. For each x £ X, since (X, <,T) is a GPO-space such that r is first
countable, it follows that either {y £ X : y •< x} £ r or {y £ X : x '< y} has a coinitial
sequence; if the former holds it is obvious that {y £ X : y -< x} £ T' , and the latter is
a property that only depends on the order. U

We point out that first countability may be characterised in POTS by adapting
the proof of Proposition 5, in the following terms:

PROPOSITION 6 . Let (X, <,ror(<)) be a POTS. Then, r o r (< ) is first count-
able if and only if: for eacii x £ X, {y £ X : x < 3/} contains a coinitial sequence, and
{y £ X : y < x} contains a cofinal sequence.

PROOF: From Proposition 5, the sufficiency of the condition is obvious. As for the
necessity, fix x £ X and a countable base

Bx:={{x£X :ai<x< &;} ,i £ Af}

of neighbourhoods of x. Then we show that {6j : i £ Af} f\ {y £ X : x < y} (to exclude
the possibility 6f = +oo) is coinitial in {y £ X : x < y}, and a similar proof would
hold for {y £ X : y < x} . Indeed, if x < z then {y £ X : y < z} is a neighbourhood
of a; and thus there exists i such that x £ {y £ X : a,i < y < 6j} C {y £ X : y < z).

Therefore bi ^ z and the result follows. U
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