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A SUPERCONVERGENCE RESULT FOR
SOLUTIONS OF COMPACT OPERATOR EQUATIONS

REKHA P. KULKARNI

Over the last 20 years, since the publication of Sloan's paper on the improvement by
the iteration technique, various approaches have been proposed for post-processing
the Galerkin solution of multi-dimensional second kind FVedholm Integral equation.
These methods include the iterated Galerkin method proposed by Sloan, the Kan-
torovich method and the iterated Kantorovich method. Recently, Lin, Zhang and
Yan have proposed interpolation as an alternative to the iteration technique. For
an integral operator, with a smooth kernel using the orthogonal projection onto a
space of discontinuous piecewise polynomials of degree ^ r — 1, previous authors have
established an order r convergence for the Galerkin solution and 2r for the iterated
Galerkin solution. Equivalent results have also been established for the interpolator
projection at Gauss points and some interpolation post-processing technique. In this
paper, a method is introduced and shown to have convergence of order 4r. The size of
the system of equations that must be solved, in implementing this method, remains
the same as for the Galerkin method.

1. INTRODUCTION

The improvement of the Galerkin solution of a compact operator equation by using
iteration techniques was first proposed by Sloan in [13]. Chandler [1], in his thesis, proved
that if the kernel and the exact solution are suitably smooth, then, in the case of the
orthogonal projection onto a space of piecewise polynomials, the order of convergence of
the iterated Galerkin solution is twice that of the Galerkin solution. He also established
that, if the kernel fails to have sufficient differentiability because of discontinuities along
the diagonal, then the iterated Galerkin solution is only superconvergent at the knot
points, not globally. Similar results for the iterated collocation at Gauss points are
given in Chatelin and Lebbar [3]. Chandler [1] also has discussed the superconvergent
behaviour of the discrete iterated Galerkin solution.
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If the right hand side of the operator equation is less smooth than the kernel of the
integral operator, then the Kantorovich solution has a higher order of convergence than
the Galerkin solution. This is discussed in Schock [12] and Sloan [14]. Sloan also intro-
duced the iterated Kantorovich method and established that it had a faster convergence
than the Galerkin, the iterated Galerkin and the Kantorovich methods. Graham, Joe
and Sloan [7] have compared the iterated Galerkin and the iterated collocation methods
under general smoothness requirements. An unified framework for error analysis of the
Galerkin and the discrete Galerkin methods using prolongation and restriction operators
is developed by Spence and Thomas in [15]. More recently, Lin, Zhang and Yan [10]
have proposed interpolation post-processing technique as an alternative to the iteration
technique for improving collocation solution. They obtain the same order of convergence
as for the iterated collocation method. In [8], Hu discusses interpolation post-processing
technique for Predholm Integro-differential equations.

In this paper, we propose a method based on projections for approximate solutions
of compact operator equations. It is shown that, while it is necessary to solve a system
of equations of the same size as for the Galerkin method, the resulting solution obtained
converges faster than the Galerkin and the iterated Galerkin solutions. As the only as-
sumptions required are compactness of the operator and the pointwise convergence of the
projection operators, the method can be applied to integral operators with continuous
kernels defined on curves or surfaces. For both orthogonal projections and the interpo-
latory projections at Gauss points with the range as a space of piecewise polynomials, it
is established that, if the kernel and the right hand side are suitably smooth, then the
order of convergence in the iterated version of the proposed method, is twice that of the
iterated Galerkin solution and four times that of the Galerkin solution.

In the proposed method, it is necessary to solve a different system of equations than
in the Galerkin method. Hence, in contrast to the iteration technique of Sloan and the
interpolation technique of Lin, Zhang, Yan and Hu, the proposed method cannot be
considered as a post-processing method for Galerkin solutions. In fact, a new sequence
of finite rank operators converging in norm is proposed. As a direct consequence, as in
Kulkarni [9], this method can also be used to solve eigenvalue problems. The method-
ology and techniques, introduced in this paper, extend naturally to iterative refinement
schemes, multilevel methods and extrapolation.

The paper has been arranged in the following way. In Section 2, the proposed
method for the solution of compact operator equations is defined along with relevant
notation. In Section 3, error estimates are derived in a general setting. The system of
linear equations which need to be solved to obtain the approximations to the solution
of the operator equation is also discussed. The special situation, where the compact
operator is an integral operator with a smooth kernel and the projection is either the
orthogonal projection or the interpolatory projection, is considered in Section 4. Precise
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orders of convergence are also obtained there. Numerical validation is given in Section 5.

