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THE INJECTIVE HULL AND THE 
^-COMPACTIFICATION OF A CONTINUOUS POSET 

RUDOLF-E. HOFFMANN 

Introduction. In [57] (2.12), D. S. Scott showed that the continuous 
lattices, invented by him in his study of a mathematical theory of 
computation [56], are precisely (when they are made into topological 
spaces via the Scott topology) the injective T^-spaces, i.e., the injective 
objects in the category T0 of J^-spaces and continuous maps with regard 
to the class of all embeddings. Moreover, the sort of morphisms between 
continuous lattices Scott considered are precisely the continuous maps 
with regard to the respective Scott topologies. These are fairly non-
Hausdorff topologies. (Indeed, the Scott topology induces the partial 
order of the lattice L via x ^ y if and only if x e cl{j}, the "specializ
ation order" of the topology; hence L is Hausdorff in the Scott topology if 
and only if L has at most one element.) In topological algebra, compact 
Lawson semilattices ( = compact Hausdorff topological A-semilattices 
such that the A-preserving continuous maps into the unit interval, with its 
ordinary topology and the min-semilattice structure, separate the points) 
with a unit element 1 have attracted considerable interest. In [40], K. H. 
Hofmann and A. R. Stralka essentially proved that they are precisely the 
continuous lattices; their (compact Hausdorff) topology is uniquely 
determined by the lattice-structure: it is called the ^^-topology or the 
Lawson topology of the continuous lattice; cf. [47], [20] VI-3.4. (J. D. 
Lawson [45] showed that a semilattice admits at most one compact 
Hausdorff topology making it into a topological semilattice.) 

Interest in continuous posets is more recent than that in continuous 
lattices themselves. It was primarily initiated by theoretical computer 
scientists ( [59], [49] ). But soon continuous posets equipped with the Scott 
topology were recognized as a significant class of topological spaces: They 
are the projective sober spaces ([27], 2.19), i.e., the retracts of the free 
objects of a functor, the "specialization order" functor, which naturally 
arises in the study of sober spaces (and, more generally, r0-spaces). They 
are the prime spectra of the completely distributive complete lattices 
( [46], [30], 2.5 ), a fact which establishes a bijective correspondence 
between these two classes of structures. In [28], a characterization of 
continuous posets in terms of adjunctions (between partially ordered sets) 
has been given. 
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In [5] Section 2, B. Banaschewski showed that in T0 every space X has a 
greatest essential extension 

X-+XX 

(extension = topological embedding) and he noted that the spaces X 
satisfying 

(*) Whenever x e V e D(X), the lattice of open sets of X (ordered by 
inclusion), then there is an open neighborhood W of x in X such that 

V n n{cl{z} \z G W) not = 0 

have an injective hull in T0, i.e., XX is an injective r0-space ( [5] Corollary 
2, p. 240), i.e., XX is (by D. Scott's result [57], 2.12) a continuous lattice in 
its Scott topology. In [27], 3.14, it is established that the sober spaces 
satisfying (*) are precisely the continuous posets P endowed with their 
Scott topology Op. Thus, for a continuous poset P, the injective hull 
(P, Op) —> A(P, Op) has the form 

e:(P9 op) -* (/(/>), oI(P)) 

for some continuous lattice / (P) , and the order-extension 

e:P -> / (P) 

is uniquely determined up to an isomorphism. This will be called the 
injective hull of the continuous poset P. (The stronger assertion, in [5] 
Corollary 2, p. 240, that every space with an injective hull in T0 satisfies 
(*) is false, as K. H. Hofmann and M. W. Mislove [28] have observed. In 
an appendix to this paper we give a corrected treatment explaining also its 
impact on the results in [27] and [30] which are partly in need of 
reformulation.) This terminology should not be confused with the result 
of B. Banaschewski and G. Bruns ( [7] Section 4) that the MacNeille 
completion is the injective hull in the category Poset of partially ordered 
sets and isotone maps with regard to the class of all order-embeddings. 

In Section 1, we provide an intrinsic characterization of the injective 
hull of a continuous poset P in order-theoretic and algebraic terms, the 
proof of which heavily relies on the universal properties of this concept. 
For a continuous poset P and a complete lattice L, an order-embedding 
e:P —» L is an (the) injective hull of P if and only if (i) e[P] is join-dense in 
L, (ii) e:P —> L preserves suprema of non-empty up-directed subsets, (iii) 
e:P —> L preserves the way below relation, and (iv) e[P] generates L, i.e., 
there is no proper subset of L containing e[P] which is stable in L under 
arbitrary infima and under suprema of non-empty up-directed subsets. 
None of these conditions can be omitted. 

In the following sections, we make a study of (the analogue of) the 
^o^topology f on a continuous poset. R. L. Wilson ( [61, 62] ) has dealt 
with continuous posets which are compact (Hausdorff) in their ^S^-
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topology f. Generally, however, f need not be compact, but it is always 
completely regular Hausdorff ( [37], p. 243). Indeed, the fé^topology on a 
continuous poset P is the trace of the (compact Hausdorff) fé^topology 
of the injective hull I(P) of P. 

Every embedding of a space X into a compact Hausdorff space Y 
induces a natural Hausdorff compactification of X, viz. the closure of X in 
Y. We endow the closure C of a continuous poset P in its injective hull L 
with regard to the ^J^topology fL with the partial order inherited from L 
(but not with any topology). The order-extension 

P -* C 

will be called the ^^-compactification of P. Commenting on an earlier 
draft of this paper, K. H. Hofmann and M. W. Mislove [38] gave an 
example to show that C need not be a continuous poset. Here we show by 
examples that oL\C need not be the intrinsic Scott topology of C with (1) C 
non-continuous and (2) a continuous poset C with ascending chain 
condition ( = a.c.c). 

A continuous 1, A-semilattice is compact (Hausdorff) in its VSf-

topology if and only if it is a complete lattice (hence a continuous lattice). 
It results that the ^^compactification of a continuous 1, A-semilattice 
coincides with the injective hull. This leads to another intrinsic 
characterization of this construction (which recently has received an 
interesting application in [33], Theorem 2.5). 

In Section 4, we show that the injective hull of an algebraic poset P is an 
algebraic lattice. We also provide a representation of the ^^compactifi
cation of an algebraic poset. 

In Section 5, the ^^compactification P —> C of a continuous poset P is 
shown to be equivalent to the underlying order-embedding of a 
"Hausdorff compactification" of the locally quasicompact space (P, oP) 
(not an ordinary compactification) obtained by J. M. G. Fell ( [17] Section 
2, [18]). Thus it results from [31], 3.7.1 that the second factor in the 
splitting 

P -> C -> L 

of the injective hull e:P —> L is the MacNeille completion ( [51] ) of C, i.e., 
the smallest completion of C (cf. [4] ). This shows that oL\C and fL|C are 
intrinsic topologies of C, an observation which provides justification for 
considering the ^^compactification of a continuous poset (merely) as an 
order-extension. Incidentally, it also results that, for continuous posets P 
whose ^J^topology is compact, the injective hull coincides with the 
MacNeille completion. 

Thus it comes out somewhat as a surprise to what kind of structure the 
^^compactification leads: posets Q with continuous MacNeille comple
tion M which are closed (as a subset of M, embedded via x —> J,JC, the 
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principal ideal generated by x) with regard to the ^J^topology of M, 
hence receiving a compact Hausdorff topology, viz. ÇM\Q. This may be 
viewed as another reasonable generalization of the concept of a 
continuous lattice. Every continuous poset admits a canonical mapping 
into such a poset which is, both topologically and order-theoretically, a 
(join-) dense embedding, the fé^compactification. To what extent 
is this extension determined by these properties? We have a partial 
result (not to be established here): For a continuous poset P, an 
order-embedding e:P —» Q is (equivalent to) the fé^compactification of 
P if (1) Q is a continuous poset with compact ^o^topology f̂ , (2) 
e:(P, fp) —> (g, f^) is a topological embedding, (3) e[P] is (topologically) 
dense in (Q, f^), and (4) e[P] is join-dense in Q. Condition (1) is, as noted 
above, not a necessary requirement. 

The results of this article have been communicated to the ("write-in") 
Seminar on Continuity in Semilattices (SCS) in several memos: 1. The 
^Stf-comp actification of a continuous poset (Sept. 10, 1981), 2. Continuous 
posets: Injective hull and MacNeille completion (Dec, 1981), 3. Two 
remarkable continuous posets and an appendix to "The ^ÏJ&compactification 
and the injective hull of a continuous poset" (July 28, 1982). I am greatly 
indebted to K. H. Hofmann for his comments on earlier drafts of this 
paper, in particular for providing 1.4 (which has led to an extension of 
my previous characterization of the injective hull of a continuous 
1, A-semilattice, stated in Theorem 3.6, to arbitrary continuous posets) 
and for eliminating a serious error (and, thereby, discovering the error in 
[5] Corollary 2, p. 240). 

0. Prerequisites. Basic concepts and some lemmas. We restrict ourselves 
here to the basic definitions. For further information the reader may 
consult [20]. We add some lemmas (which are known, but not in [20] ). 

i) For an arbitrary partially ordered set ( = poset, for short) (P, ^ ) we 
have 

x <^ y ("x is way below y") 

if and only if whenever y ^ sup D (the supremum of D) for some 
non-empty, up-directed subset D (i.e., a, b e D implies a, b ^ c for 
some c e D) of P, then x ^ d for some d e D (cf. [57], p. 110). 

ii) A poset (P, ^ ) is said to be a continuous poset ( [59], [49] ) if and only 
if 

1) P is "up-complete", i.e., for every non-empty up-directed subset D of 
(P, ^ ) , sup D exists; 

2) for every x e P, [y e P\y <c x) is non-empty and up-directed, 
and 

sup{^ G P\y <c x) = x. 
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A continuous lattice ( [56], [57] ) is a continuous poset which is a 
complete lattice (or, equivalently, a 0, V-semilattice). In a continuous 
poset P, < has the interpolation property: If x < y in P, then x < z < _y 
for some z e P ( [49], 2.5). 

iii) For an arbitrary poset (P, = ), a subset M is said to be open in the 
Scott topology (to be designated by oP) of P ( [57], p. 101), if and only if 

1) M is an upper set, i.e., .*=>>, x ^ M, y ^ P imply j e M; 
2) whenever sup D e M for a non-empty, up-directed subset D of P, 

then £> O M not = 0. 
For a continuous poset P, the sets of the form 

fx: = (y G P|x < >>} 

with x ranging through P, form an open basis of the Scott topology oP. It 
results that, in a continuous poset, P, x <C 7 if and only if 

>> e U Q |JC: = {z e P|JC ^ z} 

for some Scott-open subset U of P ( [49], 3.2). 
For up-complete posets P and g, a map 

/:(/>, aP) -> (0 , aG) 

is continuous if and only if / preserves suprema of non-empty up-
directed subsets, i.e., / ( sup D) = sup(/[Z>] ) for every non-empty 
up-directed subset D of P (cf. [63], 3.5). 

iv) Every topology T on a set M induces a pre-order ( = quasi-order), 
i.e., a transitive and reflexive relation, on this set 

x ^ y if and only if x e cl{>>} (x, y e M), 

the specialization pre-order ( [2], IV, 4.2.2); this pre-order is antisymmetric 
(i.e., a partial order) if and only if (M, T) is T0. The compatible topologies 
on a pre-ordered set are those which induce the given pre-order. The Scott 
topology on a poset is always compatible. 

