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Abstract
We consider large insurance portfolios consisting of life or disability insurance policies that are
assumed independent, conditional on a stochastic process representing the economic–demographic
environment. Using the conditional law of large numbers, we show that when the portfolio of
liabilities becomes large enough, its value on a δ-year horizon can be approximated by a functional
of the environment process. Based on this representation, we derive a semi-analytical approximation
of the systematic risk quantiles of the future liability value for a homogeneous portfolio when the
environment is represented by a one-factor diffusion process. For the multi-factor diffusion case, we
propose two different risk aggregation techniques for a portfolio consisting of large, homogeneous
pools. We give numerical results comparing the resulting capital charges with the Solvency II
standard formula, based on disability claims data from the Swedish insurance company Folksam.
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1. Introduction

The upcoming Solvency II directive regulates the amount of capital that insurance companies must
hold to reduce the risk of insolvency. In the directive’s standard model, capital charges are calculated
using a scenario-based approach, and the solvency capital requirement (SCR) is given as the
difference between the present value under best estimate assumptions and the present value under a
certain stress scenario. The SCR is computed on a risk-by-risk level, and then aggregated using
predetermined correlation matrices.

For disability insurance, perhaps the most important risk is recovery risk, i.e., the risk that the policy
holder receives the payments for a longer period of time than anticipated, i.e. that claim termination
rates are lower than anticipated. The Revised Technical Specifications for the Solvency II Valuation
and Solvency Capital Requirements Calculations (Part I) (European insurance and occupational
pensions authority (EIOPA), 2012) include shocks to disability inception and termination rates.
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The suggested shock for recovery risk involves a decrease of 20% in termination rates for the
following 12 months and for all years thereafter.

As an alternative to the standard stress scenario, insurers may adopt an internal model, which should
be based on a value-at-risk approach. The SCR is then given by the difference between the best
estimate, which corresponds to the expected value, and the 99.5% quantile of the value of the
benefits in 1 year, including benefits paid during the 1st year. Determining this quantile is typically a
high-dimensional problem that requires simulation techniques. Levantesi & Menzietti (2012)
estimate SCR under stochastic disability and mortality using simulation methods. Their approach
covers both systematic and idiosyncratic risk, and is suitable for small portfolios.

In order to reduce the computational complexity of the problem, scenario analysis and
approximation methods may be used. Christiansen & Steffensen (2013) and Christiansen et al.
(2016) develop a safe-side scenario approach for the estimation of SCR using dynamic programming
techniques. Christiansen et al. (2012) suggest an internal model for Solvency II based on linearisation
and Gaussian approximations.

In this paper, we consider an extension of the conditional independence model suggested in Djehiche &
Löfdahl (2014b), where the individuals in a large life insurance portfolio are assumed independent,
conditional on a stochastic process representing the economic–demographic environment. Using the
conditional law of large numbers (CLLN), we show that if the portfolio becomes large enough, the future
liability value can be approximated by a functional of the environment process. This result indicates that
the idiosyncratic risks can be diversified away, so that only the systematic risk, i.e. the risk that the
environment changes, remains. Based on this representation, we derive a semi-analytical approximation
of the systematic risk quantiles of the future liability value for a homogeneous portfolio when the
environment is represented by a one-factor diffusion process. For the multi-factor diffusion case, we
propose two different risk aggregation techniques for a portfolio consisting of large and homogeneous
pools based on the variance–covariance method and convex optimisation techniques, respectively.
Finally, we present numerical results based on disability claims data from the Swedish insurance
company Folksam, and compare the resulting capital charges with the Solvency II standard method.

The paper is organised as follows: in section 2, we introduce a conditional independence model with
associated payment streams and calculate the value of the liabilities at a general δ-year horizon.
In section 3, we consider aggregation of δ-year risks for large insurance portfolios based on the
CLLN. In section 4, we derive a semi-analytical approximation for homogeneous portfolios.
In section 5, we propose two different SCR aggregation methods for portfolios consisting of large,
homogeneous pools. In section 6, we present numerical results based on disability claims data from
the Swedish insurance company Folksam.

2. A Conditional Independence Model

In this section, we extend the conditional independence model suggested in Djehiche & Löfdahl
(2014b). Let τ1, τ2,… be random event times (e.g. times of death or recovery from disability), and let

Nk
t = Ifτk ≤ tg; k≥1

so that Nk
t denotes the state of an insured individual at time t (e.g. alive/dead or disabled/recovered).

Further, define the processes

Nk = ðNk
t Þt≥0; k≥1
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and let

FN = ðFN
t Þt≥ 0 = ðFN1

t _ FN2

t _ ¼Þt≥0

denote the filtration generated by N1, N2,… . Let Z be a càdlàg process taking values in Rm with natural
filtrationFZ = ðFZ

t Þt≥0. We letZt represent the state of the economic–demographic environment at time t.
Define the filtration G= ðGtÞt≥ 0 by Gt =FZ

t _ FN
t ; t≥ 0. We assume that N1, N2,… are independent,

conditional on FZ
1, and that the G intensity of Nk is the process λk = ðλkt Þt≥ 0 defined by

λkt = qxðt;Zt�Þð1�Nk
t�Þ; t≥0 (1)

where x is a parameter representing e.g. the age of the insured and qx: R+ ´Rm 7!R+ is the transition rate
function corresponding to x, here assumed continuous. Now, consider an insurance policy with payment
stream Ak given by

dAk
t = gxðt;ZtÞð1�Nk

t Þdt + hxðt;Zt�ÞdNk
t ; t≤Tx (2)

The policy pays gx(t, Zt) continuously, as long as Nk
t = 0, until a fixed future time Tx. In addition, if the

event time τk is reached before Tx, the policy immediately pays a lump sum of hxðτk;Zτk�Þ.
This type of policy allows for payments from the contract to depend on time as well as on the state of the
economic–demographic environment and the age of the insured. For example, the contract could be
inflation linked and contain a deferred period.

