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Abstract. Due to the existence of invariant tori, chaotic sea and hyperbolic structures in higher 
dimensional phase space of a volume-preserving map, the diffusion route of chaotic orbits will be 
complicated. The velocity of diffusion will be very slow if the orbits are near an invariant torus. In 
order to realize this complicated diffusion phenomenon, in this paper we study the diffusion characters 
in the different regions, i.e., chaotic, hyperbolic and invariant tori's regions. We find that for the three 
different regions, the diffusion velocities are different. The diffusion velocity in the vicinity of an 
invariant torus is the slowest one. 
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1. Introduction 

According to the KAM theorem for Hamiltonian systems with two degrees of 
freedom, the two dimensional invariant tori will prevent the escape of orbits on 
a three-dimensional energy surface. When the degrees of freedom, n, exceeds 
two, the n-dimensional invariant tori cannot divide the (2n-l)-dimensional energy 
surface into two disconnected parts, so the escape will appear. Because of the 
existence of n-dimensional invariant tori, the escape route across a net of invariant 
tori will be complicated and the velocity of escape will be very slow, this is 
called Arnold diffusion. This kind of diffusion can hardly be detected by numerical 
methods, as pointed out by Laskar with a four-dimensional symplectic map similar 
to the so-called Froeschle map (Laskar 1993). Efthymiopoulos et al. (1998) also 
conclude that the diffusion can be practically ignored. 

The problems related to invariant manifolds and diffusion orbits in four-dimen­
sional symplectic maps have been carefully studied (e.g. Froeschl6 1971, Froeschle 
1972, Ding et al. 1990, Laskar 1993, Efthymiopoulos et al. 1998, etc.). In this 
paper, we study a similar problem in a more general kind of maps, i.e., four-
dimensional volume-preserving maps. In order to realize the complicated diffusion 
phenomenon, it's worth to study at first the diffusion characters in chaotic, hyper­
bolic and invariant tori's regions, respectively. We investigate the above problem 
using a four-dimensional volume-preserving map obtained by coupling two area-
preserving maps with a perturbation parameter, which possesses the hyperbolic and 
parabolic fixed point, respectively. In terms of the results on the three-dimensional 
volume-preserving map, the ordered region near the unstable fixed points will be 
changed into a chaotic one by perturbation, but for the ordered region distant from 
it the invariant tori will survive (Sun et al. 1988, Zhang et al. 1989). We suspect 
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that we might find some invariant tori, chains of islands and hyperbolic structure 
in the above four-dimensional volume-preserving map. 

2. The Map 

We study the following volume-preserving map with four dimension. 

Thp * 

' xn+1= s (xn cos <pn - yn sin ipn), 
yn+\=s~l (xnsin(pn + yn cos(pn) + c sin(xn+l + zn+i), 

. tn+i= zn+tn-btn + c sin(xn+i + zn+i), 

3 (1) 

fn = (xl + V2n)k- (2) 

The map Thp is the coupling of the following two area-preserving maps 

( xn+i= s (xn cos ipn - yn sin <pn), 
\ yn+i= •s-1 (xn sin <pn + y 

n COS tpn)) 

cpn = (x2
n + ylf. (4) 

and 

rr, I zn+l= zn ~ "^ni / r \ 
P{tn+l=Zn + tn-btl W 

Here b, s, k are parameters (5 ^ 1) and c the perturbation parameter ( coupling 
parameter ). We take s = 1.05, k = -1 .5 , b = 1.5 and c = 0.03, in which case 
the map Thp is not defined at the origin. Obviously, the map Thp is symmetric with 
respect to the origin. As can be easily verified, the map ThP is volume-preserving 
but not symplectic. 

At first, we explore the structure of phase space for the map Thp, i.e., to look for 
ordered and chaotic regions and the hyperbolic structure. We have investigated the 
structure of phase space of the map Thp by computing the LCIs (Lyapunov Charac­
teristic Indicators, the approximate values of Lyapunov Characteristic Exponents 
up to the finite time of computation) and exploring fixed points and checking their 
stability. Fig. 1(a) and Fig. 1(b) are the projections of some invariant tori (roughly 
approximated by quasi-periodic orbits) and chaotic sea onto the planes (x, y) and 
(z, t), respectively. These figures display the global structure of phase space. We 
know that the dimensionality of the invariant tori is two and these tori can not 
divide the four-dimensional phase space into two disconnected parts. As a result, 
the chaotic orbits diffuse around the invariant tori, as easily seen in the Fig. 1(a) 
and Fig. 1(b). 
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Fig. 1. The projections on the two coordinate planes of the quasi-periodic orbits 
starting from the following initial points: (0.376, 0.582, -0.0002, 0.008), (0.232, 0.658 
0.00019, 0.0038), (0.68, 0.68, 0.2125, 0.4250), (0.356, -0.246, -0.012, 0.003), (0.392, -0.268^ 
0, 0.0058), (0.2, -0.5, -0.0127, 0.0016), (0.40, -0.37, -0.0127 ,0.0016), (0.16, -0.65 ,0, 0.009)! 
(0.40 ,-0.55, 0 ,0.009), (0.61 ,0.61, 0.190625 ,0.38125) and their symmetric points with 
respect to the origin for the map Thp, and the chaotic orbits starting from the fol­
lowing initial points: (0.261101993556, 0.341296119830, -0.007526015390, 0.001646639192), 
(1.918131071904,2.156373097694-0.028487926171,-0.000415023486), (0.68 ,0 53 ,0190625 
0.381250). (s = 1.05, k = -1.5,6 =1 .5 and c = 0.03). 
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Fig. 2. Distribution of escape time of orbits with respect to the distance d0 along the line 
(6). 