The finest compatible topology of a poset P, the A(lexandrov)-discrete 
topology <xp on P, has as its open sets all upper sets of P [1]. 

There is also a weakest compatible topology on a poset P, the weak 
topology of P, which has the sets of the form 

ix: = {y G P\y ^ x) (1 G P) 

as a subbasis of its closed sets ( = the upper topology v(P) of P, [20], 
II-1.16). The weak topology on (P, ^ ) o p ( = the "opposite" (P, ^ * ) of 
(P, ^ ) ; where x ^ * j if and only if j> ^ x) will be designated by coP 

(= the tower topology of P, [20], III-1.1). 
The common refinement oP V o)P of the Scott topology oP of (P, ^ ) and 

the weak topology ccp of (P, ^ ) o p is called the ^^-topology or the Lawson 
topology ( [20], III-1.5); it will be designated here by ÇP (instead of XP) in 
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order to avoid any confusion with the space XX to be introduced below. 
In view of the role played by fL in continuous lattice theory, it may 

be noted that for a non-continuous compact Hausdorff topological 
1, A-semilattice (L, T 7 ) , TL is strictly finer than fz (G. Gierz): By [20], 
0-4.4, L is meet-continuous, hence f L is T2 if and only if L is continuous 
([20], III-2.9). By ([20], VI-3.11) and (VI-1.6(ii)) ([20], VI-1.14) we 
have 

h = aL v
 < ° L

 c Tf 
v) A topological space A" is called sober ( [2], IV, 4.2.1; cf. [10], II, p. 17 

and also [53], [22, 23, 24] ) if and only if every non-empty, irreducible, 
closed subspace A of X has a unique "generic" point x, i.e., a point x with 
cl{jt} = A. (A subspace A is irreducible if and only if it is not the union of 
two proper closed subsets.) 

vi) A subset F of a 1, A-semilattice L is a. filter of L (or in L) if and only 
if F is an upper set, 1 G F, and x A y G F whenever x and y G F. Note 
that the improper filter F = L is not excluded. The set <&L of all filters of 
L, ordered by inclusion, is an algebraic lattice. 

For a topological space X, let &X denote the lattice of all open filters of 
X, i.e., filters of £)(X), the lattice of open subsets of X (ordered by 
inclusion). The sets 

<bu: = {F G <D*|£/ e F} (t/ e £)(*)) 

form an open basis of the Scott topology of <I>X The mapping X —» <bX 
taking x G X into 

O(JC) = { 1 / G £)(Jf)|jc G £/}, 

the open neighborhood filter of * in X9 induces on X the initial topology; it 
is an embedding if and only if X is a F0-space, i.e., x = y whenever 
•Q(x) = £)(y) for all x, y e X (cf. [5], Section 1). 

vii) An open filter of a space X is said to be a join filter if and only if it is 
a join ( = supremum), in $X, of a family of open neighborhood filters of 
X. For a F0-space X, there is an embedding 

\X:X->\X 

into XX, the space of all join filters of X with the topology inherited from 
OX, taking x G Xinto £>(x). In [5], Section 2, B. Banaschewski shows that 
this is the greatest essential extension of X in the category T0. A 
continuous map/ :X —> F is an essential extension if and only if 

a)f:X^> Y is an embedding ( = extension), 
b) whenever g fis an embedding for any continuous map g:Y —» Z, then 

g is an embedding. 
A greatest essential extension is one from which any other essential 

extension may be obtained by co-restriction. 
viii) Assigning to a join filter & of a F0-space X the set 
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convJ^: = {x G X\£)(x) Ç f } , 

called the convergence set of J^(even if J^is improper), yields an equivalent 
representation 

of the greatest essential extension of the T0-space X. The points of yX are 
the convergence sets of X. (Note that, for every filter 9 on X, 

conv 9 = conv 3* 

with 

JF: = sup{0(;c) |JC G JT and £)(*) ç ^} G XX) 

The topology of yX may be obtained by transferring the topology of XX 
along the bijection 

conv^: XX —> yX. 

Composing conv^ with XX:X —> XX, we obtain the embedding 

yx\X^>yX, x\-^c\{x}. 

Cf. [26], Section 3. 
Note that every convergence set is closed. Thus there is a canonical 

order-embedding of yX into the lattice 9i(X) of all closed subsets of X. 
The specialization order of $X, XX and yX is given by the inclusion 

relation. 
ix) For posets P and Q, a map f:P —> Q is isotone if and only if 

/ (A ; ) = f(y) for x, j G P, whenever JC ^ j>; / is an order-embedding 
( = order-extension ) if and only if, for x, y E; P, x = y is equivalent to 
f(x) ^ f(y) ( t hen / i s necessarily one-to-one). 

The following lemmas will be used in this paper on several occasions. 
(Some of them are consequences of the representation theory for partially 
ordered sets developed e.g. by J. R. Buchi [11], B. Banaschewski [4] and G. 
Bruns [10].) 

0.1. LEMMA. An embedding X —> Y of topological spaces is an 
order-embedding with regard to the specialization pre-order of X and Y> 
respectively. 

A subset AT of a poset Q is join-dense in Q if and only if every x e Q is a 
supremum of a subset of K. An order embedding e:P —» Q is join-dense if 
and only if e[P] is join-dense in Q. 

The following result is (the dual of) [26], 2.8. 
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0.2. LEMMA. Suppose K is a join-dense subset of a poset Q, then the weak 
topology cdK of Kop is the trace O)Q\K of the weak topology of Qop. 

0.3. LEMMA. Suppose e\M —> N is a join-dense order-embedding, then e 
preserves all infima, to the extent they exist. 

Proof Let K Q M and inîMK = x e M. If y e N and y not ^ x, then, 
for some m e M,m ^ y, but m not = x. Thus m fails to be a lower bound 
of K in M. As a consequence, y cannot be a lower bound of K. By 
contraposition, this proves x = inîNK. 

0.4. LEMMA. The injective hull P —> L of a continuous poset P preserves 
suprema of non-empty up-directed subsets. 

Proof. Every continuous map (P, oP) —> (L, aL) between sober spaces 
preserves suprema of this type (cf. e.g. [63] ). 

The following lemma has an analogue for meet-continuous lattices in 
[20], III-2.1(i), but needs a different proof for continuous posets (cf. [20], 
p. 144/145). 

0.5. LEMMA. For a continuous poset P, U e Çp implies that 

|£/ : = {JC e P\y ^ x for some y e U} e oP. 

Proof Suppose y ^ x for some y e £/, x e P. Then there is a 
Scott-open set fv and wb . . . , un e P (« ^ 0) such that 

>> G fv -(|w, U . . . U K ) ç u, 

since the sets of this type form an open basis of (P, fP). By the 
interpolation property there is some z e P with v « z « y, hence z e £/. 
It results that fz is a a^-open neighborhood of x contained in ft/. As a 
consequence, f£/is a^-open. 

0.6. LEMMA. Suppose e:P —> K and j:P —> 2 flA*^ order-embeddings such 
that j[P] is join-dense in Q. Then there is at most one order-embedding 
f:K->Qwithfe = j . 

Proof Let f.K —> Q be an order embedding with fe = j . Since / is 
isotone, e(x) ^ k implies fe(x) = j(x) = /(&) for every x e P and every 
k ^ K, hence/(/:) is an upper bound of 

M,: = {./(*) I* e P9e(x) ^ k). 

On the other hand, j(x) ^ /(A:) implies e(x) ^ /:, since / is an 
order-embedding andy(x) = fe(x). Thus 

M, = {j(x)\x G P,j(x)^f(k)}9 

hence 

/(fc) = sup Af* 
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is uniquely determined, since y [P] is join-dense in Q, and the definition of 
Mk does not depend on / . 

0.7. LEMMA. Suppose L is a continuous lattice and C Q L is stable in L 
under the formation of arbitrary infima and under suprema of non-empty 
up-directed subsets. Then the inclusion (C, oc) —> (L, oL) is a topological 
embedding. 

Proof Since C is a complete lattice and since the inclusion d:C —> L 
preserves arbitrary infima, d has a left adjoint g.L —» C ("lower adjoint", 
[20], 0-3.4) which, of course, preserves arbitrary suprema ( [20], 0-3.3). 
Since d is one-to-one, we have go d = id c ( [20], 0-3.7). Both d and g are 
continuous with regard to the Scott topologies oc and oL of C and L, 
respectively. Thus we can infer from g o d = id c that 

d:(C, ac) -* (L, aL) 

is a topological embedding. 

1. Intrinsic characterization of the injective hull of a continuous poset. 

1.0. Suppose e.P —» L is (a representation of) the injective hull of the 
continuous poset P, then e is an order-embedding into the continuous 
lattice L satisfying 

i) e[P] is join-dense in L, i.e., every member of L is a join ( = supremum) 
of a family of members of e[P] (= the image of P under e). 

This is readily clear from the very construction of XX as a subspace of 
the filter space $>X (O.vii; [5], Section 2). Furthermore we have 

ii) e preserves suprema of non-empty up-directed subsets (cf. 0.4). 

1.1. LEMMA. For a continuous poset P, the injective hull e.P —» L preserves 
and reflects the way below relation, i.e., x <C py if and only ife(x) <£C je(y) 
for every x, y e P. 

Proof The way below relation in P and L is denoted by <^P and < 7 , 
respectively. 

We represent the injective hull of (P, oP) by Banaschewski's construc
tion A(P, op) ( [5], Section 2, Proposition 2, p. 237) briefly described in 
O.vii of this paper. 

As noted in O.iii, in a continuous poset P, 

x <C py 

if and only if the following condition (**) is satisfied: 
There is some a^-open set U with y e U and 

x = z 

for every z e £/, i.e., every neighborhood of x contains (/. As a 
consequence, in the injective hull X(P, oP) we have £)(y) e O^ and 
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C(JC) Ç & 

for every join filter ^contained in <ba. 
Thus the description of < (in O.iii) applies again, now to the injective 

T0-space \{P, Op), and we have 

£)(x) <c £)(y) 

in X(P, oP). 
The other implication is easily established along the same lines or may 

be, alternatively, deduced from 1.2. 

1.2. LEMMA. Suppose P and K are (up-complete) posets andf:P —> K is an 
order-embedding preserving suprema of non-empty up-directed subsets, then 
/reflects the way below relation, i.e., f(x) <£: xf(y) implies x < y for 
every x, y e P. 

Proof Suppose y ^ sup^D for a non-empty up-directed subset D of P, 
then/(j>) ^ /(sup,,/)) by the isotonicity off Since 

/(sup,,/)) = supKf[Dl 

we have/(x) ^ f(d) for some d e Z), hence x = d. 

1.3. In the following, a subset M of a complete lattice L is said to 
generate (a complete lattice) S Q L if and only if S is the smallest subset of 
L which contains M and is stable in L under arbitrary infima and under 
suprema of non-empty up-directed subsets. If L is a continuous lattice, 
then (as is readily clear from the "equational" characterization of 
continuous lattices (cf. [12], [20], 1-2.3) ) so is S in the partial order 
inherited from L, i.e., S is the "subobject" of L "generated" by M Q L in 
the equational category ContLat of continuous lattices and those maps 
which preserve suprema of non-empty up-directed subsets and arbitrary 
infima. By the way note that neither condition (D) of [12], p. 53 ( = (DD) 
in [20], 1-2.3) nor (DD*) of [20], 1-2.3 is an equational description of 
ContLat, because it involves an operation ("up-directed supremum") 
which is not everywhere defined. However, by [12] and [48], ContLat has 
an equational characterization, since it is monadic over the category Ens 
of sets and maps. 