When considering insurance portfolios, it is often convenient to form pools or sub-populations
consisting of individuals with similar descriptive statistics, e.g. age, gender, income, etc. Reserves and
risk measures for the portfolio can then be obtained by calculating the corresponding quantity for
each pool, and then aggregating the results in a suitable way. To this end, let X denote a finite set of
age groups, and let Inx; x; n≥ 1 denote the index set of individuals with disability inception age x in a
portfolio of n policies. Obviously, we must haveX

x2X
Inx
�� ��= n

Now, define the random present value Bk
t;Tx

of a single policy by

Bk
t;Tx

=
ðTx

t
e�
Ð s

t
rududAk

s (3)

where the short rate r is assumed to be adapted to FZ. The random present value BðnÞ
t of the portfolio

can then be defined by

BðnÞ
t =

X
x2X
k2Inx

Bk
t;Tx

For some δ≥0 denoted by LðnÞ
t + δ, the expected value of the portfolio liabilities at time t+ δ, given

information about the population and environment processes up to time t+ δ. We have

LðnÞ
t + δ ¼E BðnÞ

t Gt + δj
h i
¼

X
x2X
k2Inx

Bk
t;t + δ +

X
x2X
κ2Inx

e�
Ð t + δ

t
ruduE Bk

t + δ;Tx
Gt + δj

h i
ð4Þ

where the first term represents the payments from t to t+ δ, and the second term represents the value
of the liabilities payable from t+ δ until the end of the contracts. Using the martingale property of the
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compensated processes Mk
t defined by

Mk
t =Nk

t �
ðt
0
λks ds

together with the assumption that Z is càdlàg, we obtain

E Bk
t + δ;Tx

Gt + δj
h i

=E
ðTx

t + δ
e�
Ð s

t + δ
rudugxðs;ZsÞð1�Nk

s Þds Gt + δj
� �

+E
ðTx

t + δ
e�
Ð s

t + δ
ruduhxðs;Zs�ÞdNk

s Gt + δj
� �

=E
ðTx

t + δ
e�
Ð s

t + δ
rudugxðs;ZsÞð1�Nk

s Þds Gt + δj
� �

+E
ðTx

t + δ
e�
Ð s

t + δ
ruduhxðs;Zs�Þλks ds Gt + δj

� �

=E
ðTx

t + δ
e�
Ð s

t + δ
ruduð1�Nk

s Þ~gxðs;ZsÞds Gt + δj
� �

where

~gxðs;ZsÞ= gxðs;ZsÞ + hxðs;ZsÞqxðs;ZsÞ
If the environment process Z is Markov, it follows from (Djehiche & Löfdahl, 2014b, proposition 1)
that

E Bk
t + δ;Tx

Gt + δj
h i

=E
ðTx

t + δ
e �

Ð s

t + δ
ruduð1�Nk

s Þ~gxðs;ZsÞds Gt + δj
� �

= ð1�Nk
t + δÞvxðt + δ;Zt + δÞ ð5Þ

where

vxðt + δ;Zt + δÞ=E
ðTx

t + δ
~gxðs;ZsÞe�

Ð s

t + δ
ðqxðu;ZuÞ + ruÞduds Zt + δj

� �
(6)

Let qxðt; zÞ=qxðt; zÞ + rðt; zÞ, and assume that qx is lower bounded, ~gx is continuous and bounded,
and that Z is a Markov process with infinitesimal generator A. Then, vx(t, z) given by (6) satisfies the
Feynman–Kac partial differential equation (PDE)

� ∂vx
∂s + qxðs; zÞvx =Avx + ~gxðs; zÞ; t + δ≤ s<Tx

vxðTx; zÞ=0

(
(7)

Using (4) and (5), the portfolio value at the δ-year horizon is given by

LðnÞ
t + δ ¼

X
x2X
k2Inx

Bk
t;t + δ +

X
x2X
k2Inx

e�
Ð t + δ

t
ruduð1�Nk

t + δÞvxðt + δ;Zt + δÞ (8)

The first sum represents the discounted payments between t and t+ δ. The second sum represents the
following: for each policy that has not reached its corresponding event time τk before t+ δ,
the value of the remaining liabilities is given by vx(t+ δ, Zt+ δ). This value is then discounted back
to time t.

Having computed the future value of the portfolio, we turn to the task of determining the capital
requirement, i.e. determining the corresponding conditional quantiles.
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3. SCR and the CLLN

In this section, we consider the problem of calculating the SCR for a large insurance portfolio.
In the Solvency II directive, the key quantity of interest is a particular conditional quantile of
LðnÞ
t +1, the value of the portfolio in 1 year from now, defined by (8) with δ = 1. Determining

this quantile is an infinite-dimensional problem, since LðnÞ
t +1 depends on Zs;N1

s ;N
2
s ; ¼, for each

s∈ [t, t+ 1]. In general, it is not possible to determine the quantiles exactly. They can sometimes be
estimated by simulation methods, at least if the portfolio is small enough. For a large portfolio with
conditionally independent policies, it is convenient to disregard the idiosyncratic risks associated
with each individual policy, and focus on estimating the systematic risk carried by the environment
process Z. This idea is formalised by the following version of the CLLN. We state the result on a
general δ-year horizon.

