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Abstract

‘We construct a sequence {A,} of maximal monotone operators with a common domain and converging,
uniformly on bounded subsets, to another maximal monotone operator A; however, the sequence {z, T4,
fails to graph-converge for some null sequence {z,}.
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1. Introduction

It is well known that graph-convergence plays an important role in solving many
nonlinear problems, in particular, those governed by maximal monotone operators
[1,2]. In this regard, Lions [3] proves a very interesting and useful result which implies
that t~' A graph-converges as t — 0 to N A-1(0)» Where A is a maximal monotone
operator in a Hilbert space H such that A710):={x e D(A): 0 € Ax} # (), and
Nk denotes the normal cone associated with a closed convex subset K C H. This
result has many applications in variational inequalities and fixed points (see, for
example [4, 6]).

On the other hand, since nonlinear problems are usually ill-posed, perturbation
techniques are needed. A natural question thus arises: if {A,} is a sequence
of maximal monotone operators which converge (in a certain sense, for instance,
uniform convergence on bounded sets) to another maximal monotone operator A with
A71(0) # @, and if {t,} is a null sequence of positive real numbers, does the sequence
{tn Ay} graph-converge to N-1? In other words, is Lions’ result stable in terms of
perturbation?

The purpose of this note is to give a negative answer to this question. More
precisely, we will construct a sequence {A,} of maximal monotone operators with a
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common domain and which converges to the zero operator uniformly on bounded sets;
however, the sequence {t, "' A, } fails to graph-converge for some null sequence {,}.

2. Preliminaries
Let H be a real Hilbert space and let A be an operator (possibly multi-valued) with
domain D(A) and range R(A) in H. The graph of A is
Gr(A) ={(x,y)e Hx H:xe D(A),y € Ax}.
We say that A is monotone if Gr(A) is a monotone set; that is,
(xp =x2, y1 —y2) =0 V(x;, yi)) €Gr(A),i =1, 2.

A monotone operator A is maximal monotone if its graph Gr(A) is not properly
contained in the graph of any other monotone operators. Equivalently, a monotone
operator A is maximal monotone if and only if the following implication holds:

(x,y)eHxH, (x—-§y—n=0 V(E neCGr(Ad) = (x,y) €Gr(A).
The resolvent of a monotone operator A is defined as
A= +2r4)""

where A > 0. Maximal monotonicity can be characterized by the resolvent.

PROPOSITION 2.1 [2]. Let A be an operator in H. The following are equivalent:

(1) A is a maximal monotone operator;
(i) A is monotone and R(I + AA) = H for all > > 0;
(iii) for every A > 0, Jf : H — H is nonexpansive.

Monotone operators find many applications in various disciplines. The following
result, due to Lions, is a useful tool in many areas of mathematical analysis, such as
variational calculus and iterative methods for nonexpansive mappings.

PROPOSITION 2.2 [3]. Consider the net (J,él (x +t7'u))o<s<1. Then:
()  the following properties are equivalent:

(@) ue€R(A);

(b) (Jtél (x + ¢~ u))g<s<1 is bounded;

(c) there exists a strictly positive subsequence (t,)neN convergent to 0 such
that (]t“i1 (x+ t,flu))neN is bounded;

(d)  lim,_ o+ Jt‘f x4+ 1~ V) exists;

(I) if any one of these conditions is satisfied, then

llirg+ TA G+ 17 ) = Py (). (2.1)
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Nonlinear problems are often ill-posed; perturbations are thus needed. This means
that one should consider a sequence of perturbed problems whose solutions would
converge in some sense to a solution of the original problem. Graph-convergence is
usually used.

DEFINITION 2.3 [1]. Let A,;, A be maximal monotone operators in H. The sequence
(An)nen is said to be graph-convergent to A, denoted A, —G A, if, for every (x, y) €
Gr(A), there exists a sequence (x,, y,) € Gr(A,) such that x, - x and y, — y, as
n — oo. Equivalently, A, —© A if and only if

lim sup Gr(A,) C Gr(A) C liminf Gr(A,).
n—00 n—00
The next proposition will be a relevant tool for our purposes.
PROPOSITION 2.4 [1]. Let (A;)nen, A be maximal monotone operators in H with

A, ¢ A, as n — oo. Then, for any sequence (wy, z,) € Gr(A,) such that w, — w
and z,, — z, we have (w, z) € Gr(A).