The following result has been observed by K. H. Hofmann in a seminar 
report [34] commenting on the first draft of the present paper. 

1.4. LEMMA. Suppose e:P —> L is an injective hull of the continuous poset 
P. Then e[P] generates L. 

Proof. Suppose C Q L contains e[P] and is stable in L under the 
formation of suprema of non-empty up-directed subsets and under 
arbitrary infima. Then C is a continuous lattice in the partial order 
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induced from L. By 0.7, the inclusion 

d:(C, ac) -> (L, az ) 

is a topological embedding. Thus we have a splitting 

(P, oP) 

Since £ is an essential extension and since d is also an embedding, we can 
infer from [5], Lemma 2 (p. 235) that d is an essential extension. The 
injective T0-space (C, a c ) , of course, has no non-trivial essential 
extensions, hence C = L, as claimed. 

1.5. LEMMA. Suppose P is a continuous poset, and K is a complete lattice. 
Suppose there is an order-embedding e.P —> K satisfying 

(i) e[P] is join-dense in K; 
(ii) e.P —» K preserves suprema of non-empty up-directed subsets; 

(iii) ^:P —» Kpreserves the way below relation. 
Then K is a continuous lattice. 

Proof. Since e[P] is join-dense in K, for every x ^ K there is a family of 
elements xt e -P (/* G / ) with 

x = sup{é?(*,-) 1/ e / } 

in K. 
Since P is a continuous poset, we have, for every i G /, 

Xj = sup{>> G P | j ; < JC/ in P } 

in P. By hypothesis, e.P —> Â  preserves the way below relation. 
Consequently, for 

X: = {y G P|_y <c JCZ in P for some i G / } , 

^[X] consists of elements way below x in AT. Now, we can infer from 
hypothesis (ii) that 

x = sup {*?(*/) |/ e / } 

= sup{sup{e(j>) \y <C je,- in P} |/ G / } 

= sup(é>[*] ), 

since, for every / G /, [y G P |^ <C JC, in P} is a non-empty and up-directed 
subset of P. 
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1.6. LEMMA. Suppose P and K are continuous posets, andf'.P —> K is an 
order-embedding such that 

a) f:P —> K preserves suprema of non-empty up-directed subsets, and 
b)f.P —> Kpreserves the way below relation. 
Then the Scott topology ap of P is the trace (via f.P —> K) of the Scott 

topology oK of K. 

Proof. We observe first that /IP —> K is Scott-continuous (cf. e.g. [63] ). 
As noted in O.iii, the sets 

fpx: = {y G P\x « Py) 

with x ranging through P form an open basis of the Scott topology oP. 
Thus it suffices to show that such a set is an inverse image of some 
Scott-open set of K. In order to see that 

IpX = / ~ ' [ f * / ( * ) ] , 

let, firstly, y e fP;c, i.e., x < Py, hence/(JC) <C Kf(y) by hypothesis (b), 
i.e., 

Conversely, let 

i.e.,/(jc) <̂  Kf(z). As a consequence, JC < Pz by 1.2. 

Note that 1.6(b) is not a necessary requirement: For a continuous lattice 
L and every * e L, |JC is stable in L under arbitrary infima and under 
suprema of non-empty up-directed subsets, hence fx is a continuous 
lattice, which, by 0.7, inherits the Scott topology from oL. As a zero 
element of |JC, JC is compact in fx, but not necessarily in L. 

1.7. THEOREM. Suppose P is a continuous poset and K is a complete 
lattice. An order-embedding e:P —> K is (equivalent to) the injective hull of P 
if and only if the following conditions are satisfied: 

(i) e[P] is join-dense in K\ 
(ii) e:P —» K preserves suprema of non-empty up-directed subsets', 

(iii) e:P —> Kpreserves the way below relation', 
(iv) e[P] generates K. 

Proof. It remains to verify the sufficiency. 
Note first that K is a continuous lattice, by 1.5. By 1.6, e:(P, oP) —» 

(K, oK) is a topological embedding. 
LetyiP —> L denote the injective hull of P. Then, by the injectiveness of 

(K, oK) in T0, there is a continuous map 

ML, aL) -» (K, oK) 
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rendering 

J 

( ^ oP) 

commutative. 
Since j:(P, oP) —» (L, oL) is an essential extension and 

e:(P, oP) -> (K, oK) 

is an embedding, we can infer that 

/ : ( L , az• ) - > (* , a * ) 

is a (topological) embedding. Thus f.L —> # is an order-embedding 
(by 0.1) which preserves suprema of non-empty up-directed subsets (by 
O.iii). 

Since e[P] = fj[P] is join-dense in K by (i),/[L] is also join-dense in K. 
Thus/ : / , —» ^preserves arbitrary infima, by 0.3. Consequently,/identifies 
L with a subposet/[L] of Â  which contains e[P] and is stable in K under 
arbitrary infima and under suprema of non-empty up-directed subsets. 
Thus, by (iv),/[L] = K, hence f.L —> K is an isomorphism, as claimed. 

1.8. COROLLARY. Suppose P is a continuous poset, K is a complete lattice, 
and e.P —> K is an order-embedding satisfying 

i) e[P] is join-dense in K, 
ii) e.P —» K preserves suprema of non-empty up-directed subsets, 

iii) e.P —> Kpreserves the way below relation. 
Then K is a continuous lattice, and the continuous lattice K' generated 

by e[P] in K determines, by co-restriction of e.P —» K, an injective 
hull é.P -> K. 

Proof. By 1.5, K is a continuous lattice, hence so is K'. Now it suffices to 
show that e'.P —» K preserves the way below relation. 

If x < Py in P, then e(x) «: /^(jO m ^ bv (iii). The inclusion Â ' —> AT is 
a join-dense order-embedding preserving suprema of non-empty up-
directed subsets. Thus 

e'(x) « K,e\y) 

in AT', by 1.2. 

1.9. Remark. It is readily clear from the proofs that (ii) and (iii) in 1.7 
and 1.8 can be replaced by the assumption that 

a) AT is a continuous lattice, and 
b) e:(P, op) —» (AT, oK) is a (topological) embedding with regard to the 

respective Scott topologies. 
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The MacNeille completion Q —> M of a poset Q [51] is an order-
embedding where M is a complete lattice and (the image of) Q is 
join-dense (and meet-dense) in M, and, whenever Q —> AT is a join-dense 
completion of g then there exists a (unique) order-embedding M -> M' 
rendering 

M • M' 

commutative. These properties characterize the MacNeille completion 
(cf. [4] ). 

The following result has been first established in [32]. 

1.10. COROLLARY. For the MacNeille completion e:P —> M of a 
continuous poset P, the following are equivalent: 

(a) The MacNeille completion e:P —> M coincides with the injective hull 
ofP; 

(b) e:P —» M preserves the way below relation; 
(c) M is a continuous lattice and 

e:(Py oP) -* (M, aM) 

is a topological embedding. 

Proof. It suffices to consider "(b) implies (a)" and "(c) implies (a)". 
(b) => (a): Condition (i) of 1.7 is clear. As for condition (ii) note that a 

meet-dense order-embedding preserves all suprema to the extent they exist 
(by 0.3) and that P is up-complete, by hypothesis. Since e[P] is meet-dense 
in M, every subobject of M containing e[P] coincides with M. Thus 
condition (iv) is established. 

The proof of (c) => (a) is similar (use 1.9). 

1.11. Remark. The following examples show that one cannot dispense 
with any of the conditions (i), (ii), (iii) and (iv) in 1.7, even if K is required 
to be a continuous lattice. 

(i) For a poset P = {a, b, c} of three pairwise incomparable elements, 
let the set Q of all subsets of P be ordered by reverse inclusion. The 
completion 

P - > Ô, X - > {x} ( JCG P) 

preserves suprema of non-empty up-directed subsets as well as the 
way below relation. Since P is meet-dense in Q, every subobject of 
the continuous lattice Q containing P coincides with Q. However, 
the MacNeille completion M of P, which in this case coincides with the 
injective hull of P, is strictly smaller than Q, viz. 
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M = { 0 , {a}, {b),{c),P}. 

(Recall that every finite poset is a continuous poset in which the way 
below relation coincides with the order relation, since every finite 
non-empty up-directed subset contains a greatest element.) 

(ii) For the set N ^ of natural numbers, with a greatest element oo 
adjoined, in its usual order, let «^(N^) denote the set of all non-empty 
lower sets of N ^ (a subset M of a poset P is a lower set if and only if 
a G M,b e P,b ^ a imply J e M ) : Both N ^ a n d i ^ N ^ ) are continuous 
lattices. The order-extension 

e:N^ ^ ^o(Noo), x H> jx: = [y e N J ^ ë *} 

is join-dense, preserves the way below relation, but fails to preserve the 
supremum of (n)n^N. Since N is the only member of ^(Nœ) which has not 
the form JJC, there is no proper subobject of c? 0 (NJ containing the image 
of N œ . 

(iii) The MacNeille completion (object) M of a continuous poset P need 
not be a continuous lattice ( [15], example 3, p. 53-54). Also, there are 
continuous posets P whose MacNeille completion P —> M fails to be 
(equivalent to) the injective hull of P, although M is a continuous lattice; 
cf. [32] (see also 2.9 below). 

(iv) Clearly Pop —> Qop, with P, Q as in (i) and the orders reversed, is a 
join-dense completion of the continuous poset P = Pop which preserves 
suprema of non-empty up-directed subsets and the way below relation, 
but, by (i), it fails to be the injective hull of P. 

2. The ^o^compactification of a continuous poset. As in Section 1, 
P —> L will denote an arbitrary representation of the injective hull of the 
continuous poset P. In order to simplify notation, in the proofs 
"embeddings" sometimes will be tacitly assumed to be inclusions of 
subsets (subposets, subspaces, etc.). 

2.1. PROPOSITION. The ^JP-topology on a continuous poset P is the trace of 
the ^JP-topology of the injective hull L of P. 

Proof. By [27], 3.14 (see introduction), we have an embedding 

(/>, oP) -> (L, aL) 

for the Scott topologies oP and oL respectively, hence oP is the trace of oL 

on P. Thus it suffices to consider the trace of the weak topology coL of Lop. 
Since, by the very definition of XX, Xx'^ ~~* ^ ' s a join-dense 
order-embedding (with regard to the respective specialization orders) for 
every r0-space X, we have (by 0.2) 

COp = C0L\P. 
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Consequently, 

$L\P = (aL V aL)\P = (aL\P) V (oL\P) = oP V up = ÇP. 

Since the fé^topology on a continuous lattice is compact Hausdorff 
( [20], III-1.10), we can infer the following result which has been obtained 
by K. H. Hofmann and M. W. Mislove ( [37], 5.6) via a different, but 
similar argument. 