Proposition 1 Assume that qx and r are non-negative, that |gx|≤mg<∞, |hx|≤mh<∞,
|Tx|≤mT<∞, and that Z is a Markov process with infinitesimal generator A. Then, for δ≥0,
conditional on FN

t _ FZ
t + δ

lim
n

1
n
LðnÞ
t + δ �E

1
n
LðnÞ
t + δ FN

t _ FZ
t + δ

��� �� �
= 0 a:s: (9)

Proof: Let Lk
t + δ =E½Bk

t;Tx
jGt + δ�. Using (5)

Lk
t + δ =Bk

t;t + δ + e
�
Ð t + δ

t
ruduð1�Nk

t + δÞvxðt + δ;Zt + δÞ

=
ðt + δ
t

e�
Ð s

t
rudu ð1�Nk

s Þgxðs;ZsÞds + hxðs;Zs�ÞdNk
s

h i
+ e�

Ð t + δ

t
ruduð1�Nk

t + δÞvxðt + δ;Zt + δÞ

where the function vx solves (7). From the model assumption ðNk
s Þt≤ s≤ t + δ; k≥1 are independent

conditional on FN
t _ FZ

t + δ. It follows that Lk
t + δ; k≥ 1 are independent conditional on FN

t _ FZ
t + δ.

Further, if we are able to show that

X1
k= 1

1
k2
E Lk

t + δ�E Lk
t + δ FN

t _ FZ
t + δ

��h i� �2
FN

t _ FZ
t + δ

��� �
<1 a:s:

then the claim follows from the CLLN (Prakasa Rao, 2009, theorem 6). Since

E½ðLk
t + δ�E½Lk

t + δ jFN
t _ FZ

t + δ�Þ2 jFN
t _ FZ

t + δ�≤E½ j Lk
t + δ j 2 jFN

t _ FZ
t + δ� a:s:

it is sufficient to show that jLk
t + δ j 2; k≥ 1, are uniformly bounded. From Jensen’s inequality,

it follows immediately that

jLk
t + δ j 2= jE½Bk

t;Tx
jGt + δ� j 2 ≤E½ jBk

t;Tx
j 2 jGt + δ� a:s:
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Hence, it is sufficient to show that jBk
t;Tx

j2; k≥ 1 are uniformly bounded. Using (1), (2), and (3)

Bk
t;Tx

��� ���2 = ðTx

t
e�
Ð s

t
rudugxðs;ZsÞð1�Nk

s Þds
����
+
ðTx

t
e�
Ð s

t
ruduhxðs;Zs�ÞdNk

s

����2

=
ðTx

t
e�
Ð s

t
rudugxðs;ZsÞð1�Nk

s Þds
����

+ e�
Ð τk

t
ruduhxðτk;Zτk�ÞIft≤ τk ≤Txg

�����
2

Define I1 and I2 by

I1 =
ðTx

t
e�
Ð s

t
rudugxðs;ZsÞð1�Nk

s Þds

I2 = e�
Ð τk

t
ruduhxðτk;Zτk�ÞIft≤ τk ≤Txg

We have

jI1 + I2 j2 ≤2I21 + 2I
2
2 a:s:

By assumption, r is non-negative, so that

I21 ≤
ðTx

t
gxðs;ZsÞj j2ds≤m2

gðmT�tÞ

I22 ≤ hxðτk;Zτk�Þ
�� ��2 ≤m2

h

Hence

jBk
t;Tx

j2 ≤ 2m2
gðmT�tÞ + 2m2

h <1
and the proof is complete. □

Evaluating the conditional expectation in (9), we arrive at the following corollary.

Corollary 2 The CLLN approximation to LðnÞ
t + δ is given by

LðnÞ
t + δ �

X
x2X
k2Inx

ð1�Nk
t ÞVx (10)

where

Vx =
ðt + δ
t

~gxðs;ZsÞe�
Ð s

t
qxðu;ZuÞduds

+ e�
Ð t + δ

t
qðu;ZuÞduvxðt + δ;Zt + δÞ ð11Þ

The first term of (10) corresponds to the discounted payments between t and t+ δ.
The second term corresponds to the following: for the fraction of contracts still active at time t+ δ,

Boualem Djehiche and Björn Löfdahl

208

https://doi.org/10.1017/S1748499516000051 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499516000051


the value of the remaining liabilities is given by vx(t+ δ, Zt+ δ). This value is then discounted back
to time t.

Corollary 2 implies that we can diversify away the idiosyncratic risk, so that only the systematic risk
remains. This means that we can approximate the portfolio quantiles by the computationally much
simpler systematic risk quantiles, i.e.

F�1
LðnÞ
t + δ

ðpÞ � F�1P
x;k

ð1�Nk
t ÞVx ðpÞ (12)

This result is a generalisation of the CLLN for ultimate risk (δ→∞) obtained in (Djehiche & Löfdahl,
2014b). The main difference is that (12) provides an approximation for risks on a general δ-year
horizon. In particular, it allows for approximating the 1-year risks associated with the Solvency II
framework. Further, we relax the homogeneity assumptions, which allows for more realistic modelling
of insurance portfolios. It should be stressed that Proposition 1 holds for even more general portfolios,
where the payment functions g and h may be unique for each contract, as long as they satisfy some
boundedness conditions. Forming homogeneous pools is simply a convenient tool that will help us
with calculating the portfolio SCR. This is the topic of the next sections.

4. SCR for Homogeneous Portfolios

In this section, we consider a semi-analytical approximation for a homogeneous portfolio under a
one-factor diffusion model. The methods used in this section are best suited for the case where the
time horizon δ is small relative to the duration of the liabilities. This is typically the case with
disability or pension annuities and the 1-year horizon of the Solvency II framework.

Assuming a one-factor model need not be a serious limitation, as we may, e.g., use one of the
mimicking techniques from Djehiche & Löfdahl (2014b). This procedure is illustrated in section 4.1,
where we use the Markov projection technique to mimic a multi-factor model with a one-
factor model.

To simplify notation, we suppress the dependence on x, and define the random variable V by

V =
ðt + δ
t

~gðs;Zt;z
s Þe�

Ð s

t
qðu;Zt;z

u Þduds + e�
Ð t + δ

t
qðs;Zt;z

s Þdsvðt + δ;Zt;z
t + δÞ (13)

where the process Zt,z has dynamics given by the stochastic differential equation (SDE)

dZt;z
s = αðs;Zt;z

s Þds + σðs;Zt;z
s ÞdWs; s≥ t

Zt;z
s = z; s≤ t

(
Recall that the function v(s, z) satisfies the PDE

� ∂v
∂s + qðs; zÞv= αðs; zÞ ∂v∂z + 1

2 σ
2ðs; zÞ ∂2v∂z2 + ~gðs; zÞ; t + δ≤ s<T

vðT; zÞ= 0

(
(14)

In the light of (12), in order to determine the portfolio quantiles, it is enough to determine the
quantiles of V.