2. M E T H O D , NOTATION AND DEFINITIONS

Let

(2.1) u-Tu = f,

denote a second kind operator equation, where T is a compact linear operator defined
on a complex Banach space X and / and u belong to X. We assume that (/ - T)
is invertible, so that (2.1) has a unique solution. A standard technique to solve (2.1)
approximately is to replace T by a finite rank operator. The approximate solution of

(2.1) is then obtained by essentially solving a system of linear equations. Let 7rn be a
sequence of projection operators converging to the identity operator / pointwise. In the
classical Galerkin method T is replaced by T% = 7rnT7rn and the right hand side / is
replaced by 7rn/. In the iterated Galerkin method proposed by Sloan, T is replaced by
T% = Tirn, and in the Kantorovich method T is replaced by Tjf = 7rnT.

Here, we propose to approximate T by the following finite rank operator

n = nnl 7Tn + nnl (1 — nn) + (1 — nn)l ?rn.

Then
\\T - Tn

M|| = ||(7 - nn)T(I - *n)\\ -> 0 as n -> oo.

The corresponding approximation of (2.1) becomes

(2.2) u f - (7rnT7rn + %nT{I - 7rn) + (/ - TTn)Tnn)u^ = / ,

while the iterative refinement is defined by

(2.3) Sf = Tuf + /.
It is shown that under certain conditions u™ converges to u faster than the approxi-

mations obtained by the Galerkin and Sloan methods and that u% converges faster than

Consider the integral operator

(2.4) (Tx)(a)= f k(s,t)x(t)dm(t), s 6 [0,1],
Jo

where the kernel *(.,.) € C([0,l]x[0,l]). Then T : L2[0,l] -> L2[0,l] or T : C[0,1]
-> C[0,1] is a compact linear operator. Let r > 1. If k(.,.) e C( [0 , l]x[0,1]), then
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R(T) C C r [0 , l ] . Thus, if k(.,.) e Cr([O, l]x[0,1]) and / e Cr[0,l] , then u € Cr[0, l] .
For u € Cr[0,1], let u^r' denote the r-th derivative of u. We set

(8,t), s,te [0,1],

i=0 i=0

and

i=0

For any integer n, let
0 = £0 < h < • • • < tn = 1

be a partition of [0,1] and for i = 1 , . . . , n, set hi—U— U-i, h — maxj hi. It is assumed
that h —> 0 as n -> oo. Let Xn = S"n, the space of all piecewise polynomials of order
r (that is, of degree ^ r — 1) with breakpoints at t\,...,tn-i and with v continuous
derivatives, —1 ^ f ^ r — 2. Here v = 0 corresponds to the case of continuous piecewise
polynomials. If v = —1, there is no continuity requirements at the breakpoints, in which
case 4>n € Xn is arbitrarily taken to be left continuous a.tti,...,tn and right continuous
at t0-

3. E R R O R ESTIMATES

In this Section, it is assumed that T is a compact operator and 7rn is a sequence of
projections converging to the identity operator pointwise. The error estimates for u™

and u™ are obtained below.

THEOREM 3 . 1 . For all large n,

(3.1) ||U - < | | ^ Ci | | ( / - 7TB)T(J - 7TB)u||

and

(3.2) ||u - 5n
M|| < ||(I - T)~l\\ (||T(7 - nn)T(I - *n)u\\

+ | | r ( / -7rB)T(/-7rB) | | H u - t ^

where C\ is a constant independent ofn.

PROOF: Since \\T - T™\\ -> 0 as n -> oo, for all large n, (/ - T") is invertible and

||(/ - T^)-1|| ^ Cu a constant independent of n.
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We have

Thus,

Hu-ti^H ^ \\(I-T")-m ||(/-7rn)T(/-7rn)u||

< Ct\\{I - nn)T(I - nn)u\\,

which completes the proof of (3.1).

Also, since

u - u" = T(u - tg)

T)~l{T - Tn
M)(/ - T n

M ) " 7

(3.2) follows. D

Let u% and u% be the approximate solutions of operator equation (2.1) using
Galerkin and Sloan methods, respectively. Then

uG
n - TrnTTrnuZ = nnf,

U* - TiTnu
s
n = / .