2.2. COROLLARY. A continuous poset P in its ^SP-topology is a completely 
regular Hausdorff space. 

2.3. Every embedding e.X —> Y of a space X into a compact Hausdorff 
space Y leads in a natural way to a Hausdorff compactification of X, viz. 
the closure of X in Y. Here we study, for a continuous poset P, the 
closure 

C: = cl P 

with regard to the ^J^topology of the injective hull L of P. 
By an abuse of language, the poset C, equipped with the partial order 

induced from L, and the order-embedding P —> C will be both referred to 
as the ^Jf-compaerification of the continuous poset P. 

For a continuous poset P with compact fé^topology f,>, the #«££ 
compactification of P is the identity on P. 

Recall that the ^topology [58] associated with a space A' is the topology 
on (the underlying set of) X, an open subbasis of which consists of all open 
sets and all closed sets of X. 

2.4. LEMMA. The %>£&topology on an arbitrary poset Q is weaker 
( = coarser) than the ^topology associated with the Scott topology OQ 
ofQ. 

Proof. Since, for every x G Q, 

Q - î * = U{ly\y G Q, x not ^ y), 

every subbasic ^J^open set Q — fjc is a union of point-closures, with 
regard to the Scott topology OQ, [y\ hence it is a union of subbasic £open 
sets, hence £open. 

By [53], 3.2 or [22], (1.1, 1.5), a subspace of a sober space X is sober if 
and only if it is rf-closed, i.e., closed in the ^-topology of X. 

2.5. PROPOSITION. The space (C, oL\C) is sober and has an injective hull 
in T0. 

Proof a) By definition, C is ^«J^closed in L. Hence, by 2.4, it is also 
^-closed in (L, oL). Since (L, aL) is sober, so is (C, aL |C), by the remark 
preceding the proposition. 
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b) Since the composite of the embeddings 

(P, aP) -> (C, oL\C) -> (L, aL) 

is an essential extension, so is the second factor ( [5], Section 1, Lemma 2, 
p. 235). Since (L, oL) is an injective T^-space, the embedding 

(C, aL\C) -* (L, az ) 

is an injective hull. 

2.6. PROPOSITION. The ^Sg-comp aerification P —» C 0/0 continuous poset 
P coincides with the injective hull P ^ L of P if and only if C is a complete 
lattice. 

Proof. Since (C, a j C ) is sober, the order-embedding C —> L preserves 
suprema of non-empty up-directed subsets (cf. [63] ). Since P —> L is 
join-dense, so is C —> L. Thus C^> L preserves arbitrary infima (by 0.3). If 
C is a complete lattice, the proof of 1.4 goes through, hence C = L. 

2.7. Remark. If the trace oL\C of the Scott topology oL of the injective 
hull L of a continuous poset P on its fé^compactification C coincides 
with the intrinsic Scott topology oc of C, then 

f/JC = Sc-
Indeed, 

£ JC = (aL V CJL) \C = oL\C V <ojC = a c V <oc = fc, 

since w7JC = coc by 0.2. In particular, then, the inclusion 

(/>, $P) -> (C, f c ) 

is an embedding. 

We now turn to some significant examples deferring the abstract 
justification for our definition of the ^J^compactification until 
Section 5. 

2.8. Example. In [38], K. H. Hofmann and M. W. Mislove show (in 
order to correct an error in an earlier draft of the present paper) that the 
poset P which is obtained from the square I2 of / = [0, 1] by deleting the 
square of (0, 1/2] is a continuous poset P whose ^o^compactification C 
fails to be a continuous poset, but oL\C = oc. In [35], a modification of 
this example yields a poset P with a sober compatible topology having an 
injective hull in T0 such that (P, oP) fails to have an injective hull. The 
following further modification yields a continuous poset P whose 
^if-compactification C is not a continuous poset such that (C, oc) fails to 
have an injective hull (whence oL\C ¥= ac , by 2.5). 

p = { (X9 y) G I2\x + y > 1} U ( {0} X / ) U (/ X {0} ) 
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where / denotes the unit interval [0, 1] and P receives the natural order 
from / =1X1. From 1.10 it is readily clear that the inclusion P —> / is 
(both the MacNeille completion and) the injective hull of P. Since the 
^o^topology of / is the ordinary Euclidean topology, we have 

C = P U {(x,y) G I2\x + y = 1} 

for the ^J^compactification C of P. Modifying an argument of [35] we see 
that Kin 

is a ac-open neighborhood of (a, b) e C with a + b = I (0 < a < 1) 
which is not the trace of a aL-open neighborhood of (a, b) (where L: = / ). 
Indeed, it results from 6.1 (hi) below that (C, oc) fails to have an injective 
hull in T0. 

2.9. Example. Let 

L = {an\n G N} U {bn\n e N} U {c„\n <E N} U {a0, d, 0, 1} 

(with N = {1, 2, 3, . . . } ) be partially ordered by 

ak < Cf < bm if and only if k ^ / ^ m and /, m ^ 1 

cm ^ cn < d if and only if 1 ^ m ^ n 

such that 0, 1 are the smallest and the greatest element of L, 
respectively. 

a0 ax a2 a3 a4 

W 
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The only non-empty up-directed subsets of L which do not contain their 
supremum are cofinal subsets of 

icx U ic2U ic3U ... 

which have d as their supremum. Thus all elements of L are compact 
except for d. It results that L is a continuous lattice, indeed an algebraic 
lattice. 

{*„} = K ~ (T*„ u K + i) in G N). 

Thus cn is isolated in the ^J^topology of L. 
Every neighborhood of d in (L, fL) contains a basic ^J^open 

neighborhood of the form 

K " (Î**, u • • • u î^) 
for natural numbers n, kx, . .., k. (finitely many). 

Every neighborhood of 0 in (L, £L) contains a basic #j£2open 
neighborhood of the form 

L - ( î ^ U ... U î % ; 

for finitely many natural numbers kx, . . . , kn. 
We consider the sub-poset P of L 

P = {«„} u {fl„|« e N} U { * > G N}. 

Since P satisfies the a.c.c. ( = ascending chain condition), it is a 
continuous poset. The order-embedding 

e:P - > L 

is an injective hull of P by 1.7, since 
(i) P is join-dense in L, since 

C« = an V «„-!> <* = SUp{c> G N}, 

1 = sup{bn\n <E N}, 0 = sup 0, 

(ii) e:P —> L preserves suprema of non-empty up-directed subsets, 
(iii) e.P —> L preserves the way below relation (x <C y in P if and only if 

(iv) P generates L, since 

c« = *« A *w + i> 0 = Û0 A a,, 1 = inf 0 

and J is the supremum of the chain (cw)wGN. 
The ^J^compactification C of P is 

C = P U {0, d). 

Note that C has the a.c.c, hence (C, a c ) has an injective hull in T0, but 
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oL\C ¥" oc. (Every aL-neighborhood of d e L contains some ]ctv hence it 
contains 

{*«» *w + i>- •• } 

for some n. Since d is compact in C, {d} is ac-open, but it is not the trace 
of any az -open set.) 

Thus a continuous poset C with ascending chain condition may carry a 
compatible sober topology oL\C different from the Scott topology oc in 
which it has an injective hull in T0 (by 2.5). (By 6.5, this phenomenon is 
excluded for continuous lattices.) This contradicts the present wording of 
[27], 3.14. 

We note in passing that (here) the embedding C —> L is the MacNeille 
completion, a fact which will be established in full generality in Section 5. 
Note that this is not the injective hull of the continuous poset C, since 
oL\C ¥= oc. The poset P U {d} and related posets have been introduced 
into the study of the MacNeille completion by M. Erné [15]. It may be 
worth pointing out that the MacNeille completion M = L — [d] of P 
fails to be a continuous lattice (since every bn fails to be compact, but has 
a direct predecessor, viz. cn). 

2.10. Remark. The preceding example 2.9 also shows that one 
implication of [26], 4.3 is false (this is irrelevant for [26], 4.2): A 7^-space 
(i.e., points are locally closed or, equivalently, the ^-topology is discrete, 
[3], [60], [10], II, p. 7; cf. also [53], [23, 24] ) may have an injective hull in 
T0 without carrying the Alexandrov-discrete topology: 

{à} u {cw ,cw + 1 , . . .} = K n id. 

Thus d is isolated in the ^-topology of (C, oL\C). Clearly, every compact 
element of L is ^-isolated in (L, aL), and conversely. Thus the ^-topology of 
(C, oL\C) is discrete, but oL\C fails to be Alexandrov-discrete. 

2.11. Example. A finite poset P is compact Hausdorff in its %>££• 
topology, hence P coincides with its ^o^compactification C. If P fails to 
be a lattice or P = 0, then C is different from the injective hull L of P. 

2.12. Example. Let P be an antichain ( = a poset in which x = y implies 
x = y for every JC, y G P). Clearly, P is a continuous poset, since every 
non-empty up-directed subset of P is a singleton. The Scott topology of P 
is discrete, hence so is the #J£topology. If card P ^ 2, then the injective 
hull L of P is obtained by adding a greatest element 1 and a smallest 
element 0 (cf. [26], Section 5): {1} is a Scott-open set, whereas P U {0, 1} 
is the only neighborhood of 0 in the Scott topology. Thus, if P is infi
nite, the fé^compactification C of P is P U {0} with 0 ^ x for every 
x G P U {0}. 

Thus, for every infinite antichain P, we have P ¥= C ¥= L. 
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3. The fé^compactification of a continuous 1, A-semilattice. A contin
uous 1, A-semilattice is a continuous poset which is a 1, A-semilattice (in 
the given partial order). 

By [20], III-2.13, a continuous lattice L is a topological 1, A-semilattice 
in its ^o^topology, i.e., the binary infimum A:L X L —> L is a continuous 
map (with regard to the product topology). 

3.1. PROPOSITION. A continuous 1, A-semilattice S is a completely regular 
Hausdorff topological A-semilattice in its ^^-topology. 

Proof. The injective hull S —> L is join-dense (1.0(i) ), hence it preserves 
all infima to the extent they exist (by 0.3). Thus S —> L preserves 1 and A, 
i.e., S is a 1, A-subsemilattice of L. Since (L, fL) is compact Hausdorff 
( [20], III-1.10), the assertion is now clear from 2.1. 

A compact Hausdorff (semi-)topological 1, A-semilattice is a complete 
lattice ( [20], VI-1.13(v) ). Thus we have 

3.2. PROPOSITION. A continuous, 1, A-semilattice is a continuous lattice if 
and only if it is compact in its ^Stf-topology. 

3.3. THEOREM. The %>J£-compaerification S —> C of a continuous 1, 
A -semilattice S coincides with the injective hull of S. In particular, C is a 
continuous lattice. 

Proof. It is well known that the closure of a A-subsemilattice of a 
topological A-semilattice is a A-(sub-)semilattice. Thus C is a compact 
Hausdorff topological 1, A-semilattice in the topology induced from the 
^J^topology fL of the injective hull L of S, hence C is a complete lattice. 
Now 2.6 applies. 

3.4. COROLLARY. A continuous, 1, A-semilattice S is dense in its injective 
hull L with regard to the ^Sf-topology of L. 

3.5. Remark. Examples of continuous 1, A-semilattices which are not 
continuous lattices naturally arise in the study of the "dual" of a 
continuous poset (in the sense of [46], [30]: the dual of a continuous 
1, A-semilattice is a continuous 1, A-semilattice). 