Typically, liabilities such as disability or pension annuities tend to have a long duration. Hence, for a
δ that is small relative to the duration of the liability, the value of the remaining liabilities at t+ δ
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should dominate the value of the benefits paid between t and t+ δ. Hence, the exact path of Zt,z from
z to Zt;z

t + δ is not as important as the value of Zt;z
t + δ, since, by the Markov property of Zt,z, the value of

the remaining liabilities at t+ δ does only depend on Zt;z
t + δ. This observation provides motivation for

using the comonotonic approximation proposed by Dhaene et al. (2002) and others: let
Ft;z
s ; t≤ s≤ t + δ denote the distribution function of Zt;z

s and let the uniformly distributed random
variable U be defined by

U= Ft;z
t + δðZt;z

t + δÞ
Define the stochastic process ðZsÞt≤ s≤ t + δ by

Zs = ðFt;z
s Þ�1ðUÞ= ðFt;z

s Þ�1ðFt;z
t + δðZt;z

t + δÞÞ (15)

and note that

Zs =
d
Zt;z

s t≤ s≤ t + δ

Further, define the random variable V by

V =
ðt + δ
t

~gðs;ZsÞe�
Ð s

t
qðu;ZuÞduds + e�

Ð t + δ

t
qðs;ZsÞdsvðt + δ;Zt + δÞ (16)

Under the comonotonic approximation, the random variable V is simply a function of Zt;z
t + δ, i.e.

V = f ðZt;z
t + δÞ, with the function f : R 7!R defined by (15) and (16). By reducing the dimensionality,

determining the quantiles of V is a much simpler task than determining those of V. We suggest the
approximation

F�1
V ðpÞ � F�1

V
ðpÞ (17)

for calculating capital requirements for a large portfolio, whenever δ is sufficiently small.
The performance of the comonotonic approximation is investigated in section 6.

In Proposition 5, we show that, under reasonable assumptions, the mapping x ↦ f(x) is
monotone, which makes it trivial to calculate the quantiles of V. First, we need the following
propositions.

Proposition 3 (cf. Friedman (1964), theorem 3.10) Assume that

∂α
∂z

;
∂σ2

∂z
;
∂q
∂z

;
∂~g
∂z

are continuous functions and that v is a solution to the PDE (14). Then

∂3v
∂z3

;
∂
∂t
∂v
∂z

exist and are continuous.

Proposition 4 Assume that the conditions of Proposition 3 are satisfied, and that

∂~gðs; zÞ
∂z

� ∂qðs; zÞ
∂z

vðs; zÞ≤ 0; t≤ s≤T; z 2 R

Then, the mapping z ↦ v(·, z) is non-increasing.
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Proof: Let uðs; zÞ= ∂v
∂z ðs; zÞ. Taking the derivative with respect to z on both sides of (14), we obtain

the following PDE for u(s, z):

� ∂u
∂s + q� ∂α

∂z

� �
u= α + 1

2
∂σ2
∂z

� �
∂u
∂z +

1
2 σ

2 ∂2u
∂z2 + ∂~g

∂z� ∂q
∂z v; t≤ s<T

uðT; zÞ= 0

8<: (18)

From Proposition 3, all partial derivatives exist and are continuous. It is immediate that the function
u(s, z) satisfying the PDE (18) has the Feynman–Kac representation

uðt; zÞ=E
ðT
t

∂~g
∂z

ðs; bZsÞ� ∂q
∂z

ðs; bZsÞvðs; bZsÞ
� �

e�
Ð s

t
ðqðu;bZuÞ�∂α

∂zðu;bZuÞÞduds bZt = z
���� �

where the process bZ is the Itô diffusion defined by

dbZs = αðs; bZsÞ + 1
2
∂σ2

∂z
ðs; bZsÞ

� �
ds + σðs; bZsÞdcWs

and cW is a Wiener process. Since we assumed the integrand to be non-positive, it is clear that u(t, z)
is non-positive. Hence, z ↦ v(·, z) is non-increasing. □

Proposition 5 Assume that the conditions of Proposition 3 are satisfied. Further, assume that
z 7! qð�; zÞ is non-decreasing and that z 7! ~gð�; zÞ is non-negative and non-increasing. For δ≥ 0, define
the function z : ½t; t + δ� ´R 7!R by

zðs; xÞ= ðFt;z
s Þ�1ðFt;z

t + δðxÞÞ
Then, the mapping x ↦ f(x) is defined by

f ðxÞ:¼
ðt + δ
t

~gðs; zðs; xÞÞe�
Ð s

t
qðu;zðu;xÞÞduds + e�

Ð t + δ

t
qðs;zðs;xÞÞdsvðt + δ; xÞ (19)

is non-increasing.