3. Diffusion Characters in Different Regions 

In order to clarify the diffusion of orbits in the phase space globally, we have made 
a transversal exploration of escape time along the line passing through the origin 
and the point of which the projections on the (x,y) and (z,t) planes are, respectively, 
the farthest boundary point of the ordered region for the maps Th and Tp. The 
equations of this line is as follows 

5x = 5y = 16z = St. (6) 

We take 1001 initial points on the line (6), of which the distances to the origin are 
as follows 

r0 = 0.1 + 0.002i, i = 0 ,1 , . . . , 1000. (7) 

Defining the escape of orbits as r - \Jx2 + y2 + z2 + t2 > 2.5, we calculate the 
escape time for each orbit. Fig.2 shows the result of this exploration (not including 
the orbits on the invariant tori). We find a slow escape region near r = 1.05, where 
exist most of the explored initial points on invariant tori. It implies that the escape 
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Fig. 3. Diagrams of the number of orbits having not escaped before the iteration number n, 
for the case (a), circle: computational values, curve: fitted values. 

velocity of orbits near the invariant tori is much slower than that in the chaotic 
region, and this is due to the "stickiness" effect of invariant tori as can be seen 
below. From Fig.2 we can also see that even in the "dense" region of invariant tori, 
there exist chaotic zones with faster escape. In the following we will investigate 
the diffusion characters in different regions. 

(a) Chaotic sea 
We choose 2352 initial points (x0,yo,z0, t0) in the chaotic region near the origin 

as follows 

(xo,y0,z0,to) - (i,j,l,m)s, 
s = Q.l,i,j,l,m = 0, ± 1 , ±1.5, ±2 (excluding i = j — 0) (8) 

Defining the escape of orbits as above, i.e., r = \Jx2 + y2 + z2 + t2 > 2.5, we 
count the number, N, of orbits which have not escaped yet before the number of 
iterations n. In Fig.3 the circles stand for the numerical results of log(iV) versus n. 
Because there are positive LCEs for the chaotic orbits, we try to fit the numerical 
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results by an exponential law, i.e., 

N = No x l (T a n (9) 

However, this law can not be applied for large n, as can be easily seen from Fig.3. 
Actually, there should exist some "island" tori which exert the "stickiness" effect 
on the orbits near them (Meiss and Ott 1985, Meiss and Ott 1986, Lee 1988, Ding 
et al. 1990, Lai 1992). Therefore, we fit the numerical results only for n < 40000 
(including about 99% of the explored orbits) and obtain an analytic curve with 
N0 = 2532 and a = 4.735163 x 10~5 (see Fig.3). This analytic curve is in good 
agreement with the numerical values for n < 40000. Accordingly, we suspect that 
the diffusion of orbits in a "complete" chaotic sea, i.e., the region where the area 
occupied by islands can be neglected, should possess the exponential law. As it is 
difficult to find out small tori in four-dimensional phase space, the above point is 
just a conjecture. 

(b) Vicinity of invariant torus 
There exists a slow escape region near the point on the line (6), of which the 

distance to the origin is r = 1.05 (see Fig.2). 
By computing the LCIs and drawing the projective figures of the orbit starting 

from this point, we find that the point is on an invariant torus. In the following, we 
study the diffusion character of orbits in the vicinity of this torus by taking 2401 
initial points (XQ, yo, zo, to) as follows 

Oo, 2/0, z0, t0) = (xc,yc,zc,tc) + (i,j,l,m)s, 
s = 0.005, i,j,l,m = 0, ± 1 , ±2, ±3 . K J 

At first, we look for a region in which the orbits will stay for quite a long time ( 
n > 4096) and we choose this region as small as possible so that it contains as 
less points far from the torus as possible. According to our testing calculation, we 
define the escape of orbits as they leave the following zone, 

G= { (x,y,z,t): 
X e (-0.98,0.98), y G (-0.94,0.94), Z € (-0.26,0.26), t £ (-0.55,0.55), (11) 

\/x2 + y2 £ (0.86,0.99) } 

(Note: \/x2 + y2 is an invariant of map Thp with 5 = 1 and c = 0.) 

