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Star-Shapedness and K-Orbits in
Complex Semisimple Lie Algebras

Wai-Shun Cheung and Tin-Yau Tam

Abstract. Given a complex semisimple Lie algebra g = k + ik (k is a compact real form of g), let

π : g → h be the orthogonal projection (with respect to the Killing form) onto the Cartan subalgebra

h := t + it, where t is a maximal abelian subalgebra of k. Given x ∈ g, we consider π(Ad(K)x), where

K is the analytic subgroup G corresponding to k, and show that it is star-shaped. The result extends

a result of Tsing. We also consider the generalized numerical range f (Ad(K)x), where f is a linear

functional on g. We establish the star-shapedness of f (Ad(K)x) for simple Lie algebras of type B.

1 Introduction

Let gln(C) denote the Lie algebra of all n × n complex matrices. Let A ∈ gln(C).

Consider the set

W(A) := {diag(UAU−1) : U ∈ U(n)},

where U(n) denotes the unitary group. It is the image of the projection of the orbit

O(A) := {UAU−1 : U ∈ U(n)}

onto the set of diagonal matrices. One may replace U(n) by SU(n) in the definition

of W(A) and O(A). If A ∈ Cn×n is Hermitian with eigenvalues λ := (λ1, . . . , λn) ∈
R

n, then the Schur–Horn theorem [7, 14] [13, pp. 218–220] asserts that W(A) =

conv Snλ, where conv Snλ is the convex hull of the orbit of λ under the action of the

symmetric group Sn. For general A ∈ Cn×n, W(A) is not convex [1,2]. Nonconvexity

naturally prompted the question whether certain weaker geometric results are at least

true. The following interesting result is due to Tsing [17].

Theorem 1.1 (Tsing [17]) Let A ∈ Cn×n. Then W(A) is star-shaped with respect to

the star center 1
n

(tr A)(1, . . . , 1).

The above results can be reduced to the case tr A = 0, i.e., the (noncompact)

simple Lie algebra sln(C) [6, pp. 186–187]. We may write A = Â + tr A
n

In, where

Â := A − tr A
n

In has zero trace. Then

W(A) = W(Â) +
tr A

n
(1, . . . , 1).

Taking the diagonal part of A ∈ sln(C) amounts to the orthogonal projection

π : sln(C) → h,
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where h ⊆ sln(C) denotes the set of diagonal matrices in sln(C). Notice that

(1.1) sln(C) = h +
∑

i 6= j

CEi j

is an orthogonal sum of h and
∑

i 6= j CEi j (Ei j ∈ sln(C) denotes the matrix with 1 at

the (i, j) position and zero elsewhere) with respect to the nondegenerate symmetric

bilinear form B(X,Y ) = tr XY or the inner product 〈X,Y 〉 = tr X∗Y . We will see

that the orthogonal sum (1.1) will be replaced by the root space decomposition and

the bilinear form will be replaced by the Killing form when we consider (noncom-

pact) complex semisimple Lie algebras g. The point is that we still have orthogonal

projection π when we consider g.

After introducing some preliminary material in Section 2, we will extend Tsing’s

result in the context of semisimple Lie algebras in Section 3. Theorem 3.1 is the main

result of the section and it answers a conjecture of Tam [15] ([16, Conjecture 2.11])

affirmatively.

For A,C ∈ gln(C), the C-numerical range of A [9, pp. 77–88] is defined to be the

following subset of C:

WC (A) := {tr CU ∗AU : U ∈ U(n)}.

Since gln(C) and its dual are isomorphic via the inner product 〈X,Y 〉 = tr X∗Y on

gln(C), all linear functionals are of the form

(1.2) fC ( · ) = tr C( · )

for some C ∈ gln(C). So WC (A) is the image fC (O(A)) and vice versa. The following

result asserts that WC (A) is star-shaped.

Theorem 1.2 (Cheung and Tsing [4]) If C ∈ gln(C), WC (A) is star-shaped with

respect to (tr A)(tr C)/n.

Let V ∗ denote the dual space of the linear space V . The main idea of the proof of

Cheung and Tsing [4] is to show that

S(A) := {B ∈ gln(C) : f (O(B)) ⊆ f (O(A)) for all f ∈ gln(C)∗}

is star-shaped with respect to tr A
n

I.