Proof: First, note that x 7! zð�; xÞ is non-decreasing. From the Feynman–Kac representation (6) for
v(t, z), it is immediate that ~gðs; zÞ≥ 0 implies v(t, z)≥0. This, together with the assumptions that
z 7! qð�; zÞ is non-decreasing and z 7! ~gð�; zÞ is non-increasing, means that the conditions of Proposition 4
are satisfied. Further, since z 7! qð�; zÞ is non-decreasing, the second term in (19) is a product of two
non-negative, non-increasing factors, and so it is non-increasing. The same argument holds for the
integrand in the first term in (19). Hence, x↦ f(x) is non-increasing. □

In the light of Proposition 5, it is immediate that the quantiles of V are given by

F�1
V
ðpÞ= F�1

f ðZt;z
t + δÞ

ðpÞ= f ððFt;z
t + δÞ�1ð1�pÞÞ (20)

Using (12), (17), and (20), the p quantile of the portfolio liabilities can be approximated by

Corollary 6

F�1
LðnÞ
t + δ
ðpÞ �

Xn
k= 1

ð1�Nk
t Þf ððFt;z

t + δÞ�1ð1�pÞÞ (21)

We conclude that, for the homogeneous case, we can approximate the portfolio quantiles and capital
requirements without resorting to simulation techniques: it is enough to compute ðFt;z

t + δÞ�1ð1�pÞ,
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solve the Feynman–Kac PDE for v(s, z), and evaluate the right hand side of (21) using numerical
integration.

Using the CLLN approximation (12), we are able to diversify away the idiosyncratic risks, given that
the portfolio is large enough, leaving only the systematic risk. Further, using the comonotonic
approximation (21), we are able to project the systematic risk onto a single random variable,
provided that δ is small relative to the duration of the liabilities. The comonotonic approximation
relies on a one-factor model. When the population disability is described by a multi-factor model, the
methods from this section cannot be used directly. We now give an example of how the Markov
projection technique can be used to approximate a multi-factor model with a one-factor model.

4.1. Application to disability insurance

We consider the disability model from Aro et al. (2015), as adapted in Djehiche & Löfdahl (2014b,
section 4.1). The transition rate is given by

qðs; νt;ξs Þ= c logð1 + expfaðx; sÞTνt;ξs gÞ (22)

where a : X ´R + 7!Rm and c 2 R + represent modelling choices. The process vt,ξ is defined by

νt;ξs = ξ + μðs�tÞ +AðWs�WtÞ; s≥ t

where ξ 2 Rm, W is m-dimensional standard Brownian motion with independent components,
μ 2 Rm a drift vector, and A 2 Rm ´m is the Cholesky factorisation of the covariance matrix ∑ of vt,ξ.
Djehiche & Löfdahl (2014b) suggested that this multi-factor model can be approximated by a one-
factor model using the Markov projection, or mimicking technique first introduced by Krylov
(1984): for a fixed x∈X, let ðZx;t

s Þs≥ t denote the Markov projection of the scalar valued process
ðaðx; sÞTνt;ξs Þs≥ t with dynamics given by

dZx;t
s = ðθxðsÞ�κxðsÞZx;t

s Þds + σxðsÞdWs; s≥ t

Zx;t
s = aðx; tÞTνt;ξt = aðx; tÞTξ; s≤ t

(
where

κxðsÞ=� aðx; sÞTΣ _aðx; sÞ
aðx; sÞTΣaðx; sÞ

θxðsÞ= aðx; sÞTμ + _aðx; sÞTðξ + μðs�tÞÞ

�aðx; sÞTðξ + μðs�tÞÞ aðx; sÞ
TΣ _aðx; sÞ

aðx; sÞTΣaðx; sÞ

σxðsÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðx; sÞTΣaðx; sÞ

q
The Markov projection method ensures that Zx,t is Markov, and that

Zx;t
s =

d
aðx; sÞTνt;ξs ; s≥ t (23)

Let Fx;t
s denote the distribution function of Zx;t

s . From the property (23), Fx;t
s is then also the dis-

tribution function of aðx; sÞTνt;ξs . Since Zx,t is a Hull–White process, ðFx;t
s Þ�1ð1�pÞ is obtained

analytically as

ðFx;t
s Þ�1ð1�pÞ= δxðt; s; zxÞ + γxðt; sÞΦ�1ð1�pÞ

Boualem Djehiche and Björn Löfdahl

212

https://doi.org/10.1017/S1748499516000051 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499516000051


where zx: = aðx; tÞTξ, and δx and γx are obtained as the following explicit expressions of the
coefficients of the Hull–White process:

δxðt; s; zxÞ= zxe�
Ð s

t
κxðvÞdv +

ðs
t
e�
Ð s

u
κxðvÞdvθxðuÞdu

ðγxðt; sÞÞ2 =
ðs
t
e�2

Ð s

u
κxðvÞdvðσxðuÞÞ2du

From now on we suppress x to simplify notation. It turns out that, against all odds, it is possible to
compute δ and γ analytically in this model. Using the fact that

κðvÞ=� 1
2σ2ðvÞ

dσ2

dv
=� 1

2
d
dv

logσ2ðvÞ

we immediately obtain

e�
Ð s

u
κðvÞdv =

σðsÞ
σðuÞ

It follows that

γ2ðt; sÞ= σ2ðsÞðs�tÞ
Further, define ψ : R 7!R by

ψðvÞ= aðvÞTðξ + μðv�tÞÞ
It is easy to check that

d
dv

ψðvÞ
σðvÞ

� �
=

_ψðvÞ
σðvÞ �

ψðvÞaðvÞTΣ _aðvÞ
σ3ðvÞ

which is exactly the integrand of δ. Hence, we obtain

δðt; s; zÞ= z
σðsÞ
σðtÞ + aðsÞ

Tðξ + μðs�tÞÞ� σðsÞ
σðtÞ aðtÞ

Tξ

= aðsÞTðξ + μðs�tÞÞ
Finally, the quantiles of Zt;z

s are given by

ðFt;z
s Þ�1ð1�pÞ= aðsÞTðξ + μðs�tÞÞ + σðsÞ ffiffiffiffiffiffiffiffi

s�t
p

Φ�1ð1�pÞ (24)

Inserting (24) into (21) allows for efficient approximation of the portfolio risk. This is very useful,
since it completely removes the need for costly Monte Carlo simulations.

