Partially well-ordered sets of infinite matrices and closed classes of abelian groups

C.M. Bang

Abstract

We give a necessary and sufficient condition for a class of rowdecreasing infinite matrices to be partially well-ordered with regard to the component-wise ordering. Then, using these matrices, we determine all the classes of abelian groups, closed under taking subgroups, direct limits, and isomorphic groups.

1. Introduction

Throughout the paper, by sequences and subsequences, we shall mean infinite sequences and infinite subsequences, respectively. A preordered, or quasi-ordered, set (A, \leq) is a nonempty set A with a reflexive, transitive binary relation \leq on A. Erdös and Rado (see Higman, [4]) called a preordered set (A, \leq) a partially well-ordered set if every sequence of elements of A contains an ascending subsequence. Some classes of vectors of nonnegative integers with certain preorderings give natural examples of partially well-ordered sets, and, in addition, they turn out to be very nice tools for characterization of some algebras. For example, Perkins [6] used such a class to show that every commutative semigroup is finitely based, and Cohen [2] used such two classes to prove that every commutative ring is finitely based (for a detailed proof with a generalization to wider classes, see Bang and Mandelberg [1]). The purpose of this paper is to show such other application of a partially well-ordered set. We shall first show that some classes of infinite matrices are

Received 16 October 1973.
partially well-ordered, and then apply the result to determine all the classes of abelian groups, closed under taking subgroups, direct limits, and isomorphic groups.

2. Partially well-ordered sets

Higman [4] gave extensive equivalent conditions for a preordered set to be partially well-ordered, from which we list the following for later use.

LEMMA 1. Let (A, \leq) be a preordered set. Then the following conditions are equivalent:
(a) (A, \leq) is partially well-ordered;
(b) if $\left\{a_{1}, a_{2}, \ldots\right\}$ is a sequence of elements of A, there exist positive integers i, j such that $i<j$ and $a_{i} \leq a_{j} ;$
(c) there exists neither a strictly descending sequence, nor an infinity of mutually incomparable elements in A.

Let (A, \leq) be a partially ordered set. A nonempty subset $B \subseteq A$ will be called an inductive tower of A if $\alpha \in B$ and $B \leq \alpha$ in A together imply $\beta \in B$ and each chain in B has its supremum in B. For any nonempty subset $C \subseteq A$, let $\max C$ mean the set of all maximal elements of C, and let C^{*} denote the inductive tower of A generated by C. Denote by $I(A)$ the set of all inductive towers of A. With these terminologies, we can obtain the following lemma.

LEMMA 2. Let (A, \leq) be a partially ordered set which is partially well-ordered. Then the following are true:
(a) each $B \in I(A)$ is finitely generated by $\max B$;
(b) $(I(A), \subseteq)$ satisfies the descending chain condition;
(c) no member covers and cocovers infinitely many members in $(I(A), \subseteq)$;
(d) $|I(A)|=|A|$ if $|A|=\infty$.

3. Row-decreasing matrices

Let $K^{*}=\{0,1, \ldots, \infty\}$ with the obvious ordering. By a decréasing vector α_{i}, let us mean $\alpha_{i}=\left(\alpha_{i 1}, \alpha_{i 2}, \ldots\right)$ with $\alpha_{i j} \in K^{*}$ and $\alpha_{i 1} \geq \alpha_{i 2} \geq \ldots$. Denote by V the set of all such decreasing vectors, and let \leq be the componentwise ordering on V. Then, (V, \leq) is a partially ordered set, in fact, a complete lattice. The following is a key lemma of this paper.

LEMMA 3. (V, \leq) is a complete lattice that is partially wellordered.

Proof. Let $U=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ be a sequence of vectors of V. Write $\alpha_{i}=\left(\alpha_{i 1}, \alpha_{i_{2}}, \ldots\right)$ for all i. For the sake of convenience, let us define the width $W\left(\alpha_{i}\right)$, the level $L\left(\alpha_{i}\right)$, and the divinity $D\left(\alpha_{i}\right)$ of each α_{i}, respectively, as follows:

$$
\begin{aligned}
& W\left(\alpha_{i}\right)=\min \left\{j \mid \alpha_{i j}=\alpha_{i(j+1)}=\ldots\right\} \\
& L\left(\alpha_{i}\right)=\alpha_{i W\left(\alpha_{i}\right)} \\
& D\left(\alpha_{i}\right)=\max \left\{j \mid \alpha_{i j}=\infty\right\} \text { with } \max \}=0 .
\end{aligned}
$$

By the nature of the question, we shall freely, without mention, replace U by any of its subsequences. Thus, we may assume that U satisfies the following conditions:
(1) $L\left(\alpha_{1}\right) \leq L\left(\alpha_{2}\right) \leq \ldots$, and
(2) $D\left(\alpha_{1}\right) \leq D\left(\alpha_{2}\right) \leq \ldots$.