The study of WC (A) can be reduced to A,C ∈ sln(C); that is, A and C have zero

trace, since

fC (A) = fĈ (Â) + (tr C)(tr A)/n,

where Â = A − tr A
n

In and Ĉ = C − tr C
n

In, so that

fC (O(A)) = fĈ (O(Â)) + (tr C)(tr A)/n.

The notion of C-numerical range is extended in the context of (noncompact)

complex semisimple Lie algebra g [5]. In Section 4, namely in Theorem 4.8, we show

that if g is of type B or D, then the star-shapedness result is valid. It provides more

support for a conjecture of Tam [15] (see [16, Conjecture 2.10]).
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2 Preliminaries

Let g be a (noncompact) complex semisimple Lie algebra and let k be a compact real

form of g [6, p. 181]. Let G be a connected complex Lie group with Lie algebra g. It

has a finite center [12, p. 375] so that K (the analytic group of k) is compact [6, p. 253].

As a real K-module, g is just the direct sum of two copies of the adjoint module k of

K: g = k+ ik, i.e., Cartan decomposition of g [6, p. 185]. Denote by g∗ the dual space

of g. Given x ∈ g, consider the orbit of x under the adjoint action of K

K · x := {Ad(k)x : k ∈ K}.

We will write k ·x for Ad(k)x. The orbit K ·x depends on AdG K, which is the analytic

subgroup of the adjoint group [6, p. 126] Int(g) ⊆ Aut(g) corresponding to ad g(k).

Thus K · x is independent of the choice of G. Let t be a maximal abelian subalgebra

of k. The complexification h := t + it (direct sum) is a Cartan subalgebra of g [6,

p. 162]. Let g = h +
∑

α∈∆
gα (direct sum) be the root space decomposition of g

with respect to h [6, p. 162], where ∆ denotes the set of all roots. Denote by B( · , · )

the Killing form of g [6, p. 131]. Notice that B(gα, gβ) = 0 [6, p. 166] whenever

α + β 6= 0 (g0 = h) so that

g = h +
∑

α∈∆+

(gα + g−α)

is an orthogonal sum with respect to the Killing form. Thus we have the orthogo-

nal projection π : g → h under B( · , · ). For x ∈ g, we consider π(K · x), i.e., the

projection of K · x onto h. When x ∈ k, K · x ⊆ k so that π(K · x) ⊆ t.

Let θ be the Cartan involution of g if g is viewed as a real Lie algebra, i.e., θ : g → g

such that x + y 7→ x − y if x ∈ k and y ∈ ik. In other words, k is the +1 eigenspace of

θ and ik is the −1 eigenspace of θ.

3 Projection of K-Orbit onto Cartan Subalgebra

The main result in this section is Theorem 3.1, conjectured by Tam [15] (see [16,

Conjecture 2.11]).

Theorem 3.1 Let g be a complex semisimple Lie algebra and let π : g → h be the

orthogonal projection onto the Cartan subalgebra h with respect to the Killing form of g.

If x ∈ g, then π(K · x) ⊆ h is star-shaped with star center 0.

When x ∈ k, the projection π(K · x) ⊆ t is indeed equal to conv W xt, where

xt ∈ K ·x∩t and W is the Weyl group, i.e., W = N(T)/T, a result due to Kostant [11].

It extends the Schur–Horn result.

The following lemma enables us to pick any model of g to work with in order to

show the star-shapedness of π(K · x), x ∈ g.

Lemma 3.2 Suppose g = k+ik and g ′ = k ′+ik ′ (Cartan decompositions) are isomor-

phic complex semisimple Lie algebras. Let t and t ′ be maximal abelian subalgebras of k

and k ′, respectively. Set h := t + it and h ′ := t ′ + it ′. Let π : g → h and π ′ : g ′ → h ′
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be the orthogonal projections with respect to the Killing forms of g and g ′ respectively. If

x ∈ g, then there is an isomorphism ψ : g → g ′ such that ψ(t) = t ′ and

π ′(K ′ · ψ(x)) = ψ(π(K · x)),

where K and K ′ are the analytic groups corresponding to k and k ′ respectively.