We quote the following error estimates from Theorem 2.1 of ([14]).

(3.3) Hu-taKdlKj-TTnHI,
(3.4) ||u - us

n\\ ^ d U n / - nn)u\\ < d\\T(I - 7rB)|| ||u - u%

Thus it is clear that u™ is more accurate than u% and u%.

In the next section, the precise orders of convergence are obtained in the case when

T is an integral operator and 7rn is either the orthogonal projection or the interpolatory

projection at Gauss points.

3.1. COMPUTATIONAL C O S T . The reduction of (2.2) to a system of linear equations is

now considered.

Applying 7rn and (/ - 7rn) to equation (2.2) we obtain

(3.5) 7rnuf - nnTnnuif - 7rnT(/ - nn)u™ = nnf,

(3.6) (/ - 7rn)uf - (/ - nn)Tnnu^ = (I - *•„)/.

Let W™ — nnu^f. The substitution for (/ - nn)u^ from equation (3.6) in equation (3.5)

gives us

(3.7) w^ - (nnTirn + nnT{I - nn)Tnn)w^ = nnf + nnT(I - nn)f.
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We then have

(3.8) v£ = v,if + (I-irn)Tw? + {I-nn)f

and

(3.9) v*f = f + Tu*f.

If the dimension of i?(7rn) is n\, then (3.7) reduces to a system of equations of size ri\.
Thus, a system of the same size as in the case of Galerkin method is required to be
solved. The extra cost in the method proposed here is the construction of the matrix
corresponding to 7TnT(7 — nn)Tnn and computation of the vectors nnT(I — -Kn)f and
Tw^f. This addition in the cost is compensated by the improvement in the order of the
convergence.

4. ORDERS OF CONVERGENCE

4.1 . ORTHOGONAL P R O J E C T I O N . Let X = L2[0,1] and (, ) denotes the usual inner
product on X. Let T be an integral operator defined by (2.4) with a kernel k(-, •)
e Cr([0, l])x[0,1]. Let Xn = S"n and nn : X -> Xn denote the orthogonal projection.
When v = — 1 or 0 it is known, without any restriction on the partition, that (see
Richter ([11]) and de Boor([4]), respectively)

(4-1) IKnllioo^too ^ C.

When v ^ 1, (4.1) remains true with the additional restriction that the partition is

quasiuniform (see Douglas, Dupont and Wahlbin [6]).

Since nny —> y as n —• oo for each y € X, the results of Section 3 are applicable. In

what follows the following estimate is crucially used.

For y 6 Cr[0, l] , (see Chatelin [2], Corollary 7.6, p. 328),

(4.2) IKJ-tfntoL^llyMlloo/i'.

(In this paper C\, C*2, and C3 denote generic constants, which may take different

values at their different occurences, but will be independent of n and of h.)

A preliminary result using standard techniques is proved below.

P R O P O S I T I O N 4 . 1 . Fory e Cr[0,1], we have

(4.3) ||T(7 - 7rB)»||roo ^ (Cx)2(r + I)||*||r.0o||y<r>||oo>i2r.

P R O O F : For a fixed j such that 0 ^ j ^ r, we have

- nn)y]U)(s) - j T ^k(s, t)(I - nn)y(t) dt.
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Let

£(s,t) = ~k(s,t), «,* € [0,1].

For a fixed s € [0,1], we denote ts(t) — £(s,t), t G [0,1] and 1, denotes the complex
conjugate of £s. With this notation,

since 7rn is an orthogonal projection. Thus for each s € [0,1], we have

[T(I-*n)y]w{8)\ < ||(/ - «w)y||00 | | ( / - ^ I L

< (Ci)2\\y{T)\\oo ||*||r,co/«2r.

Hence taking supremum over s € [0,1], we obtain

(4-4) I P V - T O ^ L < (Ct)2||*||ri00 llyWllooft211

and

\\T(I - irn)y\\roo = J2 II [T(I - 7rn)y](i)|| ^ (d ) 2 ( r + 1) ||*||ri00 H^Hoo^ .
i=o" "°° Q

Estimates for terms appearing in (3.1) and (3.2) are now obtained.