The dual of the unit interval may be represented as (0, 1] U {2} (in its 
natural order) and fails to be a complete lattice, hence, by 3.2, it is 
non-compact in its ^J^topology ( = Euclidean topology). (Cf. [46], 9.6, 
[30], 3.13 (b) for more detailed information.) 

By 3.3 and 1.7 we have the following criterion which will be used in [33] 
(Theorem 2.5). 

3.6. THEOREM. Suppose S is a continuous 1, A-semilattice and L is a 
complete lattice. An order-embedding e.S —» L is {equivalent to) the injective 
hull of S if and only if 
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(i) e[S] is join-dense in L; 

(ii) e:S —> L preserves suprema of non-empty up-directed subsets', 
(iii) e:S —> L preserves the way below relation', 
(iv) e[S] is dense in (L, fL ) . 

Proof. A subset of a continuous lattice which is stable under arbitrary 
infima and under suprema of non-empty up-directed subsets is a7-closed 
( [20], III-1.11). Thus (iv) implies 1.7 (iv). 

3.7. Remark. In view of 1.9, conditions (ii) and (iii) of 3.6 can be 
replaced by the requirement that L is a continuous lattice and e:(S, os) —» 
(L, az ) is an embedding for the Scott topologies. 

3.8. T H E O R E M . Suppose S is a continuous 1, A-semilattice and L is a 
continuous lattice. An order-embedding e:S —> L is (equivalent to) the 
injective hull of S if and only if 

(1) e[S] is join-dense in L\ 
(2) e:(S, Çs) —» (L, $L) is a topological embedding with regard to the 

respective ^^-topologies', 
(3) e[S] is (topologically) dense in (L, fL ) . 

The proof of 3.8 is immediate from 3.6 and from the following Lemmas 
3.9 and 3.10 which will be established under the following (more general) 
hypothesis: Suppose P and K are continuous posets and e:P —» K is an 
order-embedding such that 

(1) e[P] is join-dense in K; 
(2) e:(P, f/>) —> (K, ÇK) is a topological embedding; 
(3) e[P] is (topologically) dense in (L, f L ) . 

3.9. L E M M A . Under the above hypotheses, we have 
(a) e:(P, op) —> (K, oK) is continuous; 
(b) e:(P, = ) —» (AT, ^ ) preserves suprema of non-empty up-directed 

subsets. 

Proof (a) The Scott-open sets of an arbitrary poset are precisely the 
^o^open upper sets ( [20], III-1.21). Thus, by (2), the inverse image of a 
Scott-open subset of K is Jp-open. It is also an upper set, since the isotone 
maps are precisely the continuous maps for the respective Alexandrov-
discrete topologies ( [1] ). 

(b) This is immediate from (a), since a map between up-complete posets 
is Scott-continuous if and only if it preserves suprema of non-empty 
up-directed subsets ( [63], 3.5). 

3.10. L E M M A . Under the above hypotheses, e.P —> K preserves the way 
below relation, i.e., x <^P y in P implies e(x) <^K e(y) in K. 

Proof We use ^ , <C (without subscript), in order to designate the order 
and the way below relation in K, respectively; e.g. 
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î * = {k G K\x ^ k). 

We consider e:P -* K as the (canonical) inclusion of a subset and thus 
omit the symbol e. 

Suppose x0 <C/> y0 in P. Since P is a continuous poset, this means (cf. 
O.iii) that there is a a^-open set U such that 

y0 ^ U Q P n tx0. 

Since £/ is a^-open, it is also f p-open, hence U = P D V for some f^open 
subset Kby hypothesis (2). As a consequence, there are a0i ax, . . . , an G /C 
(« ^ 0) such that 

y0 G K - (ÎA, U . . . U K ) £ K 

By way of contradiction, suppose now that 

x0 not ^ z 

for every z G K with z <C _y0. 
By the interpolation property, there is some z' ^ K with 

z <^i z' <c y 0 . 

Clearly, zr not G ^at for every /' G {1, . . . , n) (otherwise^ G \ah since 
z' <c y0). Also, JC0 not ^ z' by assumption (since z' <C _y0). Thus 

fz - (|*0 u TA, u . . . u K ) 

is a non-empty, f^open set for every z Œ K with z <C _y0, hence 

P n fz - (tx0 u U\ u ... u K ) 

is also non-empty, since, by hypothesis (3), P is a (topologically) dense 
subset of (K, ÇK). 

Since a0 < _y0, this contradicts the fact that 

p n f a0 - (/[a] u . . . u ÎÛW) ç / > n F = t / ç p n fx0. 

Thus x0 ^ z for some z G K with z < ;/0, hence x0 < _y0, as claimed. 

From the preceding Lemmas 3.9 and 3.10 together with 5.8 one may 
obtain a proof of the partial characterization of the ^J^compactification 
of a continuous poset mentioned in the introduction. 

3.11. Remark. Every topological 1, A-semilattice has a compact Haus-
dorff 1, A-semilattice reflection, sometimes called the Bohr compactifica-
tion. By the universal property it results that the Bohr compactification of 
(S, 1, A, J s ) for a continuous 1, A-semilattice S is a (dense) topological 
embedding. I wonder whether it is different from the injective hull of S. 
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4. The injective hull and the fé^compactification of an algebraic 
poset. 

4.0. (a) An element a of an arbitrary poset P is compact if and only if 
a < a. 

A poset (P, ^ ) is said to be algebraic if and only if 
i) P is up-complete, i.e., for every non-empty up-directed subset D, the 

supremum, sup D, exists, 
ii) for every x G P, the set 

Kx\ = {y G P\y compact,^ ^ x) 

is non-empty and up-directed, and 

x = sup Kx. 

A poset P is an algebraic poset if and only if it is a continuous poset in 
which, for every JC, y G P, X <£. y (\Î and) only if x ^ c ^ _y for some 
compact element c of P. 

Concerning the definition of an algebraic poset, a caveat may be in 
order (which, mutatis mutandis, also applies to continuous posets): It may 
happen that all of the axioms for an algebraic poset are satisfied except 
that the sets Kx fail to be up-directed ( [50], 4.2 or [49], 4.5). Even when 
"enough" compact elements are readily available, it sometimes remains a 
delicate problem to verify the up-directedness of the sets Kx. 

The concept of an algebraic poset arose in theoretical computer science 
( [50], [54], cf. also [14] ). It is a natural extension of the familiar notion of 
a (complete) "algebraic lattice" (cf. [9], [20], 1-4). 

(b) A subset J of a poset Q is an ideal if and only if J is a non-empty 
up-directed lower set of Q, cf. e.g. [25], p. 126. (J is a lower set of Q if and 
only if it is an upper set of Qop.) For an arbitrary poset Q, the set &(Q) of 
all ideals of Q, partially ordered by the inclusion relation, is an algebraic 
poset; &(Q) endowed with the Scott topology is the (universal) 
sobrification space \Q, (XQ) of (Q, a^), where a^ denotes the Alexandrov-
discrete topology on g, cf. [25], 2.1. Indeed, by [50], 3.2, 3.3 or [25], 1.10, 
1.9, every algebraic poset P is isomorphic to ^(Q) for a unique (up to an 
isomorphism) poset Q, the subposet of all compact elements of P. 

(c) Recall that a subset M of a poset Q is a Frink ideal if and only if for 
every finite subset F of M, 

[y G Q\y ^ x for every upper bound x of F in Q] 

is contained in M. (A Frink ideal is not generally an ideal in the sense of 
[25], Section 1. However, for 0, V-semilattices, the two concepts coincide 
with the ordinary concept of an ideal.) 

It is known that the Frink ideals of a poset Q form, ordered by 
inclusion, an algebraic lattice g ( ô ) (cf- [4], p. 126): Clearly, $((?) is stable 
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under arbitrary (set-) intersections. The (set-theoretic) union of every 
non-empty up-directed family of Frink ideals is a Frink ideal, hence it is 
the supremum of this family. It immediately results that the principal 
ideals jjc of P are compact in $((>) and every compact element of $((?) is 
a finite supremum, in $(<2), of principal ideals (since it is clearly a 
supremum of some family of principal ideals). 

By [26], 4.2, the maximal essential extension y(Q, OLQ) of a poset Q in its 
Alexandrov-discrete topology OLQ is the Frink ideal completion ^(Q) oi Q 
( [19]; cf. also [4] ) and it carries the Scott topology. 

4.1. Recall from [26], Section 3 that the greatest essential extension 
yx'X ~^ yX of a r0-space X factors through the (universal) sobrification 
X -» SX of X (cf. [2], IV-4.2.1) 

SX 

/ \ 

By [5], Section 1, Lemma 2 (p. 235), SX —> yX is an essential extension, 
and every essential extension of SX induces, by composition, an 
essential extension of X. Thus SX —> yX is (equivalent to) the 
greatest essential extension of SX. In particular, 

y{sX) = yX 

(Also, X has an injective hull in T0 if and only if so has SX.) 

4.2. THEOREM. The injective hull of an algebraic poset P is an algebraic 
lattice, the lattice of Frink ideals of the sub-poset of compact elements 
of P. 

Proof. In 4.1, let X = (Q, a^) where Q denotes the subposet of compact 
elements of P and OLQ is the Alexandrov-discrete topology of Q\ then 
SX = (P, oP) by [25], (2.1) and y ^ i s the Frink ideal completion g(P) of P, 
an algebraic lattice, endowed with its Scott topology ( [26], 4.2). 

It is noted in [38] that the ^«J^compactification of an algebraic poset 
need not be a continuous poset: Replace the unit interval in the 
construction in 2.8 by the Cantor discontinuum. 

4.3. PROPOSITION. Suppose C is the ^Stf-compactification of an algebraic 
poset P. Then every element of C is a supremum of compact elements. 

Proof By 4.2, every element of the injective hull L of P is a supremum of 
compact elements of L which are contained in P. By 1.2 these are compact 
in C, since the embedding C —> L preserves suprema of non-empty 
up-directed subsets (by sobriety of (C, aL |C), 2.5). 
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In the following, we provide a representation of the ^«^compactifica-
tion C of the algebraic poset P in terms of the subposet of compact 
elements of P. 

A A. LEMMA. For the W&topology of an algebraic poset P, the sets 

îc and L — jc 

with c ranging through the compact elements of P, form an open subbasis. 
Thus an algebraic poset is ^-dimensional in its ^S£-topology {i.e., has a basis 
of open-closed sets). 

Proof, (cf. [20], III-1.12). a) For a continuous poset P, the sets 

f x = {y G P\x <C y} 

form an open basis of the Scott topology op (cf. O.iii). If P is algebraic, 
then we may interpolate a compact element c such that x < c <^ y. Thus 
the sets of the form 

\c = {y e P\c ^y) 

with c compact, form an open basis of the Scott topology of an algebraic 
poset P. 

b) Since, in an algebraic poset P, x = sup Kx for i £ ? , we have 

Î* = n {|c|c e Kx). 

Thus the sets of the form 

L - îc 

with c compact, form an open subbasis of coP, the weak topology of Pop. 
c) Combining a) and b), we see that the fé^topology 

fp = Op\l Cûp 

is 0-dimensional. 

As noted above, a subspace of a sober space is sober if and only if it is 
^-closed. Thus, for every T^-space X9

 SX is ^-closed in yX. On the other 
hand, the embedding X -> SX is ^dense ([53], [22], 1.1). (Clearly, the 
^-topology of a subspace is the relative ^-topology.) Consequently SX is the 
^-closure of X in yX. 