Proof Notice that k and k ′ are compact real forms of g and g ′. For any isomorphism

γ : g → g ′, g ′ = γ(k) + iγ(k) is a Cartan decomposition for g ′ and γ(k) is compact.

Hence there is σ ∈ Int(g ′) so that σ(γ(k)) = k ′ [6, p. 183]. Clearly σ(γ(t)) is a

maximal abelian subalgebra of k ′. The maximal abelian subalgebras of the compact

k ′ are conjugate via Ad(k ′) for some k ′ ∈ K ′ [6, p. 248]. So we have an isomorphism

ψ := Ad(k ′) ◦ σ ◦ γ : g → g ′

such that ψ(t) = t ′. Notice that ψ(k) = k ′, since σ(γ(k)) = k ′ and Ad(k ′) ∈ Aut(k ′).

Clearly ψ(h) = h ′. Since ψ : g → g ′ is an isomorphism, ad (ψ(X)) = ψ ◦ ad X ◦ψ−1

for all X ∈ g so that the Killing forms [6, p. 131] B( · , · ) of g and B′( · , · ) of g ′ are

related by B(x, y) = B ′(ψ(x), ψ(y)) for all x, y ∈ g. So ψ(h⊥) = h ′⊥. Thus

(3.1) ψ ◦ π = π ′ ◦ ψ.

Since K ·x is independent of the choice of G (the analytic group of g), we may assume

that G is simply connected [18, p. 101]. To the isomorphism ψ : g → g ′ there exists a

unique isomorphism ϕ : G → G ′ (G ′ is the analytic group of g ′) such that dϕe = ψ
[18, p. 101]. Since ψ(k) = k ′, we have ϕ(K) = K ′. Now for all t ∈ R, k ∈ K, x ∈ g

using [6, Lemma 1.12, p. 110] and [6, p. 127]

etdϕe(Ad(k)x)
= ϕ(etAd(k)x) = ϕ(k)ϕ(etx)ϕ(k)−1

= etAd(ϕ(k))dϕe(x).

Taking derivative yields ψ(Ad(k)x) = Ad(ϕ(k))ψ(x), so that

(3.2) ψ(K · x) = K ′ · ψ(x).

By (3.1) and (3.2)

π ′(K ′ · ψ(x)) = π ′(ψ(K · x)) = ψ(π(K · x)).

By Lemma 3.2, Theorem 1.1 can be stated as follows.

Theorem 3.3 Theorem 3.1 is true for simple g of type A.

A connected Lie group is called almost simple [3, p. 355] if its Lie algebra is simple,

and the quotient of a direct product of Lie groups by a discrete central subgroup is

called an almost direct product. Corresponding to the Cartan involution θ : g → g,

there is [6, p. 253] an involutive analytic automorphism Θ : G → G (called the global

Cartan involution [12, p. 305] and many authors write θ for Θ) such that dΘe = θ.

A subgroup S ⊆ G is said to be θ-stable if S is stable under Θ.

The following lemma enables us to deduce Theorem 3.1 from its validity for sim-

ple Lie algebras of type A.
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Lemma 3.4 (D- oković and Tam [5]) Let H ⊆ G be the analytic subgroup correspond-

ing to h. There exists a closed connected θ-stable complex semisimple Lie subgroup S of

G containing H and S is an almost direct product of θ-stable almost simple subgroups Si

(i = 1, . . . , m) of type A.

Proof of Theorem 3.1 Let S = S1S2 · · · Sm be as in Lemma 3.4. The Lie algebra s of

S is a direct sum of its simple ideals si , where si is the Lie algebra of Si , i = 1, . . . , m

[10, p. 22]. Since Cartan subalgebras of the semisimple g are precisely the nilpotent

subalgebra that equals its normalizer in g [10, p. 80] and h ⊂ s ⊂ g, h is a Cartan

subalgebra of s. Likewise hi = si ∩ h is a Cartan subalgebra of si and h =
∑m

i=1 hi

(direct sum). Denote by q the sum of the root spaces gα that are not contained in s.