The following proposition shows that graph-convergence is equivalent to resolvent
convergence for maximal monotone operators.

PROPOSITION 2.5 [1]. Let A, and A be maximal monotone operators in H. The
following are equivalent:

i A, =Y A;

(i1) JAA” — J)f‘for every A > 0;

(ii1) J)ﬁ)” — JA"; for some Lo > 0.

Recall now that the metric projection Pc : H — C from H onto a closed convex
subset C C H is the mapping which assigns to each x € H the only point Pcx in C
with the property

lx — Pcx|l = inf |lx — y]|.
yeC

The following is a characterization of Pc.
LEMMA 2.6. Given x € H and 7 € C, then z = Pcx if and only if
(x—z,y—2)<0 VyeC. (2.2)
REMARK 2.7. Forevery y € H, A™'(y) is a closed and convex subset of H.
REMARK 2.8. It follows from (2.2) that
Py =1 '
where Np-1y: H—>P(H) is the normal cone to A~! (), that is,

H:{y—x,v)<0VyeA~lw)}, A w),
Ny x| PEHI DX 0 S0y eaT@) xeala) o
?, otherwise.
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Moreover observing that Jt‘f L= JI’ 71A, (2.1) becomes
. 1A -1 N a1
lim J; “(x+1t"u)=J, (x). 2.4)
t—0t

The aim of this paper is to demonstrate that Lions’ conclusion in Proposition 2.2(II)
is optimal in the sense that if {A,} is a sequence of maximal monotone operators A,
with a common domain and uniformly convergent on the bounded subsets of the
common domain to another maximal monotone operator A, then it is not necessary
true that lim,,_, Jﬁ’} x4+t = P4-1(,)(x) for all null sequences {z,} of positive
numbers. '

It is worth of noting that in the special case of u =0, (2.4) is reduced to the
following result.

PROPOSITION 2.9 [4, 6]. Let A be a maximal monotone operator on H such that
A7N0) #£0. Thent™'A —© Np-1yast — 0.

Finally, we need the following useful lemma.

LEMMA 2.10 [7]. Suppose that a positive sequence {a,} satisfies the condition
an+1 < —oy)an +0,é,, n=>0,

where {0,,} is a sequence in [0, 1] such that Zfli | On =00 and {8,} is a sequence such
that lim sup,,_, o 6, < 0. Then lim,_, a, =0.

3. A counterexample

PROPOSITION 3.1. Let H be a Hilbert space and D a nonempty closed convex subset
of H containing more than one point. Then there exist maximal monotone operators
An, A: D — H for n>1 such that A, — A uniformly on bounded subsets of D.
However; t, T4, A9 N A-1(0), Where {t,} is some null sequence of positive numbers.

PROOF. Take dy, di € D such that dy # d;. Let A be the zero operator (that is,
Ax =0for all x € D). Foreachn > 1, set

1 |
- = 0 <1.
e "Tarnp 0S¢
Define A,, by
A= —"_(x—dy), xeD.

:l—s,1

Then it is easy to see that each A, is maximal monotone operator defined on D;
moreover, A, tends as n — oo to A uniformly on bounded subsets of D. We will
prove that {z,” '4,.} does not graph-converge to N A-1()- To this end we use Mann’s
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iteration method. Define a sequence {x,} as follows:
eD,
0 3.1)
Xp1 = Spdy + (1 — sp)[tndo + (1 — 1) x,].

We next discuss some properties of {x,}.

Fact 1. (xp)neN 1s bounded. Indeed, by (3.1),
Xpp1 =1 = t,) (1 = sp)xn + 1, (1 — 5,)do + spdy

is a convex combination of {x,, dy, d}. Hence,
xp41ll < (A —2)(A — sp)llxnll + 22 (1 — su)lldoll + s lldi |l

< max{[lx,l, lldoll, lld1I}-

Now, by induction, it follows that

llxn — xoll < max{llxoll, lldoll, 11}

for all n > 0, and (x,) is bounded.