PROPOSITION 4 . 2 . For y € C[0, l], we have

(4.5) | | (J-7rn)T(/-7rn)y| | o o^C2/i3 r ,

and

(4-6) \\T(I - nn)T(I - n^yW^ ^ C3h
ir.

P R O O F : By the estimate (4.2) we get

| | ( / - 7rB)T(7 - irJyW^ < C i | | \m ~ *n)y]iT)\\ h\
II Moo

Using the estimate (4.4) we get

||(7 - nn)T(I - vJyW^ < {CtfWkW^WyVWnh*,

which completes the proof of (4.5), with C2 = (Ci)3||A;||r,0O||j/(r)||O0.

Next using (4.4) we obtain

\\T(I - -Kn)T{I - Vn)y\\ ^ (C1)2||/:||r,

which completes the proof of (4.6), with C3 =
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4.2. INTERPOLATORY P R O J E C T I O N . Let X = C[0,1] with the supremum norm. Choose

r ^ 1 and let k(.,.) G C2r([0, l]x[0,1]). Then the integral operator defined by (2.4) is a

compact linear operator on C[0,1].

Let Xn — S~n, the space of all piecewise polynomials of order r with breakpoints at

t\, • • •, tn-\.

Let Br — {TI, ... ,rr} denote the set of r Gauss points, that is, the zeros of the

(Legendre) polynomial {dr/dsT)(s2 - l ) r in the interval [-1,1]. Define f{ : [-1,1]

—> [ti-i,U] as follows.

n

Let A — U fi(Br) —• {jij = fi(Tj) : 1 ^ i < n, 1 < j < r } , the set of nr Gauss points.

The operator 7rn : C[0,1] —> X n is defined by
7TnU e X n , (7Tnu)(Ty) = u(Tij), 1 < t ^ 71, 1 ̂  j ^ T.

Then vrnu —> u as n —> oo for each u G C[0,1] and the results of Section 2 are applicable.

We quote the following two estimates.

For u e C[0,l], (See Chatelin [2], Corollary 7.6, p. 328),

(4.7) IKZ-T-HL^C-il lt iMlU^.

Let / G Cr[0,1] and g G C2r[0,1]. Then, (See de-Boor-Swartz [5]),

(4.8) / f(t)(I-nn)g(t)dt C2\\f\\r,oo\\9\\2r>00h
2r.

As the proofs of the following two Propositions follow in a straightforward manner
by using the above two estimates, the results are only stated.

P R O P O S I T I O N 4 . 3 . For y G C2r[0, l], we have

(4.9) \\T(I - 7rn)y||2roo < C2(2r

where Ci is a constant independent ofn.

PROPOSITION 4 . 4 . For y eC2r[0,1], we have

(4.10) | | ( / - TTB)T(/ - 7rB)y||oo < Cs/*8",

and

(4.11) ||T(7 - nn)T(I - 7r«)2/||oo < C<hir,

where C3 and C4 are constants insependent ofn.

(,2r
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We now state our main result which follows immediately from Propositions (4.2)
and (4.4).

THEOREM 4 . 5 . Let ~nn be either the orthogonal projection or the interpolatory
projection onto Xn. In the case of the orthogonal projection case we assume that k(.,.)
e Cr([0, l]x[0,1]) and f 6 Cr[0,1], while in the case of the interpolatory projection we
assume that k{.,.) € C2r([0, l]x[0,1]) and f € C2r[0,1]. Then

(4.12) \\u-u^\\=O(h3r)

and

(4.13) ||u - u%\\ = O(hir).

P R O O F : In the case of the orthogonal projections (4.12) follows from the estimate
(3.1) of Theorem 3.1 and the estimate (4.5) of Proposition 4.2, while in the case of the
interpolatory projections we use estimates (3.1) and (4.10) to deduce (4.13).

Since from (4.2) or (4.7) we have

||(/-7rn)ru||2 < 11

it follows that

(4.14) | | ( / -

We now deduce (4.13) from (3.2), (4.6), (4.12) and (4.14) or from (3.2), (4.11), (4.12)
and (4.14). D

REMARK 4.6. The above results should be compared with following known bounds.

(4.15) \\u-u°\\=O(hr)

(4.16) \\u-usJ=O(h*).