Then g = s ⊕ q, q = s⊥, and q is S-stable, i.e., q is stable under the adjoint action

of S (as the Killing form is invariant under the adjoint action of S [6, p. 131]). The

subgroup Ki := K ∩ Si is a maximal compact subgroup of Si . Denote by πi : si → hi

the orthogonal projection, i = 1, . . . , m.

Each x ∈ g can be decomposed uniquely as x =
∑m

i=1 xi + x ′, where xi ∈ si and

x ′ ∈ q. Since each Si is of type A, Theorem 3.3 implies that for each 0 ≤ λ ≤ 1, there

exists ki ∈ Ki ⊆ K ∩ S such that

λπi(xi) = πi(ki · xi) ∈ πi(Ki · xi).

Set k := k1k2 · · · km ∈ K ∩ S. Since q is S-stable, we have k · x ′ ∈ q. So

π(k · x) = π
( m

∑

i=1

ki · xi + k · x ′
)

= π
( m

∑

i=1

ki · xi

)

=

m
∑

i=1

πi(ki · xi) = λπ(x).

Hence λπ(x) ∈ π(K · x).

Example 3.5 Let g = son(C) (n ≥ 2), K = SO(n), h =
∑⌊ n

2
⌋

i=1 C(E2i−1,2i − E2i,2i−1)

[6, pp. 187–189]. So the projection π : g → h is given by

π(A) =

(

0 a12

−a12 0

)

⊕

(

0 a34

−a34 0

)

⊕ · · · ⊕

(

0 a2⌊ n
2
⌋−1,2⌊ n

2
⌋

−a2⌊ n
2
⌋−1,2⌊ n

2
⌋ 0

)

and may be identified with

π(A) =
(

a12, a34, . . . , a2⌊ n
2
⌋−1,2⌊ n

2
⌋

)

.

Then the set {π(OAOt ) : O ∈ SO(n)} is star-shaped with respect to 0 ∈ C
⌊ n

2
⌋ by

Theorem 3.1.

The following is a matrix approach to Example 3.5. Notice that so3(C) ∼= sl2(C)

and so4(C) ∼= sl2(C) + sl2(C) [6, p. 465]. So a star-shapedness result holds for so3(C)

and so4(C) by Theorem 3.3 and Lemma 3.2. Hence for each A ∈ so4(C),

π(SO(4) · A) = {π(OAOt ) : O ∈ SO(4)}

is star-shaped with respect to 0 ∈ C
2.
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We now identify h with C
⌊ n

2
⌋ naturally. Suppose that n ≥ 5 and A ∈ son(C). If

(x12, x34, . . . , x2⌊ n
2
⌋−1,2⌊ n

2
⌋) ∈ π(SO(n) ·A), we want to show that for each 0 ≤ λ ≤ 1,

λ
(

x12, x34, . . . , x2⌊ n
2
⌋−1,2⌊ n

2
⌋

)

∈ π
(

SO(n) · A
)

.

We may assume that

(x12, x34, . . . , x2⌊ n
2
⌋−1,2⌊ n

2
⌋) = (a12, a34, . . . , a2⌊ n

2
⌋−1,2⌊ n

2
⌋).

Now consider A[2i −1, 2i | 2 j −1, 2 j], which denotes the 4×4 submatrix of A lying

in rows and columns indexed by 2i − 1, 2i, 2 j − 1, 2 j (1 ≤ 2i < 2 j ≤ n if n is even,

and 1 ≤ 2i < 2 j < n if n is odd). Let 0 ≤ ξ ≤ 1. For any two admissible i < j, there

exists O ∈ SO(n) with

O[2i − 1, 2i | 2 j − 1, 2 j] ∈ SO(4), O(2i − 1, 2i | 2 j − 1, 2 j) = In−4,

where O(2i − 1, 2i | 2 j − 1, 2 j) denotes the (n − 4) × (n − 4) submatrix of O

complementary to O[2i − 1, 2i|2 j − 1, 2 j], so that

(a12, . . . , ξa2i−1,2i , . . . , ξa2 j−1,2 j , . . . , a2⌊ n
2
⌋−1,2⌊ n

2
⌋) = π(OAOt )

∈ π(SO(n) · A).