Fact 2. The following relation holds:

1
) asn — oo, where0 <y <1 —«. (3.2)

X — X =0\ —
” n+1 n” <nV

Indeed, some manipulations give
Xpgp1 — Xp = (1 = s5)(1 — 1) (X — Xp—1) + (5 — sp—1)(d1 — Xp—1)
+ [(I = s) (0 — ta—1) — (Sn — Su—Dta—11(do — Xp—1).

Since {x,} is bounded, it turns out that, for a constant

M > 2max{1, Idoll. Ild: |1 sup ||xn||},

n>0

we have
lxnr1 —x0ll <A =s)A =t llxp — X011l + Mty — ty—1| + |sn — Sp—10).

By multiplying both sides by n”, we obtain
nYllxp1 = xall < (1= s2)(1 = tu)n? [lx0 — xp—1l
+ Mn” (It — ta—1] + |sn — sn—1)
=1 =s)(1 = tz)(n = DY [lxg — xp—1
+ (1 = s)(1 = t)[n” — (n = DYl — X1
+ Mn” |ty — ta—1] + Isp — sn—11).
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Setting a, = (n — 1)? ||x;, — Xp—1ll, 04 = Sp + t, — Spty, and
M.y Y Y
8p=—1{n" —(n = D"1+n"(ty — th_1l + Isp — su—11)},
n

we obtain
an+1 < (1 —op)ay + 0,6y (3.3)

Since, as n — oo,

y 1y =of - —o-!
n _(n_ ) — nl_y ) |sl’l _S}’l—ll_ nl"r()l )

weseethat(asO0O <y <1 — )

1 1 1
8n nl=v + nl-v—«a + nl+p—a—y — 0.

Since we also have ) o | 0, = 0o, we can apply Lemma 2.10 to (3.3) to conclude that
limy, 00 1Y || X1 — x4l = 0.

Suppose now that {7 'A,} graph-converged to N A-1(0)> We would then get a
contradiction as shown in Facts 3 and 4 below.

Fact 3. The sequence (x,) is weakly convergent to dp. Indeed, let p € wy, (x,). It
suffices to show that
(p_dO»x_p>20, V-XEDa

or equivalently (see [4, 6])
0 =V)p+ Npp, (3.4

where V is the constant mapping Vx = dp. As a matter of fact, the definition of x,
implies that

1 Sn(xy —dy) 1
—_—(x, — =— —dy=—A — d. 3.5
(1 _Sn)(xn Xn+1) (1 —s5,) + xn 0 0 nXn + Xn 0 (3.5)
Notice that (3.5) can be rewritten as (note 8 < y)
nﬁ
1—s,

((I - V)+ %An)xn = (xn — Xp+1) > 0 due to (3.2). (3.6)

Since we also have (I — V) + t,le,, —G (I = V)+ Np as n— oo, it turns out
from (3.6) that 0 € (I — V)p + Npp. Thisis (3.4).
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Fact 4. x, — dyasn — o0.
Indeed,
X1 — doll* = llsa(di — do) + (1 — s,)(1 — 1) (xy — do) 12
< (1= s0)*(1 — t)* %0 — dol|* + 250 (dy — do, Xng1 — do)
< (1= sp)llxn — doll* + su8n.
where
8p =2{dy — doy, xn+1 — do) > 0 asx, — dy

weakly. By Lemma 2.10, we obtain that ||x,, — do|| — O.

Fact 5. Consider now the sequence z, defined by
20 = Xo, 3.7)
Znt1 = spdy + (1 — 53)zp.

Then z, — d;. Indeed, this is a very particular case of the algorithm introduced in [5].
So we get z, — dj.

Fact 6. ||x;, — zn|| — 0. Indeed,
lxn41 — Zut1ll = (1 = s)[(A = 1) (. — 20) + ta(do — z) ]l
< =s)llxn — znll + va,

where y > 0 is a constant such that y > sup{||dy — z, || : » > 0}. Noticing that
ty 1
_——
sp (n+ 1)@

we can apply Lemma 2.10 to conclude that ||x, — z,|| — O.

Oy

Therefore, the sequences (x,) and (z,) converge to the same limit which contradicts
the fact that x,, — do (Fact 4) and z,, — d; (Fact 5). O
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