It should be noted that while the Markov projection technique preserves the marginal distributions
of the environment process, the finite-dimensional distributions are in general not preserved, see e.g.
Borkar (1989). This implies that the distribution of the δ-year liability value V defined by (13) is not
necessarily preserved. However, for the comonotonic approximation V, this is of less importance.
To see this, consider V defined by (16): in view of (15) and (23), conditional on the value of the
environment process at time t+ δ, the trajectories of the comonotonic processes based on the original
environment process and its mimicked process will agree. Hence, the Markov projection only alters
V through the function v which satisfies (14). Djehiche & Löfdahl (2014b) numerically investigated
the sensitivity of v with respect to the Markov projection technique. Their results indicate that while
some precision is lost, the effect is rather small. We suggest that using Markov projections together
with the comonotonic approximation should not significantly alter the distribution of V, although
further research is needed to confirm this claim.
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5. SCR for Inhomogeneous Portfolios Under Multi-Factor Models

For inhomogeneous portfolios under multi-factor models, we generally need to resort to simulations
or scenario generation techniques. In this section, we consider two simplified calculation procedures
for obtaining estimates of SCR for portfolios consisting of large homogeneous pools, using the
disability model from section 4.1. Recall that the CLLN approximation of the portfolio value LðnÞ

t +1 is
given by

LðnÞ
t + 1 �

X
x2X

cnxV
x

where, for each x∈X, Vx is given by (11), and cnx is defined by

cnx =
X
k2Inx

ð1�Nk
t Þ

Further, the comonotonic approximation of Vx corresponding to (15)–(16) is given by

Vx � V
x
= f xðZx;t

t + 1Þ
where

f xðZx;t
t +1Þ=

ðt +1
t

~gxðs;Zx;t
s Þe�

Ð s

t
qxðu;Z

x;t
u Þduds

+ e�
Ð t + 1

t
qxðs;Z

x;t
s Þdsvxðt + 1;Zx;t

t + 1Þ ð25Þ
The corresponding approximation for the portfolio value is given by

LðnÞ
t + 1 �

X
x2X

cnxV
x

(26)

It is easy to see that the random vector Z�;t
t + 1 defined by

Z�;t
t +1 = ðZx;t

t + 1Þx2X
follows a multivariate normal distribution. Therefore, the random vector V � defined by

V � = ðf xðZx;t
t +1ÞÞx2X

has a Gaussian copula. In the following subsections, we will suggest aggregation methods that
exploit this particular structure.

5.1. Variance–covariance aggregation

For a portfolio consisting of large and homogeneous pools, we suggest a risk aggregation analogous
to that of the SCR standard formula. The basic idea is to calculate the SCR for each pool and
aggregate the results to obtain the portfolio SCR. Using Corollary 6, the SCR for each pool can be
obtained as

SCRx
p � cnxðf xððFx;t

t + 1Þ�1ð1�pÞÞ�vxðt; aðx; tÞTξÞÞ; x 2 X

i.e., the SCR for each pool x can be represented as a function of a quantile of the random variable
Zx;t

t + 1. The Gaussian copula of V � leads us to suggest the natural risk aggregation formula

SCRp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x;y2X

ρxySCRx
pSCR

y
p

s
(27)
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where the correlation coefficients ρxy are determined by

ρxy = ρðZx;t
t +1;Z

y;t
t +1Þ=

aðx; t + 1ÞTΣaðy; t + 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðx; t + 1ÞTΣaðx; t + 1Þaðy; t + 1ÞTΣaðy; t + 1Þ

q
The approximation (27) provides a computationally easy way of aggregating the risks. Moreover, its
natural association to the SCR standard formula should make it easier for the regulatory experts to
accept it as an internal model formula. However, it should be stressed that (27) only holds with
equality if V � has an elliptical distribution, which is typically not the case. It is possible that this ad
hoc method is too simplistic to adequately reflect the true risk of the portfolio in all situations.
Therefore, we will suggest an alternative way of calculating the portfolio risk based on scenario
generation and convex optimisation.

5.2. Stress scenario generation

Estimating the SCR from the portfolio value in a suitably chosen extreme scenario provides a
computationally tractable approach to the SCR problem. Christiansen & Steffensen (2013) suggest
that an upper bound for SCRp may be obtained by finding the worst outcome for the portfolio over a
confidence set, i.e. a set of transition rates with mass p. This section is dedicated to constructing such
a confidence set for a portfolio value of the form (26).

Recall that νt;ξt +1 has the representation

ν
t;ξ
t +1 = ξ + μ +AðWt + 1�WtÞ =d ξ + μ +AY

where Y is an m-dimensional vector of independent standard normal random variables. Hence, for
each x∈X, the random variable Zx;t

t +1 has the representation

Zx;t
t +1 =

d
aðx; t + 1ÞTðξ + μ +AYÞ (28)

Based on (28), constructing a confidence set for Z�;t
t + 1 is equivalent to constructing a confidence

set for Y. The latter alternative is more convenient due to the spherical symmetry of the distribution
of Y. Consider e.g. the scenarios defined by

jY j 2 ≤R2

for a suitable R 2 R +. The worst outcome for the portfolio liabilities among these scenarios is given
by

max
y : j y j 2 ≤R2

X
x2X

cnxf
xðaðx; t + 1ÞTðξ + μ +AyÞÞ (29)

Finding a set of transition rates with mass p is analogous to choosing the radius R such that

Pð jY j 2 >R2Þ= 1�p

Noting that jY j 2 � X2
m, we obtain

RðpÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX2

mÞ�1ðpÞ
q

(30)

If y* is an argmax of (29), then a conservative SCR estimate is given by

SCRp ≤
X
x2X

cnxðf xðaðx; t + 1ÞTðξ + μ +Ay�ÞÞ�vxðt; aðx; tÞTξÞÞ (31)

In other words, to compute the capital requirement it is enough to find a maximiser y* of (31).
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However, determining y* is a matter of solving a high-dimensional, possibly non-convex,
optimisation problem, which may indeed be challenging.