By choosing such a matrix O ∈ SO(n) for every admissible pair i < j and multiplying

these matrices we get a matrix Ô ∈ SO(n) such that

ξ⌊
n
2
⌋−1

(

a12, a34, . . . , a2⌊ n
2
⌋−1,2⌊ n

2
⌋

)

= π(ÔAÔt ) ∈ π
(

SO(n) · A
)

.

So for each 0 ≤ λ ≤ 1, set ξ such that ξ⌊
n
2
⌋−1 = λ. Hence π(SO(n)·A) is star-shaped.

Example 3.6 Let [6, pp. 189–190]

g = spn(C) := {X =

(

X1 X2

X3 −Xt
1

)

: X1, X2, X3 ∈ gln(C), X2, X3 symmetric},

and k = sp(n), i.e.,

K = Sp(n) := Spn(C) ∩U (2n) = {g =

(

A −B

B A

)

: A, B ∈ gln(C)} ∩U (2n).

By [6, p. 189] we may take

h = {diag(x1, . . . , xn,−x1, . . . ,−xn) : x1, . . . , xn ∈ C}.

So π : g → h is simply taking diagonal part. By Theorem 3.1, given A ∈ spn(C), the

set

π(Sp(n) · A) = {π(UAU−1) : U ∈ Sp(n)}

is star-shaped with respect to 0 ∈ h.
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The following is a matrix approach to Example 3.6. Since sl2(C) = sp1(C) [6,

p. 465], a star-shapedness result is true for n = 1 case. By considering the 2 × 2

submatrix A[i, n + i] ∈ spn(C) of A, i = 1, . . . , n, where U ∈ Sp(n) and U [i, n + i] ∈
Sp(1) and U (i, n + i) = I2n−2, for each 0 ≤ λ ≤ 1,

(x1, . . . , λxi , . . . , xn,−x1, . . . ,−λxi , . . . ,−xn) ∈ π(Sp(n) · A)

if (x1, . . . , xn,−x1, . . . ,−xn) ∈ π(Sp(n) · A). So

λ(x1, . . . , xn,−x1, . . . ,−xn) ∈ π(Sp(n) · A)

as i runs through 1, . . . , n.

4 Linear Functional on K-Orbit

In [5, 15] the notion of C-numerical range is extended to (noncompact) complex

semisimple Lie algebras g. Let g∗ denote the dual of g. For any f ∈ g∗, x ∈ g,

consider the range f (K · x). When g = sln(C) with K = SU(n), the range f (K · x) is

reduced to fC (O(A)), where fC is given in (1.2).

Motivated by the approach of Cheung and Tsing in [4], we introduce the set

S(x) := {z ∈ g : f (K · z) ⊆ f (K · x)} ⊆ g.

Obviously S(x) is K-invariant and

K · x ⊆ S(x) ⊆ conv K · x ⊆ conv S(x)

so that

conv K · x = conv S(x).

For x, y ∈ g, we write x ≤ y if x ∈ S(y), or equivalently f (x) ∈ f (K · y) for all

f ∈ g∗ [5]. The relation ≤ defines a partial order on g and extends the partial order

of Cheung and Tsing [4] for g. The partial order depends on the choice of K and is

strongly K-invariant in the sense that x ≤ y implies that a · x ≤ b · y for a, b ∈ K,

and so it induces a partial order on the orbit space g/K [5].

In general K · x 6= S(x), for example, g = sl2(C), K = SU(2),

x =

(

a b + ic

b − ic −a

)

∈ su(2), a, b, c ∈ R.

Then

K · x =

{(

z1 z2 + iz3

z2 − iz3 −z1

)

: z1, z2, z3 ∈ R
2, z2

1 + z2
2 + z2

3 = a2 + b2 + c2

}

,

which is viewed as the sphere in R
3 centered at the origin and of radius r = (a2 + b2 +

c2)1/2, but S(x) = conv K · x is the ball that is clearly the convex hull of the sphere.