Case 1. $D\left(\alpha_{1}\right)<D\left(\alpha_{2}\right)<\ldots$. Since $D\left(\alpha_{i}\right) \leq W\left(\alpha_{i}\right)<\infty$ for all i in this case, we may assume $D\left(\alpha_{1}\right) \leq w\left(\alpha_{1}\right) \leq D\left(\alpha_{2}\right) \leq w\left(\alpha_{2}\right) \leq \ldots$. Then, by (1), we have $\alpha_{1}<\alpha_{2}<\ldots$.

Case 2. $D\left(\alpha_{1}\right)=D\left(\alpha_{2}\right)=\ldots$. If $D\left(\alpha_{1}\right)=D\left(\alpha_{2}\right)=\ldots=\infty$, $\alpha_{1}=\alpha_{2}=\ldots$, and we are done. Otherwise, without loss of generality, we may assume $D\left(\alpha_{1}\right)=D\left(\alpha_{2}\right)=\ldots=0$, that is, all vectors α_{i} do not have
components which are ∞.
Assume first that the components of all α_{i} are bounded above, or equivalently, $\alpha_{i 1}=k$ for all i. We shall use induction on k. If $k=0, \alpha_{1}=\alpha_{2}=\ldots$. Suppose $k \geq 1$, and let m_{i} be the number of components $=k$ in α_{i}. We may assume either $m_{1}<m_{2}<\ldots$ or $m_{1}=m_{2}=\ldots$. In the former case, since $m_{i} \leq W\left(\alpha_{i}\right)<\infty$, we have $m_{1} \leq W\left(\alpha_{1}\right) \leq m_{2} \leq W\left(\alpha_{2}\right) \leq \ldots$. Then, by (1), we have $\alpha_{1}<\alpha_{2}<\ldots$. In the latter case, if $m_{1}=m_{2}=\ldots=\infty$, we have $\alpha_{1}=\alpha_{2}=\ldots$. Otherwise, without loss of generality, we may assume $m_{1}=m_{2}=\ldots=0$. Then, since $\alpha_{i 1}<k$ for all i, we have $\alpha_{1} \leq \alpha_{2} \leq \ldots$ by the induction assumption.

Suppose next that the components of all α_{i} are not bounded above. Let m_{i} be the number of components $\geq \alpha_{11}$ in each α_{i}. We may assume either $m_{2}<m_{3}<\ldots$ or $m_{2}=m_{3}=\ldots$. In the former case, there exists an integer i such that $W\left(\alpha_{1}\right)<m_{i}$. Then, by (1), $\alpha_{1} \leq \alpha_{i}$ and we are finished because of Lemma $1(b)$. In the latter case, if we have $m_{2}=m_{3}=\ldots=\infty$, we have $\alpha_{1} \leq \alpha_{2}$ and we are done. Otherwise, without loss of generality, we may assume $m_{1}=m_{2}=\ldots=0$. Then all the components are $<\alpha_{11}$ and hence, using the preceding result of the bounded cose, we obtain $\alpha_{1} \leq \alpha_{2} \leq \ldots$. This completes the proof.

By a row-decreasing matrix α, let us mean an infinite matrix $\alpha=\left[\alpha_{i j}\right]_{i, j=1,2, \ldots}$ where $\alpha_{i}=\left(\alpha_{i 1}, \alpha_{i 2}, \ldots\right) \in V$ for all i. Let $K=\{1,2, \ldots\}$. For each $J \subseteq K$, denote M_{J} the set of all rowdecreasing matrices α such that $\alpha_{i}=(0,0, \ldots)$ for all $i \in K-J$, and let \leq be the componentwise ordering on M_{J}.

THEOREM 4. (M_{J}, \leq) is a complete lattice. Furthermore, it is partially well-ordered if, and only if, $|J|<\infty$.

Proof. The if part follows immediately from Lemma 3. For the only if part, assume $|J|=\infty$. For each $j \in J$, let β^{j} be the matrix $\left[\alpha_{i j}\right]$ consisting of all zero components except $\alpha_{j 1}=1$. Then, the sequence $\left\{B^{j} \mid j \in J\right\}$ contains no as cending subsequence and, hence, $\left(M_{J}, \leq\right)$ is not partially well-ordered. This finishes the proof.

4. Closed classes of abelian groups

Let us call C a closed class [5] if it is a nonempty class of abelian groups, closed under taking subgroups, direct limits, and isomorphic groups. Fuchs [3, p. 71] asked to determine all closed classes, and Hill [5] gave a solution in a group-theoretic argument. We shall redo this question in a combinatoric way using the results in the preceding sections. We feel our method is very different and much easier. Some terminologies are from [5] as indicated.