A natural question is how sharp the upper bound given by (31) is. We give a partial answer to this
question in the special case where

(H1) the liability value function g : Rm 7!R is quasi-concave, i.e., for each p∈ (0,1), the set Ap is
defined by

Ap = fy : gðyÞ≥F�1
gðYÞðpÞg

is convex.

Define y* by

y� = argmin
y2Ap

jy j

i.e., y* is the boundary point of Ap which is closest to the origin. We make the further
assumption that

(H2) for p close to 1, Ap does not contain the origin.

This assumption is quite reasonable for any insurance portfolio, which is seen when we consider the
opposite case: if g(0), which in some sense represents the most probable outcome for the insurance
portfolio, belongs to the (1− p)% worst case scenarios, then the insurer has much bigger problems to
worry about. One may think of a “Gaussian lottery” where the insurer gains a lot of money
whenever a certain tail event is exceeded, and loses a small amount of money otherwise. This is
typically the opposite of most sound insurance strategies used in practice. The case with a constant g
is trivial and not considered here. Moving on, we define the set Cp by

Cp = fy : jy j ≤ jy� jg
i.e. Cp is the ball with radius |y*| centred at the origin. By the Separating Hyperplanes Theorem, there
is a hyperplane containing y* that separates Ap and Cp and, by the Hilbert Projection Theorem, the
half-space Hp given by

Hp = fy : ðy�ÞTðy�y�Þ≥ 0g
contains Ap. This, together with the spherical property of the distribution of Y, implies

1�p=PðApÞ≤PðHpÞ=Pððy�ÞTðY�y�Þ≥0Þ= 1�Φð jy� j Þ (32)

where Φ denotes the normal distribution function. This is equivalent to

jy� j ≤Φ�1ðpÞ=RðpÞ (33)

which means that we should search for y* among the vectors in Rm with length at most Φ−1(p).
We have obtained the following conservative quantile estimate:

Lemma 7

F�1
gðYÞðpÞ= gðy�Þ≤ max

y : j y j ≤Φ�1ðpÞ
gðyÞ (34)

The radius given by (33) is significantly smaller than (30), which implies that Lemma 7 gives an
improved upper bound for SCRp under the comonotonic approximation.
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The assumption that g is quasi-concave is restrictive, but holds for some interesting special cases.
For example, if g is a linear combination of the elements of y, or a monotone function of such a linear
combination, then g is quasi-concave. Further, in this special case, (32) holds with equality: for a
non-increasing g : R 7!R and a 2 Rm

F�1
gðaTYÞðpÞ= gðF�1

aTYð1�pÞÞ= gð ja j Φ�1ð1�pÞÞ

Setting

F�1
gðaTYÞðpÞ= gðaTy�Þ

yields

y� =� a
ja j Φ

�1ðpÞ

which satisfies (33). In the light of Proposition 5, this holds for each fx defined by (25) under the
comonotone approximation. Hence, we may use (34) with equality to calculate SCRx

p for each age
group separately. Regarding the portfolio liabilities, the liability value function g is given by

gðyÞ=
X
x2X

cnxf
xðaðx; t + 1ÞTðξ + μ +AyÞÞ (35)

Unfortunately, g defined by (35) need not be quasi-concave even if it holds for each fx separately.
Even the weaker condition that only A0.995 is convex is hard to verify without introducing further
assumptions. This is left as a topic for future research.

The numerical results in the next section indicate that there might be some connection between the
scenario generation method and the variance–covariance method. To shed some light on this, let y*
be the maximiser of (35) over the set (33), let yx be the maximiser of fx. Abusing notation, we write
vx = vx(t,a(x,t)

Tξ) and fx(y) = fx(a(x,t +1)T (ξ + μ +Ay)). Then

max
y : j y j ≤Φ�1ðpÞ

X
x

cnxf
xðyÞ�

X
x

cnxvx

=
X
x

cnxðf xðy�Þ�vxÞ

≤
X
x

cnxðf xðyxÞ�vxÞ

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j;k

cnj ðf jðyjÞ�vjÞcnkðf kðykÞ�vkÞ
s

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j;k

SCRj
pSCRk

p

s
ð36Þ

which bears strong resemblance to the simple variance–covariance aggregation formula (27).
The only difference is that the correlation coefficients ρjk are not taken into account. UnfortunatelyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

j;k

SCRj
pSCRk

p

s
≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j;k

ρjkSCR
j
pSCRk

p

s
(37)

i.e., reintroducing the correlations yields an inequality in the other direction, which means that it is
difficult to directly relate the two risk aggregation schemes to each other.
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6. Numerical Results

We perform a simulation study over a range of age groups, from 25 to 60 years of age. We have
chosen the interest rate r = 0.02, and the contracts are simple annuity contracts with

gxðs; zÞ= 1; hxðs; zÞ= 0; z 2 R; 0= t≤ s≤Tx = 65�x; x 2 X

We employ the four-factor disability termination model and fitting method from Djehiche & Löfdahl
(2014a, section 5.1), and the model parameters are estimated from disability claims data for the
years 2000–2011. The transition rate function is of the form (22) from section 4.1.

6.1. Quantile approximations for homogeneous portfolios

First, we investigate the convergence of the CLLN approximation. Paths of the underlying stochastic
process Z, as well as each individual contract, are simulated over the interval [t,t +1], and 1

n L
ðnÞ
t +1 and

Vx are computed for each trajectory. Figure 1 displays the convergence of the portfolio 99.5%
quantile to the CLLN 99.5% quantile, for age groups 25, 30, 35,… , 60. The y-axis is normalised to
the value obtained from the CLLN simulation. As we can see, it suffices to have only a few hundred
individuals to obtain a very good approximation.
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Figure 1. Convergence of portfolio 99.5% quantiles to conditional law of large numbers
approximation.
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Next, the 99.5% quantiles from the simulation are compared with the quantiles from the comonotonic
approximation, for age groups 25, 30, 35,… , 60. The results are displayed in Figure 2. The solid line
corresponds to the simulated law of large number approximation. The dotted line corresponds
to a portfolio simulation of 2,000 contracts, and the dashed line corresponds to the comonotonic
approximation (20). The y-axis is normalised to the simulated law of large number approximation.