The following proposition enables us to work with S(x) if we want show that

f (K · x) is star-shaped for all x ∈ g and f ∈ g∗, namely Conjecture 4.2.
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Proposition 4.1 Let g be a complex semisimple Lie algebra. If x ∈ g, then S(x) is

star-shaped with respect to the zero matrix 0 if and only if f (K · x) is star-shaped with

respect to the origin in C for all f ∈ g∗.

Proof Notice that f (K · x) = f (S(x)) by the definition of S(x), since x ∈ S(x) for

f ∈ g∗. So the star-shapedness of S(x) implies the star-shapedness of f (K · x).

Conversely, suppose that f (K · x) is star-shaped with respect to 0 for all f ∈ g∗ .

If y ∈ S(x), then for all 0 ≤ α ≤ 1,

f (K · αy) = α f (K · y) ⊆ α f (K · x) ⊆ f (K · x).

The following is a possible extension of Theorem 1.2.

Conjecture 4.2 (Tam [15]) For x ∈ g and f ∈ g∗, the set f (K ·x) is star-shaped with

respect to the origin, or equivalently, for x ∈ g and t ∈ [0, 1], tx ≤ x holds.

It is known ([4, 5]) that if the simple components of g are of type A, D, E6, or E7,

then Conjecture 4.2 is valid (see [16, Conjecture 2.10]). So, among the four classical

complex simple Lie algebras, the unknown cases are types B and C . We will prove

that the conjecture is true for type B. Indeed our approach works for type D as well.

The following lemma allows us to work with any model of g, similar to Lemma 3.2.

Lemma 4.3 Suppose g = k + ik and g ′ = k ′ + ik ′ (Cartan decompositions) are

isomorphic complex semisimple Lie algebras. If x, y ∈ g, then there is an isomorphism

ψ : g → g ′ such that ψ(k) = k ′ and

B ′
θ ′(K ′ · ψ(x), ψ(y)) = Bθ(K · x, y).

Proof As in Lemma 3.2 we have (3.2), i.e., ψ(K · x) = K ′ · ψ(x). Since ad (ψ(x)) =

ψ ◦ ad x ◦ ψ−1,

B ′(ψ(x), ψ(y)) = B(x, y), x, y ∈ g

is the Killing form of g ′. Moreover, θ ′ = ψ ◦ θ ◦ ψ−1. Thus

(4.1) B ′
θ ′(ψ(x), ψ(y)) = −B ′(ψ(x), θ ′ ◦ ψ(y)) = −B(x, θy) = Bθ(x, y).

By (3.2) and (4.1),

B ′
θ ′

(

K ′ · ψ(x), ψ(y)
)

= B ′
θ ′

(

ψ(K · x), ψ(y)
)

= Bθ(K · x, y).

By Lemma 4.3, in order to prove Conjecture 4.2 for simple complex Lie algebra g

of type B or D, we can choose son(C), the algebra of n × n complex skew symmetric

matrices as the model and set K = SO(n). Given A,C ∈ son(C), in the forthcoming

discussion define

O(A) := {Ot AO : O ∈ SO(n)}

fC (O(A)) := {tr COt AO : O ∈ SO(n)},
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and we want to show that it is star-shaped with respect to the origin. When n = 2,

fC (O(A)) is a singleton set, that is, if

A =

(

0 a

−a 0

)

, C =

(

0 c

−c 0

)

,

then fC (O(A)) = {−2ac}. Notice that so3(C) ∼= sl2(C), so4(C) ∼= sl2(C) + sl2(C)

and the corresponding fC (O(A)) are star-shaped with respect to 0 by Lemma 4.3

and Theorem 1.2. So it suffices to consider the simple Lie algebra son(C), n ≥ 5.

Nevertheless we will consider n ≥ 3.

The tool we use is an analog of S(A) of Cheung and Tsing:

SSO(n)(A) := {B ∈ son(C) : fC (O(B)) ⊆ fC (O(A)) for all C ∈ son(C)}.

We remark that SSO(n)(A) is invariant under special orthogonal similarity, that is,

B ∈ SSO(n)(A) if and only if Ot BO ∈ SSO(n)(A) for each O ∈ SO(n).

The following lemma can be readily verified.