Let $p_{2}, p_{3}, p_{4}, \ldots$ be all the distinct positive prime integers with $p_{1}=\infty$. For a closed class C, let $p(C)$ be the set of all $p_{i}{ }^{\prime}$ s such that there is a group in C containing an element of order $p_{i} \cdot p(C)$ may be called the associated primes of C. To each row-decreasing matrix $\alpha=\left[\alpha_{i j}\right] \in M_{J}$ with $\alpha_{11}=\alpha_{12}=\ldots=\alpha_{1}$, assign an abelian group A given by

$$
A=\left(\oplus_{\alpha_{1}} z\right) \oplus\left(\oplus_{i \geq 2}\left(\oplus_{j \geq 1} z\left(p_{i}^{\alpha_{i j}}\right)\right)\right)
$$

and call A a decreasing group. Here, A is a direct sum of α_{1} copies of Z and p_{i}-groups $Z\left(p_{i}^{\alpha, j}\right)$, where $Z\left(p_{i}^{\alpha_{i j}}\right)$ is a cyclic group of order $p_{i}^{\alpha_{i j}}$ if $\alpha_{i j}$ is finite and a p_{i}-quasicyclic group if $\alpha_{i j}=\infty$, and $\alpha_{1}=\infty$ should be understood as $\alpha_{1}=\kappa_{0}$. Note that every finitely generated abelian group is a decreasing group and, hence, has a matrix representation in the above sense. If C is generated by a single group as a closed class, C is said to be cyclic [5]. We show the following
theorem which determines all closed classes.
THEOREM 5. Let C be any closed class of abelian groups. Then the following are true:
(a) C is generated by its subclass of all finitely generated groups;
(b) C is finitely generated if $|p(c)|<\infty$;
(c) C is the union of finitely many cyclic closed subclasses if $|p(C)|<\infty$;
(d) all closed classes of torsion-free groups are cyclic, and form a countable chain with regard to the inclusion \subseteq;
(e) a family F of closed classes satisfies the descending chain condition in (F, \subseteq) if $|\underset{C \in F}{\cup} p(C)|<\infty$;
(f) a family F of closed classes does not contain a member which covers or cocovers infinitely many members in (F, \subseteq) if $\left|\cup_{C \in F} p(C)\right|<\infty$;
(g) let P be a set of primes p_{i}. Then there are exactly countably (respectively, continuously) many closed classes C with $p(C) \subseteq P$ if $|P|<\infty$ (respectively, $=\infty$).

Proof. (a) This is obvious since a group is a direct limit of its finitely generated subgroups.
(b) Take all finitely generated groups of C and let M be the set of corresponding matrices of these groups. Clearly, $M \subseteq M_{J}$ with $|J|<\infty$ because $|p(C)|<\infty$. Then, $\max \left(M^{*}\right)$ is a finite set by Lemma 2 (a). It is now easy to see that C is generated by the finitely many decreasing groups corresponding to $\max \left(M^{*}\right)$.
(c) C is the union of cyclic closed subclasses, each of which is generated by one of the finitely many decreasing groups corresponding to $\max \left(M^{*}\right)$.
(d) Note that, in this case, $\max \left(M^{*}\right)$ is a singleton set of $\alpha=\left[\alpha_{i j}\right]$ with $\alpha_{11}=\alpha_{12}=\ldots=\alpha_{1}$ and $\alpha_{i j}=0$ for all $i \geq 2$.

Therefore, C is generated by a free group $\Theta_{\alpha_{1}} Z$. The rest is obvious.
(e), (f), and (g) are obvious by Theorem 4 and Lemma $2(b), 2(c)$, and 2 (d), respectively. This completes the proof.

It is easy to give counterexamples if we change the if condition in each of $(b),(c),(e)$, and (f).

References

[1] C.M. Bang and K. Mandelberg, "Finite basis theorem for rings and algebras satisfying a central condition", preprint.
[2] D.E. Cohen, "On the laws of a metabelian variety", J. Algebra 5 (1967), 267-273.
[3] László Fuchs, Infinite abelian groups, Volume I (Academic Press, New York, London, 1970).
[4] Graham Higman, "Ordering by divisibility in abstract algebras", Proc. London Math. Soc. (3) 2 (1952), 326-336.
[5] Paul Hill, "Classes of abelian groups closed under taking subgroups and direct limits", Algebra Universalis 1 (1971), 63-70.
[6] Peter Perkins, "Bases for equational theories of semigroups", J. Algebra 11 (1969), 298-314.

Department of Mathematics,
Emory University,
Atlanta,
Georgia,
USA.