From this simulation study, we see that the comonotonic approximation performs fairly well. It seems to
provide slightly conservative quantile estimates, ranging from 1% to 5% above the simulated quantiles.

6.2. Capital requirements for homogeneous portfolios

In this section, we compare four different SCR calculation procedures for a large portfolio: the
standard SCR, the CLLN SCR approximation, the comonotonic approximation, and the scenario
method with radius R(p) = Φ−1(p). For reference, these are compared with two historical stress
scenarios that reverse the changes from 2006–2007 and 2007–2008, respectively. The yearly change
from 2006–2007 was minor, while the change from 2007–2008 represents a major shock to the
system due to regulation changes. Table 1 displays the SCR values, as a fraction of the standard SCR,
for the age groups 25, 30,… , 60. Comparing the standard 20% stress to the historical scenarios, we
can see that, as expected, the reversed change from 2006–2007 yields a very low SCR. Meanwhile,
the reversed change from 2007–2008 yields an SCR which is several times larger than the SCR of the

25 30 35 40 45 50 55 60
0.99

1
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1.02

1.03

1.04

1.05
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Figure 2. Portfolio 99.5% quantile per age group, normalized. Solid: conditional law of large
numbers. Dotted: 2,000 contracts. Dashed: comonotonic approximation.

Table 1. Solvency capital requirement (SCR) in relation to the standard method SCR.

25 30 35 40 45 50 55 60

20% stress 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2007–2006 0.14 0.14 0.14 0.15 0.16 0.18 0.19 0.17
2008–2007 1.09 2.17 3.26 4.28 5.11 5.63 5.64 4.51
MC CLLN 0.21 0.57 0.92 1.49 2.07 2.52 2.70 2.25
Comonotonic 0.30 0.65 1.12 1.67 2.26 2.77 3.02 2.57
Scenario 0.30 0.65 1.12 1.67 2.26 2.77 3.02 2.57

MC CLLN, Monte Carlo conditional law of large numbers.
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standard model. Bearing in mind that the SCR should match the risk of a 200-year event, these
results suggest that the standard stress scenario is far too lenient, at least for Swedish insurance
companies. The Swedish sickness insurance system is quite volatile due to political reasons, and this
fact may not be properly reflected in the calibration of the standard stress scenario.

The SCR from the Monte Carlo CLLN approximation and the comonotonic approximation are
similar, with the latter seeming slightly more conservative. The SCR obtained from the comonotonic
approximation and the scenario method are identical. This is expected, since, in the light of
Proposition 5, the liability value function for each pool is monotone, which implies that (34) holds
with equality. All three approaches propose a lower SCR for young people, and a higher SCR for
ages 40 and over, compared with the standard model. The SCR from all models are significantly
lower compared with the 2007–2008 stress SCR for each groups.

It could be argued that the political risk should be included in the operational risk module, to be
applied on top of the standard 20% stress of the recovery rates, which would then only account for
the biometric part of the disability and recovery risk. However, for disability insurance, it is
important to realise that we are dealing with economic disability, in the sense that, for the purpose of
receiving benefits, it does not matter whether the policy holder is actually ill; the only thing that
matters is whether she has the right to obtain benefits. Hence, we argue that, for the purpose of
claims reserving and risk management, the economic disability rates should be used over the actual
biometric disability rates. Further, from a statistics point of view, it may be difficult to isolate the
political effects from fluctuations in the biometric rates, which suggests that, for simplicity, they
should be modelled as one. This implies that every factor that affects the economic disability rates
must be included in the standard stress scenario, be it political or biometric.

6.3. SCR aggregation

In this section, we consider a large portfolio, partitioned into eight pools of equal size corresponding
to the age groups 25, 30,… , 60. We investigate the performance of the risk aggregation schemes
from sections 5.1–5.2, and compare the results to a CLLN Monte Carlo simulation approach.

The scenario method SCR is calculated using the radii R1(p) = Φ−1(p) and R2ðpÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX2

mÞ�1ðpÞ
q

. For

reference, the results are compared with two historical stress scenarios that reverse the changes from
2006–2007 and 2007–2008, respectively. Table 2 displays portfolio SCR values, scaled by the SCR
obtained from the standard method.

Table 2. Portfolio solvency capital requirement (SCR) in relation to the
standard method SCR.

Method SCR

20% stress 1.00
2007–2006 0.16
2008–2007 4.03
MC CLLN 1.68
Variance–covariance 1.84
Scenario R1 1.84
Scenario R2 3.81

MC CLLN, Monte Carlo conditional law of large numbers.

Boualem Djehiche and Björn Löfdahl

220

https://doi.org/10.1017/S1748499516000051 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499516000051


Bearing in mind the results from the previous section, we are not surprised to find that the portfolio SCR is
higher for both aggregation approximations compared with the standard model. The same holds for the
CLLN Monte Carlo simulation. The simple variance–covariance aggregation formula (27) provides an
estimate that is only slightly larger that the Monte Carlo estimates. As expected, the scenario method with
radius R2 provides a highly conservative estimate compared with the Monte Carlo simulation. However,
it is interesting to note that this upper bound is only slightly lower than the 2008–2007 stress scenario.

Surprisingly, the SCR estimates from the scenario method with R1 and the variance–covariance
method are almost identical. The reason for this is unclear, but, in the light of (36)–(37), our best guess
would be that the increase from removing the correlations is balanced by the reduction caused by
replacing the individual maximisers yj with the global maximiser y*. Still, this result suggests that such
simple aggregation procedures as the standard-type formula (27) may indeed be used to estimate SCR.
Since this method is computationally attractive, it seems feasible to implement it as an internal model.
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