Lemma 4.4 Let X,Y ∈ son(C) (n ≥ 3) be in the partitioned forms

X =





0 x12 X13

−x12 0 X23

−Xt
13 −Xt

23 X33



 , Y =





0 y12 Y13

−y12 0 Y23

−Y t
13 −Y t

23 Y33



 ,

where x12, y12 ∈ C, X33,Y33 ∈ son−2(C). Let

R2(θ) :=





cos θ − sin θ 0

sin θ cos θ 0

0 0 In−2



 .

Then

tr XRt
2(θ)Y R2(θ) = −2x12 y12 + tr X33Y33 − 2 cos θ tr(Xt

13Y13 + Xt
23Y23)

+ 2 sin θ tr(Xt
23Y13 − Xt

13Y23)

∈ fX(O(Y )),

the locus of which, when θ runs from 0 to 2π, is an ellipse centered at−2x12 y12+tr X33Y33

with length of major axis determined by tr(Xt
13Y13 + Xt

23Y23) and tr(Xt
23Y13 − Xt

13Y23).

Moreover, if X13, X23,Y13,Y23 are real matrices, then the ellipse is degenerate (a point

or a line segment).

Remark 4.5 If the row vectors Y13 and Y23 are all multiplied by a scalar 0 ≤ ǫ ≤
1, the resulting ellipse, in particular the point tr XY (ǫ) (see the notation B(ǫ) in

Lemma 4.7 with k = 1 and ℓ = 2), lies within the relative interior of the original

ellipse.
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Lemma 4.6 Let X ∈ son(C) (n ≥ 3) and 1 ≤ k < ℓ ≤ n. Then there exists

O ∈ SO(n) such that the entries of Ot XO on the k-th and ℓ-th rows and columns are

real, except (Ot XO)kℓ and (Ot XO)ℓk.

Proof Without loss of generality one may assume that k = 1 and ℓ = 2. Since

Xt = −X, we can write X = X1 + iX2 for real skew symmetric matrices X1, X2. By the

well-known theorem [8, p. 107] on the normal form of real skew-symmetric matrices

under orthogonal similarity, we find an O ∈ SO(n) such that

Ot X2O =

(

0 x1

−x1 0

)

⊕ · · · ⊕

(

0 x⌊ n
2
⌋

−x⌊ n
2
⌋ 0

)

⊕ (0),

where the last 1 × 1 zero block is present if n is odd, and x1, . . . , x⌊ n
2
⌋ ∈ R. So Ot XO

has the desired form.

Lemma 4.7 Suppose B = (bi j) ∈ SSO(n)(A). Let 1 ≤ k < ℓ ≤ n, 0 ≤ ǫ ≤ 1, and

B(ǫ) = (bi j(ǫ)) be defined by

bi j(ǫ) =

{

ǫbi j , if exactly one of i, j equals k or ℓ,

bi j , otherwise,

that is, B(ǫ) ∈ son(C) is obtained from B by multiplying its entries on the k-th and the

ℓ-th rows and columns by ǫ, except for its (k, ℓ)-th and (ℓ, k)-th entries. Then B(ǫ) ∈
SSO(n)(A).

Proof We assume without loss of generality that k = 1 and ℓ = 2. Suppose B =

(bi j) ∈ SSO(n)(A). Then, by definition, for all U ,V ∈ SO(n), C ∈ son(C), and θ ∈ R,

ξ(U ,V, θ) := tr U tCU Rt
2(θ)V t BV R2(θ)(4.2)

∈ fC (O(B)) ⊆ fC (O(A)),

where R2(θ) is given in Lemma 4.4.

Now choose U ∈ SO(n) arbitrarily. Partition B,C ∈ son(C) into the block form of

Lemma 4.4, that is, according to the partition {1}, {2}, {3, . . . , n}. Write B and C in

the form X1+iX2, where X1, X2 are real skew symmetric matrices. By Lemma 4.6 there

exist U1,V1 ∈ SO(n) such that U t
1CU1 and V t

1BV1 have real (1, 3) and (2, 3) blocks

((3, 1) and (3, 2) blocks as well). Since SO(n) is path connected, we can choose two

continuous functions U ( · ),V ( · ) : [0, 1] → SO(n), such that

U (0) = U , V (0) = I, U (1) = U1, V (1) = V1.