4.5. LEMMA. Suppose X is a T0-space such that SX is a continuous poset in 
its Scott topology. Then the ^Sg-closure of SX in yX, i.e., the ^Sf-
compactification of the continuous poset underlying SX, coincides with the 
^-closure of X in yX. 

Proof. Note first that yX is a continuous lattice in its Scott topology. By 
2.4, the ^J^topology of the continuous lattice underlying yX is coarser 
than the ^-topology. Thus the ^-closure of a subset is contained in the 
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^J^closure. Consequently, the fé^closure of SX ( = the ^closure of X) in 
yX coincides with the ^J^closure of X in yX 

As in 4.2 we represent the injective hull of an algebraic poset &(P) by 
means of the Frink ideal completion g(P) of P, where P is an arbitrary 
poset. By the remarks in 4.0 (b), (c) we can infer from 4.5: 

4.6. LEMMA. For an arbitrary poset P, the ^^-comp actification of%(P) is 
the %^-closure of {[x\x G P) in the Frink ideal completion S(^) of P. 

4.7. PROPOSITION. For an arbitrary poset P, a subset K of P belongs to the 
m&'-compactification of %{P) if and only if the following condition (*) is 

fulfilled: 
Whenever x,, . . . , xm G K and y^ . . . , yn not G K, then there is some 

z G P such that 

xi ^ z for every i G {1, . . . , m}, 

and 

yk not = z for every k G {1 , . . . , A?}, 

where m and n are natural numbers = 0. 

Proof Note first that a subset K of P is a Frink ideal if and only if (*) is 
satisfied for n = 1 and all natural numbers m. 

We use the open subbasis of the ^J^topology on the algebraic lattice 
i$(P) described in 4.4. For a compact element C of 5(P) we have (as noted 
in 4.0 (c) ) 

C = iX] V . . . V ixk 

where *,, . . . , xk G P9 k G N U {0}, and V denotes the join in S(P). Now 
it is readily clear from 4.4 that the sets 

U(JC): = {M <= S(P) \ ix ç M) = {M G g(P) \x G M} and 

3S(JC): = {M G £(/>) | jjc not Q M] = [M G g(P) |JC not G M ) 

with x ranging through P, form an open subbasis of the ^J^topology of 
t$(P), from which an open basis is obtained by taking intersections of any 
finite number of members. 

By 4.6, the ^J^compactification of Z(P) is the ^J^closure of 
{ix\x G P} in S(/>). Clearly, a Frink ideal K of P belongs to the 
^J^closure of {\,x\x G P) if and only if every basic fé^open 
neighborhood 

U(*,) n ...n U(xm) n %(y]) n...n %(y„) 

of K contains some jz, z ^ P, i.e., if and only if condition (*) is 
satisfied. 
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It is not known whether there are continuous non-algebraic posets in 
which the compact elements form a join-dense subset. In the following, we 
exclude an anomaly of this kind in a special context. 

4.8. LEMMA, (cf. [20], II-1.23). A continuous poset P is an algebraic poset 
if and only if the Scott topology aP of P is an algebraic lattice. 

Proof. If P is an algebraic poset, then P = &(Q) for the subposet Q of 
compact elements of P and 

(P,oP)\=s(Q,aQ), 

by [25], 2.1. Since OLQ is stable under arbitrary intersections, it is a 
complete ring of sets, hence it is an algebraic lattice. This proves the 
assertion, since £)(5X) = £>(X) for every space X. 

Now suppose that oP is an algebraic lattice. Since P is a continuous 
poset, Op is completely distributive. A completely distributive algebraic 
lattice K is (isomorphic to) a complete ring of sets (K. H. Hofmann, see 
also [16] and references given there), i.e., oP is isomorphic to aR, the 
Alexandrov-discrete topology of some poset R. From oP = aR we can 
infer that (P, oP) is the sobrification space of (R, aR), since (P, oP) is 
sober. Thus, by [25], 2.1, P = £(P) is an algebraic poset. 

A subset M of a topological space X is said to be "saturated" if and only 
if it is the intersection of its open neighborhoods, i.e., if and only ify G M 
and y ^ x e X always imply x e M (cf. [20], V-5.2 and V-5.17) where ^ 
is the specialization (pre-) order of X. The saturation of a subset K of a 
space X is given by 

|AT = {x e X\a ^ x for some a e AT}, 

the intersection of all open neighborhoods of K in X. (A space is Tx if and 
only if every singleton is saturated; then every subset is saturated.) The 
saturated subsets of a space are precisely the upper sets with regard to the 
specialization pre-order. 

A subset K of a space X is quasi-compact if and only if the saturation 
]K of K in X is quasi-compact. By 0.5, in a continuous poset P, the 
ap-saturation of a fp-open subset is ap-open. 

4.9. LEMMA. Suppose P is a continuous poset whose y>££-topology lP is 
locally compact (Hausdorff). Then P is an algebraic poset if and only if 
(P, fp) is a ^-dimensional space. 

Proof, (a) If P is algebraic, then (P, fp) is 0-dimensional by 4.4. 
(b) Suppose (P, fp) is 0-dimensional. 
Let V be open in (P, oP), and let JC G V. Then V is fp-open, hence, by 

local compactness, in (P, ÇP) there is a compact neighborhood K of x 
contained in V. Since (P, fp) is 0-dimensional, there is an open-closed 
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subset Wx of (P, fP) with Wx Q K and x e Wx, hence Wx is compact in 
(P, ÇP). Since a,, Q f/>, Ĥ . is quasi-compact in (P, aP), hence, by the 
remarks preceding this proposition, the a^-saturation ]WX of Wx is both 
open and quasi-compact in (P, oP). 

As a consequence, /\WX is an (algebraically) compact element in aF with 
x ^ ]WX Q V, hence 

F = U{\Wx\x G * } . 

In all, this says that aP is an algebraic lattice, hence, by 4.8, (P, ^i) is an 
algebraic poset. 

The proof of 4.9 uses an argument given in the proof of [20], III-2.16 
"(4) implies (2)" (p. 157; remedying, incidentally, an inaccuracy of 
formulation). 

4.10. PROPOSITION. Suppose the ^^-compactification C of an algebraic 
poset P is a continuous poset. If the trace f j C of the %^-topology lL of the 
injective hull L of P on C coincides with the intrinsic ^^-topology J c of C, 
then C is an algebraic poset. 

Proof By 4.2, the injective hull of L of P is an algebraic lattice, hence 
(L, ÇL) is 0-dimensional, by 4.4. Thus (C, ? JC) is O-dimensional and, by 
definition, compact Hausdorff. Since, by hypothesis, C is a continuous 
poset and f j C = fc, the assertion is clear from 4.9. 

5. The ^o^compactification of a continuous poset P corresponds to the 
Fell compactification of (P, aP). 

5.0. The ^J^compactification of a continuous poset is, as we shall prove 
in the following, a special case of a construction due to J. M. G. Fell ( [17], 
Section 2, [18] ), to be referred to, by a certain abuse of language (since it 
is not an ordinary compactification), as the Fell compactification. (Fell 
provides, in a special case, an interpretation of his construction in 
functional-analytic terms, [17], 2.2.) 

For a space X, Fell considers the lattice %(X) of all closed subsets, 
ordered by the inclusion relation, and defines a certain topology on 9l(X) 
for which the sets 

U(C\ K , , . . . , Vn) = {A <E 9t(X)\A C)C = &, AnVi^Û 
for i = 1, . . . , n } 

(with C quasi-compact and Vi open in I , « G N U {0} ) form an open 
basis. 

As noted in [20], p. 151/152, the Fell topology is, for a locally 
quasi-compact space X, the ^^topology f of the lattice £)(X) of open 
subsets of X (ordered by inclusion) transferred to 9l(X) along the bijection 
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£(X) -» 2t(Z), V \-> X - K, where a space X is said to be locally 
quasi-compact if and only if every point has a neighborhood basis 
consisting of quasi-compact (but not necessarily open) subsets. 

5.1. Definition. For a locally quasi-compact space X, the Fell 

compactification is the map 

* - > £ ( * ) , j c ^ c l f x } 

into the closure 1Q(X) of the set 

{Cl{jt} |JC €= X } 

with regard to the Fell topology of $L(X). The latter set fQ(X) will be 
endowed with the partial order induced from ^A(X) and with the trace of 
the Fell topology of 2l(A> 

Note that §(X) is a compact p(artially) o(rdered) space in the sense of 
L. Nachbin ( [52], [20], VI-1.1), since so is (©(*), Ç£(X)) by [20], VI-3.4 (i) 
and VI-1.14 (reversing the order is an admissible operation for p.o. 
spaces). If X is a r0-space, then the map X —» 1Q(X), X \-^ c\{x) is an 
order-embedding for the specialization order of X. 

5.2. The Scott topology oP on a continuous poset P is a completely 
distributive complete lattice ( [46], [30] ), hence, a fortiori ( [20], 1-2.5), a 
continuous lattice. Since (P, op) is sober, it results that (P, oP) is locally 
quasi-compact ( [20], V-5.6). We apply Fell's construction to Jf : = 
(P, oP): 

For a completely distributive lattice K, the fé^topology ÇK agrees with 
the «^topology £>P of K°p ( [44]; [20], VII-2.9 (2) ). Thus the Fell 
compactification of X is the closure of 

{C1{JC} \x e X} 

with regard to the «^topology of 3l(Ar). Note that %{X) is completely 
distributive, since the dual of a completely distributive lattice is also 
completely distributive ( [55] ); hence, a fortiori, %(X) is a continuous 
lattice (cf. [20], 1-3.15). 

5.3. Recall that, for every r0-space X, we have an embedding 

* : * - > ( » ( * ) , v), x H^C1{JC} 

where v denotes the weak topology on %(X) (the "upper topology", [20], 
II-1.16). For a continuous poset P and X = (P, oP), v coincides with the 
Scott topology of %(X) ([20], 111-3.23(2) and IV-2.31), since W(X) is 
completely distributive. Thus (9I(X), v) is an injective r0-space. 

Let h: (P, oP) —> (L, aL) be any representation of the injective hull of 
(P, op), then, since (H(X), v) is injective, we obtain a continuous map 

g:(L, oL) -> (3(W, v) 
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such that 

Î ^ ^ g 

(/>, aP) ^ ( 3 l ( * ) , v) 

commutes. Since e is an embedding and h is an essential extension, we 
infer that g is an embedding. 

(a) Since g is Scott-continuous, g preserves suprema of non-empty, 
up-directed subsets. 

(b) Since e[P] is join-dense in %(X), so is g[L]. 
(c) Since g is a topological embedding, it is an order-embedding (with 

regard to the specialization order), hence, by 0.3, g preserves arbitrary 
infima. 

This provides a representation 

k:(P,oP)^>(K9oK)9 x^c\{x} 

of the injective hull such that K : = g[L] Q %{X) inherits its partial order 
from 3t(J) and is stable in %(X) under non-empty up-directed suprema 
and under arbitrary infima. By [20], III-1.11, the intrinsic fé^topology ÇK 

of K is the trace of the fé^topology of $l(X), i.e., (K, ÇK) is a closed 
subspace of ($i(X), S^x))- Consequently, the closure of a subset of K in 
(K, ÇK) is the same as the closure in (%(X), ^(Ar))-

Thus we obtain (from 5.1 and 5.2) 

5.4. THEOREM. For a continuousposet P, the space X = (P, oP) is locally 
quasi-compact. The Fell compactification 

* - > § ( * ) , x H>cl{;c} 

is (a representation of) the ^S^-comp actif ication of P and the topology of 
$>(X) is the trace of the ^SP-topology of the injective hull K of P. 