R E M A R K 4.7. If the kernel is smooth as mentioned above, but the right hand side / is
less smooth, say / € C[0,1], p < r, then from [14] we have

||u - u°\\ =

Consider the following Kantorovich method

and its iterated version

tf - Tu% + f.
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Then it is proved in [14] that

It can be proved that

and

\\u - 5 f || = 0{h3r+p).

Thus when the kernel is smooth, irrespective of whether the right hand side / has the
same smoothness as the kernel or is less smooth, u% exhibits higher order of convergence
as compared to u%, u%, u% and u%, whereas u% has higher order of convergence than

< •

REMARK 4.8. The full superconvergence order 4r in the case when the right hand side
is not smooth can be obtained by using a technique from [14]. The method proposed
here is applied to the regularised equation

v-Tv = Tf,

where v = Tu. Thus let
vM_TMvM=Tf

and define

Then

If we let

then

5. NUMERICAL RESULTS

Consider the Fredholm integral equation of the second kind given by

https://doi.org/10.1017/S0004972700037916 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700037916


[11] Compact operator equations 527

The exact solution is not known, but it is clear that u € C2[0, 1], but u does not belong
to C3[0,1].

Let Xn to be the space of piecewise constant functions (r — l)with respect to the
uniform partition

1 2
0 < - < - <

n n n
and 7rn to be the interpolatory projection at the midpoints

ln\ 2k -1 .

n

In actual computations, the integral operator T is replaced by T which is obtained
by approximating the integral by the composite midpoint rule. It is given by

The solution obtained by using T instead of T is denoted by u.

Form = 512, the qualities | ( u - O ( s ) | , | ( U - ^ ) ( S ) | , | ( t Z - ^ ) ( s ) | and j(u-5n
M)(S) |

are computed at s = 1/512 and s = 1/2 - 1/512 for n = 4,8,16,32,64 and 128. Using
two successive values of n, the orders of convergence are computed and are denoted by
a, 0, 7 and 6, respectively.

n

4

8
16
32
64

128

Galerkin

7.5
3.5
1.7

8.0
3.7

1.6

xlO"1

xlO-1

xlO"1

xlO-2

xlO"2

xlO-2

a

1.09
1.06
1.07
1.11

1.23

Table

Sloan

1.1

2.8
7.1

1.8
4.4
1.0

xlO-1

xlO"2

xlO"3

xlO"3

xlO~4

xlO-4

5.1: s

P

2.03
2.01

2.01
2.02
2.07

= 1/512

I

7.4

7.8
8.6
9.7
1.0
1.1

Ĵew

xlO- 4

x lO- 5

x lO- 6

x lO- 7

x lO- 7

x lO- 8

7

3.25
3.19

3.15
3.17
3.32

Iterated New

1.9
1.4
9.3
5.8
3.6
2.0

xlO" 5

x lO" 6

x l O - 8

x lO" 9

x lO- 1 0

x lO- 1 1

5

3.73
3.95
4.00
4.03
4.14

n

4

8
16
32

64

128

Galerkin

8.3
5.2

2.8

1.4

6.8
2.9

x lO- 2

x lO- 2

x lO" 2

x lO- 2

x lO" 3

x lO- 3

a

0.65
0.89
0.99
1.07
1.21

Table 5.

Sloan

1.3
3.2
7.9
2.0

4.9
1.2

x l O - 1

x lO" 2

x lO" 3

x l O - 3

x l O - 4

x lO" 4

2: s =

0

2.03
2.01
2.01
2.02

2.07

1/2

I
1.1

1.3
1.5
1.8
2.1
2.1

- 1/512

Vew

xlO- 3

xlO" 4

x l O - 5

x lO- 6

x lO- 7

x lO- 8

7

3.09
3.07
3.07
3.12

3.29

Iterated New

3.5
5.2
3.7
2.3
1.4
8.2

x l O - 6

x l O - 7

xlO~8

x l O - 9

xlO" 1 0

x lO- 1 2

5

2.76
3.82
3.97
4.02

4.13

Since r = 1, the expected values of a, 0, 7 and 5 are 1, 2, 3 and 4, respectively.

It can be seen from the above tables that the computed values of a, 0, 7 and 6 match
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well with the expected values. In addition, the error in the solution obtained by the
iterated version of the method proposed here with n — 4 is smaller than the error in the
Galerkin/Sloan method with n = 128.
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