Hence U (1)tCU (1) and V (1)t BV (1) have real (1, 3) and (2, 3) blocks. By Lemma 4.4

and (4.2), for each t ∈ [0, 1],

(4.3) E(t) := {ξ(U (t),V (t), θ) : θ ∈ [0, 2π]} ⊆ fC (O(B)) ⊆ fC (O(A))
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is an ellipse. Since both U (t) and V (t) are continuous, E(0) deforms continuously to

E(1) as t runs from 0 to 1. By Lemma 4.3, the ellipse E(1) degenerates into a point

or a line segment. Let ζ ∈ C be any point in the interior of E(0). If ζ ∈ E(1), then

ζ ∈ fC (O(B)) ⊆ fC (O(A)) by (4.3). If ζ /∈ E(1), then ζ must be swept across by some

ellipse E(t), when E(0) deforms to the degenerated ellipse E(1) as t runs from 0 to 1,

i.e., ζ ∈ E(t). Hence E(0) and its interior are contained in fC (O(B)) ⊆ fC (O(A)).

By Remark 4.5, the point tr U tCU B(ǫ) ∈ fC (O(B(ǫ))) is in the interior of the

ellipse E(0) and hence is contained in fC (O(A)). As this is true for any U ∈ SO(n), we

conclude that fC (O(B(ǫ))) ⊆ fC (O(A)) for all C ∈ son(C), i.e., B(ǫ) ∈ SSO(n)(A).

The n = 2m case, i.e., type D, of the following theorem is known [5].

Theorem 4.8 If g is a simple complex Lie algebra of type B or D, and f ∈ g∗, then

f (K · x) ⊆ C is star-shaped with respect to the origin. Equivalently, S(x) is star-shaped

with respect to 0 ∈ g. Hence, if n ≥ 3 and A,C ∈ son(C), then

(i) the set SSO(n)(A) is star-shaped with respect to the zero matrix;

(ii) the set fC (O(A)) ⊆ C is star-shaped with respect to the origin.

Proof The equivalence follows from Proposition 4.1. By Lemma 4.3 we can choose

any model to work with so that it suffices to show the first statement.

(i) Suppose B = (bi j) ∈ SSO(n)(A) and α ∈ [0, 1]. Let ǫ ∈ [0, 1] be such that

ǫn−1 = α. Applying Lemma 4.7 repeatedly on B, with

(k, ℓ) = (1, 2), (1, 3), . . . , (1, n), (2, 3), (2, 4), . . . , (2, n), (3, 4), . . . , (n − 1, n),

we obtain αB ∈ SSO(n)(A) so that SSO(n)(A) is star-shaped with respect to the zero

matrix.

Corollary 4.9 Let n ≥ 3. For any A,C ∈ son(C), the sets

VC (A) := {tr COt AO : O ∈ O(n)},

V−
C (A) := {tr COt AO : O ∈ O(n) \ SO(n)},

are star-shaped with respect to the origin. Equivalently, the sets

S0(A) := {B ∈ son(C) : VC (B) ⊆ VC (A) for all C ∈ son(C)},

S−(A) := {B ∈ son(C) : V−
C (B) ⊆ V−

C (A) for all C ∈ son(C)}

are star-shaped with respect to the zero matrix.

Proof Suppose n ≥ 3. Note that VC (A) = fC (O(A)) ∪V−
C (A) and

V−
C (A) = fC ((−1 ⊕ In−1)A(−1 ⊕ In−1)).

So the results follow from Theorem 4.8.
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When n = 2, VC (A) = {±2ac} and V−
C (A) = {2ac}, where

A =

(

0 a

−a 0

)

, C =

(

0 c

−c 0

)

.

Finally we remark that Conjecture 4.2 can be reduced to the simple cases. To

summarize, the known cases are simple Lie algebras of type A [4], B (Theorem 4.8),

D, E6, and E7 [5]; the unknown simple Lie algebras are of type C , G2, F4, and E8.
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6(1973), 413–455.
[12] A.W. Knapp, Lie groups beyond an introduction. Progress in Mathematics, 140, Birkhäuser Boston,
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