5.5. For the representation yx'-X —» yX of the greatest essential 
extension of a T^-space X, described in [26], Section 3, there is an obvious 
order-embedding 

k:(yX, C) ->31(*) 

(the canonical inclusion) making 
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commutative, since every member of yX, i.e., every convergence set of 
X ( [26], 3.9), is a closed subset of X. Since both yx and ex are join-
dense order-embeddings, by virtue of 0.6, k is uniquely determined as an 
order-embedding with kyx = ex. 

For a continuous poset P, we choose 

(h: (P, oP) -> (L, aL) ) = (yx:X -> y*) 

in 5.3. From the commutativity of 

( ! ( * ) , ») 

we deduce, by the uniqueness of k, that g = ky since a (topological) 
embedding is an order-embedding with regard to the induced specializa
tion order. 

In other words: the canonical order-embedding 

y * - » ( » ( * ) , v) 

is (topologically) an embedding, if X = (P, oP) for a continuous poset P. 
For general (non-Hausdorff) r0-spaces X, this is still a delicate problem: 
All we know is that the topology of yX is coarser than the topology which 
yX inherits from («(*) , v)\ cf. [26], 3.3, 3.14(2). 

5.6. In [31], Section 3, there is associated to an arbitrary T0-space X a 
r0-space \pX and a (topological) embedding ^X:X —> ^ which is a 
corestriction of the greatest essential extension yx:X —> yA", i.e., yX 
contains ^/X as a subspace. It is shown there that 

a) for a locally quasi-compact r0-space X, \^X:X-^ \pX is, on the level of 
the specialization order, the order-embedding induced by the Fell 
compactification X —> $(X), x —> cl{x}, where (as proposed in 5.1) &(X) 
is considered as a compact partially ordered space ( [31], 3.13); 

b) the embedding \pX —> yX is, on the level of the specialization order, 
the MacNeille completion ( [31], 3.7.1). 

By 5.4 and 5.5, we deduce from 5.6 (a): 

5.7. LEMMA. For a continuous poset P and X\ = (P, aP), the embedding 
^X.X —> \pX is (equivalent to) the %>£&compaerification endowed with certain 
topologies 

(P, oP) -* (C, aL\C), 

where L denotes the injective hull of P. 
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Now it results from 5.6 (b) 

5.8. THEOREM. Let P —> C denote the ^Sg-comp actification of a continuous 
poset P, and let P —» L denote the injective hull. Then the canonical 
embedding C —> L is the MacNeille completion. 

5.9. From 5.8 it results that both oL\C and f J C are intrinsic topologies 
of the ^J^compactification C of P. This justifies our definition of the 
^J^compactification to be (merely) an order-extension. 

5.10. COROLLARY. Suppose a continuous poset P is compact (Hausdorff) 
in its ^J^-topology, then the injective hull of P coincides with the MacNeille 
completion. 

Clearly, compactness of the ^J^topology of a continuous poset P is not 
a necessary requirement in order that the injective hull of P be its 
MacNeille completion (2.12). Indeed, this latter property is not an 
invariant of the ^J^topology, since both a (countably infinite) antichain 
and the poset P of 2.9 are discrete in their #J£topology. 

For further information on the extension 

\px:X -> 4/X 

see [31], Section 3 and [33] where also the relationship of the work of K. H. 
Hofmann and J. D. Lawson [36] (Section 8) on pseudo-(meet-)prime 
elements (reported in [20], V-3) to this construction is explained. 

6. Appendix: r0-spaces which have an injective hull in the category T0. 
In [5], Section 2, B. Banaschewski showed that in the category T0 of 
r0-spaces and continuous maps every space X has a greatest essential 
extension 

\X:X->\X. 

He also provides a criterion ( [5], Section 3, Corollary 2, p. 240) which is 
sufficient in order to ensure that XX is an injective r0-space, i.e., in order 
that X has an injective hull in T0. In [38], K. H. Hofmann and M. W. 
Mislove provided a counterexample to show that (other than claimed in 
[5] ) this is not a necessary requirement (cf. also 2.8, 2.9 of the present 
paper). In the following, we provide necessary and sufficient conditions 
for a r0-space X in order to have an injective hull 

\X:X->\X. 

We take [5], Section 2 for granted, but no information from [5], Section 3 
will be used. For a somewhat different approach see [35]. 

Also, we comment on several results in [27], [30], and also on [26], 4.3 
which are based on [5], Corollary 2, p. 240 and are therefore also in need 
of reformulation. 
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6.0. For a T^-space X, XX is, by the very construction (cf. O.vi, vii), 
stable in $X under the formation of arbitrary joins ( = suprema). Thus 
there is a "kernel operator" k:$X-> XX assigning to every open filter F of 
X the greatest join filter 

sup{£>(x) \x G X, ©(*) C F) 

contained in F. This map k is left inverse to the embedding XX —> Q>X. 
(Indeed, by [5] Proposition 3, p. 239, k\$X —» XX is the only continuous 
left inverse of the embedding XX —> $X if there exists any.) 

Note that 

sup{£)(jc) |x e S} = {K e £)(X) | there are *,, . . . , x„ e S 
(n ^ 0) and open neighborhoods Ux, . . . , (7W of X|, . . . , xtV 

respectively, with U] n . . . Pi Un Q V) 

for every subset S of x. 

6.1. THEOREM. For a T0-space X, the following are equivalent: 
(i) 77ze greatest essential extension XX of X is an injective T0-space. 

(ii) There is a (topological) embedding e\X —> J into an injective T0-space 
J which is join-dense with regard to the specialization partial order of J. 

(iii) For every x e X and every open neighborhood V of x in X there exists 
an open neighborhood W of x in X, finitely many elements j , , y2, . . . , yn 

(n ^ 0) of X and open neighborhoods Ux, U2, • • • , Un of yh . . . , ytv 

respectively, such that for every i = 1, . . . , n 

WQ \yi= {z G X\y,^z) 

for the specialization order ^ of X, and 

ux n . . . n un Q v. 

Proof, (i) implies (ii): Evidently, XX:X^> AXis, by the very construction, 
join-dense with regard to the specialization order (which coincides with 
the inclusion relation of XX and <$X, respectively). 

(ii) implies (iii): By Scott's result, [57], 2.12 ([20], II-3.8), J is a 
continuous lattice L endowed with its Scott topology oL. The sets 

fa = {p e L\q<^p) (q e L) 

form an open basis of oL ([20], II-1.10 (i) ). We may clearly restrict 
ourselves to the basic open subsets of X, 

V = X n f q 

with q ranging through L. 
Suppose x e V = X n f q for some q e L. By the interpolation 

property of < in a continuous lattice ( [20], 1-1.18), there is some/? e L 
with g < p < x in L, hence 

https://doi.org/10.4153/CJM-1985-045-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-045-3


844 RUDOLF-E. HOFFMANN 

X G W := X n fa Q V. 

Since, by hypothesis, e:X —» / is join-dense, we have 

p = sup{s G X\s = p}. 

On the other hand, since L is a continuous lattice, we have 

y = sup{/ G L\t < y in L) 

for every y G L. Consequently, 

/? = sup{7 G L|/ < y ^ /? for some y G X}. 

Since g < /?, it results that there are finitely many / , , . . . , /„ G L (AÏ ^ 0) 
and;;,, . . . , yn G X with 

? ^ s u p { / „ . . . , / w } 

and 

f,. « ^. ^ /? 

for / = 1 , . . . , « . It results that every neighborhood, in X, of y{ contains 
W = X n f/?, and there are open (in X) neighborhoods [/,. = I O f f, of 

>>,-(/' = 1, . . . , n) with 

u] n ... n un Q v = x n ̂ q. 

(iii) implies (i): We shall prove that the kernel operator k:Q>X —» XX is a 
continuous map, hence a retraction in T0. Since $>X is an injective 
T0-space, then so is its retract XX. 

Suppose F is any open filter of X and, for some V G £)(X), 

k(F) G 0V 

Then there are xh . . . , xm (m i^ 0) and open neighborhoods Fj, . . . , Km of 
.Xj, . . . , xm, respectively, with 

£(*,) Ç F 

for every i = 1, . . . , m and 

(/, n . . . n F„, e V. 

By (iii), for every / = 1, . . . , m there is an open neighborhood W{ of xt 

and finitely many elements y],..., y"^ and open neighborhoods 
I/], . . . , I/?(/) of j , 1 , . . . , yf\ respectively, with 

Wl Ç tyJ. 

or, equivalently, 
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(where W^ = {M e &(X) \W Q M) denotes the smallest member of $w, 
the open filter generated by W) for every y = 1, . . . , «(/), and 

u) n ... n u"(l) ç vt. 

It results that 

£>(>>/) Q(WX n . . . n wM)v 

for every / = 1, . . . , m and every7 = 1, . . . , «(/'), and 

n {£//|/ - 1, . . . , m and 7 = 1, . . . , n(i) } 

QV}n...nVmQV. 

Thus 

fc(H^) = sup{£)(>>) \y e X, £(y) Q W*} 
forW:=WlP\...n Wm contains V. Consequently, (because k is isotone 
and Of/ is an upper set,) we have 

k(G) <= <&„ 

for every G e O^. 
Since J^ e £)(.*,) Q F for every / = 1, . . . , m, we can infer W e F, 

hence F e 0 ^ . 
In all, this says that k\$X —» XX is continuous (at F). 
This completes the proof. 

6.2. Remarks, i) Note that in 6.1 (iii) necessarily 

W Q V. 

ii) Suppose e:X —» 7 is a join-dense topological embedding into an 
injective r0-space / = (L, aL). Let L' be the continuous lattice generated 
by e[x] in J (in the sense of 1.3). Then the induced map 

é.X-^ J'\ = (L\ oL) 

is the injective hull of X. (The arguments given in Section 1 go through.) 
Note that 6.1 "(i) if and only if (ii)" can be established by some of the 
arguments in 1.7 and thus requires no information on the greatest essential 
extension except that it (exists and) is join-dense with regard to the 
specialization order. 

6.3. Definition. Suppose X is a r0-space with an injective hull X —> XX. 
We say that 

deg(X) ^ r, 

i.e., X has degree at most r (a natural number i^ 0) if and only if 6.1 (iii) 
can be fulfilled for every point x in X and every open neighborhood V of x 
in X by some n ^ r. 
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6.4. Remark. A r0-space A'with an injective hull satisfies àz%(X) ta 1 if 
and only if for every x e X and every open neighborhood V of x there is 
some open neighborhood W of x and some y e V with 

W ç ty = [z <= X\y e cl{z} }. 

B. Banaschewski ( [5], Corollary 2, p. 240) observes that this class of 
70-spaces has an injective hull in T0, and he claims the other implication 
to be true, too. The error is hidden in the proof of [5], Corollary 1, p. 239 
(line 3 from below) 

£(x) = Vk(%{U}) 

need not be a set-theoretic union if XX is injective (but this is true if every 
join filter of X is a neighborhood filter, as it is assumed there). 