Fig.4 indicates the diagram of log(JV) versus n with 605 orbits escaped before 
n = 108 iterations, where N is the number of orbits in the region G at the 
iteration number n. We note that only a small fraction of the orbits escape before 
n = 107 iterations, which implies that the diffusion in the vicinity of invariant 
tori is very slow. This is due to the "stickiness" effect of invariant tori, but here 
it is different from the usual one which has an algebraic decay law of diffusion 
(Meiss and Ott 1985, Ding et al. 1990). According to the method used to study the 
usual "stickiness" effect in related papers, we suspect that the algebraic decay law 
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Fig. 4. Diagram of the number of orbits having not escaped before the iteration number n, 
for the case (b). 

should be the "averaged" law of diffusion over the chaotic region with invariant 
islands and cantori. The orbits diffuse sometimes "freely" through chaotic sea, and 
sometimes by crossing cantori and passing around islands, so the usual "stickiness" 
effect of invariant tori is actually modified by the diffusion process in chaotic sea. 
If a region of higher dimensional phase space is filled "densely" by invariant tori, 
the "stickiness" effect would appear to be that in our case. 

(c) Vicinity of hyperbolic-elliptic fixed point 
According to the exploration about the fixed points, we find that 

(Xh, Vhi zh, th) = (1.918131071904,2.156373097694,-0.028487926171,-0.000415023486) 

is a hyperbolic-elliptic fixed point. Choosing 2401 initial points (x0, yo, z0, *o) in 
its vicinity as follows 

(x0,yo,zo,t0) = (xh,yh,Zh,th) + (i,j,l,m)s 
s= 10- 5 , i , j , / ,m = 0 , ± l , ± 2 , ± 3 , 

(12) 

we study the diffusion character in the vicinity of the above fixed point. The orbit 
with initial point sufficiently close to the hyperbolic-elliptic fixed point should 
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Fig. 5. Diagram of the number of orbits N having not escaped before the iteration number 
n, for the case (c). 
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Fig. 6. Distribution of the relative number of orbits escaping at the iteration number n for 
(a) chaotic sea, (b) vicinity of invariant torus and (c) vicinity of hyperbolic-elliptic fixed 
point. 
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wander near the hyperbolic structure on the plane (x,y) and near the origin on the 
plane (z, t) for quite a long time. After testing calculation, we find that, as soon as 
the distance d between the fixed point and the returning point of orbit to the vicinity 
of the fixed point exceeds d = 0.670213829709 or the distance d' of the orbit to 
the origin exceeds 10, the orbit will diffuse to very distant point from the origin 
(d' > 105) with no return, so we regard d > dor d! > 10 as escape. Fig.5 shows 
the variation of N, number of the orbits having not escaped yet, with the number of 
iteration n. We find that this result is similar to that in chaotic sea, except that there 
are some orbits with much slower diffusion, of which the initial points are very 
close to the hyperbolic-elliptic fixed point. This implies that the hyperbolic-elliptic 
fixed point also has "stickiness" effect on some nearby orbits. Another interesting 
feature is the appearance of fast escape orbits starting near the hyperbolic-elliptic 
fixed point, which causes fast decreasing of N for small n (about 49% of the 
explored orbits escaping before n = 145). Contopoulos et al. (1997) have found 
the "hole" of escape embedded in stickiness region near an invariant curve of 
two-dimensional area-preserving map. The above-mentioned feature shows that 
the "holes" of escape also exist in the vicinity of the hyperbolic-elliptic fixed point 
of four-dimensional volume-preserving map. 

In the above studies, we discuss separately the diffusion characters in three 
different regions, and now we will compare the diffusion velocities for the different 
cases with the same definition of escape. For this purpose, we choose randomly 250 
initial points in each region as above, and regard an orbit as escape if the distance 
of an orbit point to the origin exceeds 100. In the chaotic region and the vicinity 
of hyperbolic-elliptic fixed point, all of the 250 orbits escape, but in the vicinity of 
invariant torus, there are only 45 orbits escaping before n = 108 iterations. Fig.6 
exhibits the results. We can see that the diffusion velocities in the different region 
are different. The diffusion in chaotic sea is the fastest, while the slowest one is in 
the vicinity of the invariant torus. In the vicinity of hyperbolic- elliptic fixed point, 
the diffusion velocity is between the above two cases, because of the existence of 
narrow weak "stickiness" zone nearby the perturbed hyperbolic-elliptic structure. 

4. Conclusions 

In a higher dimensional volume-preserving map, due to the existence of invariant 
tori, chaotic sea and hyperbolic structure, the diffusion of orbits will be very 
complicated. In this paper, we study the diffusion characters in the different regions, 
respectively, and compare the diffusion velocities with each other. This kind of work 
is the base of realizing the global diffusion in phase space. We find that for the three 
explored regions, the diffusion velocities are different and have different characters. 
The diffusion velocity in the vicinity of an invariant torus is the slowest one, the 
reason for this is the "stickiness" effect. We believe that the "stickiness" effect 
would take the main responsibility for very slow diffusion in higher dimensional 
phase space. 
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