In [27], 3.14 it is established that the continuous posets in their Scott 
topology are precisely those sober spaces X with an injective hull in T0 

satisfying deg(X) ^ 1. All the statements in [30] on spaces X with an 
injective hull are correct provided the additional hypothesis deg(X) ^ 1 is 
imposed. On the other hand, several results are correct as they stand, 
(sometimes) requiring a different proof, as will be seen in the following. 

6.5. PROPOSITION. Suppose a T^-space X is a conditional 0, V'-semilattice 
with regard to its specialization order. If X has an injective hull, then 
deg(X) ^ 1. 

Proof. A poset is a conditional 0, V-semilattice if every finite subset 
which has an upper bound has a supremum. In 6.1 (iii) one may put 

y = s u p O , , . . . , ^ } , 

where the "sup" is taken in the specialization order. Then 

W Q tv and y e (/, n . . . n U„ Q V. 

We thus obtain from (the proof of) [30], 2.8. 

6.6. COROLLARY. A T0-space X is injective if and only if 
i) X is sober, 

ii) X has an injective hull in T0, and 
iii) X is a 0, V-semilattice in its specialization order. 

6.7. COROLLARY. If a Tx-space X has an injective hull in T0, then X is 
discrete. 

Proof. Suppose X has at least two points. For x G X choose some 
neighborhood V ¥= X of x. Then choose W G. £)(X) and yu . . . , yn G X 
(n ^ 0) and £ / „ . . . , £ / „ as in 6.1 (iii). 

Since every point-closure in a T,-space is a singleton, 

x e WQ ty. = {z e X\yt G cl{z} } 
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implies (if n ^ 0) that yx = . . . = yn = x, hence W = {x} is open. If 
n = 0, then 

J f = [ / , n . . . n [ / „ Ç F , 

contradicting the hypothesis that X ¥= V. 

6.8. COROLLARY. Suppose A is a closed subspace of a T0-space X. If X has 
an injective hull in T0, then so has A. 

Proof In order to verify 6.1 (iii) let x G V G O(^). Then V = V n A 
for some F G ©(A"), and we may choose W G £)(JC), some points yx, 
y2, . . . , >>w (« S 0) in X and open neighborhoods [/ , , . . . , Un (in X) of 
j>l5 . . . , ytv respectively, satisfying 6.1 (iii). The requirement 

x Œ IV Q {z ^ X\yt G cl{z} } 

(for / = 1, . . . , n) guarantees 

yt G d{x) ç ,4 

so that we may use W = W n A and £/•: = Ul n A in order to fulfill 6.1 
(iii) for A instead of X. 

6.9. PROPOSITION. Suppose (Ar
/)/G/ is a family of T0-spaces which have an 

injective hull in T0. Then H Xi has an injective hull provided that 

K(I) = {/ G 7|A^ does «o/ /z#ve tf smallest element in its specialization 
order } 

is finite. 

Proof (1) First note that if X and Y have an injective hull, then so has 
X X y (use 6.1 (iii)). 

(2) Suppose now K(I) = 0 and let ot denote the smallest element of X( 

in its specialization order. By 6.1 (ii), there are injective r0-spaces Ji and 

join-dense (topological) embeddings Xi —> Jt. Clearly, 1 1 J{ is injective. 

Let 

at G J( (i G / ) , 

then, by hypothesis, 

ai = sup A i 

for some subset A{ of Xt. We may assume that ot G Ah hence ,4,- ¥* 0. 
Then 

( f li)/e/ = ( s u p ^ ) / e / = s u p l n ^ / ) . 

This proves that I I^ /A^ is join-dense in II / Gy^, hence it has an injective 
hull in T0 by 6.1 (ii). 
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Combining (1) and (2), we establish the assertion. 

A product of discrete spaces may fail to be discrete, but it is always Tx. 
Thus (by 6.7) the class of all 70-spaces with an injective hull in T0 fails to 
be productive. Incidentally, note that, by 6.1 (hi), the class of T0-spaces 
with an injective hull in T0 is stable under coproducts ( = sums). 

The non-validity of one implication of [5], Corollary 2, p. 240 makes 
several results questionable which were based on this claim. (Note that all 
of these results are correct if one replaces the hypothesis "X has an 
injective hull in T0" by "X has the property stated in [5], Corollary 2, 
p. 240".) Contrary to [26], 4.3, a 7^-space with an injective hull in T0 need 
not be Alexandrov-discrete (cf. 2.10). K. H. Hofmann observes that the 
class of 70-spaces with an injective hull is not open-hereditary (disproving 
[5], Corollary 4, p. 240). (With the notation of 6.10 below, A - { (0, 0) } is 
an open subspace of B, but it fails to have an injective hull.) We modify his 
example in order to obtain 

6.10. Example. By 6.1, the (ordinary) boundary B of the unit square 
I2 = I X I endowed with the trace of the Scott topology of I2 has an 
injective hull in T0, viz. I2 in the Scott topology ( [35] ). The subspace 

A = { (0, 0) } U ( (0, 1] X {1} ) U ( {1} X (0, 1] ) 

of B is stable in / under arbitrary suprema, hence, by [26], 1.8, it is 
essentially complete, i.e., it has no nontrivial essential extension in T0. 
Since A fails to be a continuous lattice (in its specialization order), A does 
not have an injective hull in T0. However, the mapping r.B —> A with 
r(x) = x for x e A and r(x) = (0, 0) for x e. B — A is a continuous 
retraction 

? 1 
i 
i 
i 

i 1 
Thus the class of T0-spaces with an injective hull in T0 (as well as the 
subclass consisting of those spaces which have a smallest element in their 
specialization order) fails to be stable under retracts. As a consequence, 
this class is neither a class of all injectives nor a class of all projectives 
with regard to any class of continuous maps. (The same applies to the 
sober members of this class; thus disproving the wording of [27], 3.17 
(c).) 

The requirement to have an injective hull in T0 does not impose any 
restriction on the specialization partial order of a ro-space, since, for every 
poset P, (P, dp) has an injective hull in T0 ( [26], 4.2). For sober spaces, 
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indeed for ^spaces ( [63]; "monotone convergence spaces", [20], II-3.9; 
i.e., r0-spaces whose specialization order is up-complete and whose 
topology is coarser than the Scott topology of the specialization order), the 
situation is different. (Every sober space and every T]-space is a^/-space, 
[63].) The following concept is implicit in [49]. 

6.11. Definition. A poset P is said to be almost-continuous if and only if it 
is up-complete and, for every x e P, 

x = sup{y G P | j « JC). 

6.12. THEOREM. Suppose a espace X has an injective hull in T0, then the 
specialization order of X is an almost-continuous poset. 

Proof. Every element F of XX is, by injectivity of XX, a supremum of 
elements way below F in XX. Since, by 1.0 (i), XX:X —> XX, x M> £)(.*) is a 
join-dense order-embedding, it results that F is a supremum, in XX, of 
open neighborhood filters €)(x) which are way below F in XX. Since, by 
hypothesis, X is a espace, XX:X —> XX preserves suprema of non-empty 
up-directed subsets (cf. [63]), hence, by 1.2, Xx reflects the way below 
relation. This proves the assertion. 

The discussion in Section 2 shows that there are non-continuous, 
almost-continuous posets which arise from sober spaces with an injective 
hull in TQI In particular, the class of posets with continuous MacNeille 
completion which are compact in the topology inherited from the 
^J^topology of the MacNeille completion. (The validity of Theorem 6.12, 
since it seems to be close to [27], 3.14, has possibly prevented an earlier 
discovery of the error in the formulation of the latter result.) 

6.13. Remark. The notion of a degree for injective hulls leads to a 
natural (new?) dimension function /-dim for continuous lattices L 
themselves ("injectivity dimension"): /-dim L is at least n (n ^ 0) if 
and only if (L, oL) is the injective hull of a sober space X of degree at 
least n. 

The unit interval I has /-dimension 1. The example provided by K. H. 
Hofmann and M. W. Mislove [38] shows that /-dim 7 ^ 2 and, 
analogously, /-dim In ^ n. Is it true that /-dim In = nl Are there 
continuous lattices L with /-dim L = oo? 

6.14. Problem. It is a natural question to what extent almost-continuous 
posets are related to the existence of an injective hull in T0. More 
specifically: 

i) Is there an almost-continuous poset P 
a) such that the Scott topology op is non-sober, or 
b) which is not induced by any sober topology? 
(Examples of up-complete posets with non-sober Scott topology are not 

easy to find; cf. [43], [42].) 
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ii) Is there an almost-continuous poset P 
a) such that no join-dense continuous completion Q of P induces a 

sober topology OQ\P, or 
b) such that no join-dense continuous completion P —> Q preserves 

suprema of non-empty up-directed subsets (or, equivalently, OQ\P is not 
coarser than op)l 

c) As in (a), but with the additional requirement that the MacNeille 
completion (or some join-dense completion which preserves suprema of 
non-empty up-directed subsets) of P is a continuous lattice. 

6.15. Problem. One easily deduces from 6.1 (iii) that, for a given poset P, 
the supremum of every non-empty family of compatible topologies on P 
which have an injective hull in T0 also has an injective hull in T0. Is there 
always a coarsest compatible topology on a poset which has an injective 
hull in T0 (yielding the empty-indexed supremum)? The finest such 
topology is the Alexandrov-discrete topology ( [26], correct implication 
of 4.3). 

Is this also true for sober topological spaces or for ^/-spaces? 

6.16. Remark. Condition 6.1 (iii) may be compared with condition (4) of 
Proposition 6 of [5] (which characterizes, implicitly, those spaces X for 
which £)(X) is hyper continuous, [20], pp. 166-167) which is studied further 
in [6], example 7, p. 158 (where these spaces are characterized as the "flat" 
spaces). This condition also appears, in a slightly different, but equivalent 
form in [41], p. 53 ("locally finite-bottomed spaces"). Recently, G. Gierz, 
J. D. Lawson and A. R. Stralka ( [21], Section 6) have shown that the sober 
spaces X with £)(X) hypercontinuous are precisely the "quasi-continuous" 
posets endowed with their Scott topology. 

Despite the similarity of these conditions, these classes of spaces are 
different and, moreover, incomparable: 

i) Example 2.9 provides a sober space with an injective hull in T0 

which does not carry the Scott topology, hence it is not flat (by [21], 
Section 6). 

ii) Banaschewski's example ( [5], p. 244) of a flat space which does not 
satisfy the condition of [5], Corollary 2, p. 240 apparently also violates 
6.1 (iii) (check at x = (0, 0)), hence it does not have an injective hull 
in T0. 

iii) The (ordinary) boundary of the unit square / endowed with the 
trace of the Scott topology of / (cf. 6.10) is sober, it has an injective hull 
in T0, and it is flat, but it fails to be a continuous poset. 

Analogues of 6.3, 6.4, 6.7 (cf. [5] corollary on p. 244, [41], p. 41) and 6.9 
can be easily established for flat spaces. The class of flat ( = locally 
finite-bottomed) spaces is both open-hereditary and closed-hereditary. It 
is also stable under the formation of retracts. (The space A of 6.10 is both 
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flat and essentially complete without being injective. Thus 6.5 and 6.6 do 
not carry over.) 
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