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1. Introduction and basic concepts. The observation that convergence of real sequ-
ences may be defined in terms of limits inferior and limits superior as by means of
neighbourhoods in the Euclidean topology leads to the question: for which lattices does
order convergence coincide with convergence in the order topology? This problem has
been attacked by D. C. Kent [10], A. Gingras [7] and others. We hope to present a
satisfactory solution in this paper. Although there are known several characterizations of
lattices, with topological order convergence (cf. Propositions 1, 2), an evaluation of these
criteria already requires some knowledge of the order topology of the given lattice. In the

i present paper, we establish a purely lattice-theoretical description of those lattices for
which order convergence is not only topological, but moreover, the lattice operations are
continuous. Henceforth, such lattices will be referred to as order-topological lattices. All
convergence statements will be formulated in terms of filters rather than nets. For an
introduction to convergence functions, the reader may consult D. C. Kents's paper [9].

Let L be any lattice, partially ordered by an order relation <. For a subset Y of L, let
Yl and YT denote the set of all lower and upper bounds for Y, respectively. If x is the
join (i.e. the least upper bound) of Y then we indicate this by the symbol x = V Y.
Similarly, we write x = A, Y if x is the meet (i.e. the greatest lower bound) of Y.

Furthermore, x = y v z means x = V {y> z}, and x = y A z means x = /\{y, z}. For the
sake of convenience, we set

XAY-{xAy.yeY}, ( X eL; Y . Z s L ) .
r A Z = {y A z : y e Y, z e Z}

Finally, for any filter gf on L, we write

I g order converges to a point xeL (written gf »x) if

For all xeL, the intersection

is again a filter on L, but 93(x) need not order converge to x:

EXAMPLE 1. The set

L={(x,0):0«x<l}U{(0, y):0=sy<l}U{(l,
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is a complete lattice, partially ordered componentwise. Here we have V 93(0, 0) = (0,0)
but A®(0,0)T=(l , l ) .

Order convergence is said to be pre-topological on L if 3?(x) >x for all xeL. The

order topology of a lattice L is defined to be the system £)=£>(L) of all subsets Y of L
such that xe Y implies YeS3(x). It is easily verified that this is in fact the finest topology
such that order convergence implies ©-convergence. In general, order convergence is
distinct from D-convergence (see Example 1), and the neighbourhood filter ll(x) of x in ©
may be properly contained in 93(x) (see Example 2 below; it is obvious that the inclusion
U(x)c93(x) fs always fulfilled). Now order convergence is said to be topological if it
agrees with convergence in the order topology. Clearly, this implies that order con-
vergence is pre-topological, but the converse fails to be true as was pointed out by Kent in
[10]:

EXAMPLE 2. The "right-open square"

L = {(x, y)e[0,1]2:0<y < 1 implies x < 1},

together with componentwise order, is a complete lattice for which order convergence is
pre-topological but not topological.

We bring together some trivial (and rather ineffective) characterizations of topologi-
cal order convergence in

PROPOSITION 1. For any lattice L, the following conditions are equivalent:

(a) order convergence is topological;
(b) there exists a topology X such that order convergence coincides with X-convergence;
(c) for all xeL, U(x) order converges to x;
(d) order convergence is pre-topological, and U(x) = 93(x) for all xeL.

A less trivial result is

PROPOSITION 2. On a lattice L, order convergence is topological iff for all xeL, U(x)
has a base of intervals.

This has been asserted by A. Gingras [7] for complete lattices, but his proof is based
on the wrong hypothesis that the notions "pre-topological" and "topological" would
coincide on complete lattices (cf. Example 2). A correct proof of Proposition 2 and other
recent results on order convergence can be found in [5].

In [10], Kent has described pre-topological order convergence in terms of the ideals

I(x) = D {I •• I is an ideal with V I = 4
and the dual ideals

D(x) = Pi {D: D is a dual ideal with /\D = x}:

PROPOSITION 3. The order convergence of a lattice L is pre-topological iff
(cl) x = V I(x) = A D(x) for all xeL.
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Whenever this is fulfilled, a base for the filter 93(x) is given by

{[y,z]:yeI(x),zeD(x)}.

A similar short description of topological order convergence seems to be unkown.

2. Characterization of order-topological lattices. A pair (L, SE) is a topological lattice
if L is a lattice and X a topology on L such that the lattice operations

v.LxL-^L, (x,y)t->xvy

and

A : L X L - > L , (X, y)•-» xAy

are continuous with respect to X. Thus L is order-topological iff the order convergence on
L is topological and (L, £>) is a topological lattice. An easy verification gives

PROPOSITION 4. Every chain (complete or not) is an order-topological lattice.

Two other sufficient but not necessary conditions for a lattice to be order-topological
have been established by Kent in [10]: Any lattice L satisfying (cl) and

(c2) xel(y) or yeD(x) implies I ( y ) n D ( x ) ^ 0

or

. „, xel(y) and x < z implies xel(z) ,
(c3)

x e D(y) and z ^ x implies x € D{z)
is order-topological. However, neither (c2) nor (c3) are necessary for a lattice to be
order-topological, as can be seen from Proposition 4 and the observation that there are
chains for which both (c2) and (c3) are violated (whereas (cl) holds in every chain):

EXAMPLE 3. In the complete chain L = {0}U[l/2, 1], linearly ordered by <, the
element x = 1/2 has the property x e I(x) = {0, 1/2} while I(x) n D(x) = 0 , disproving (c2).
For l / 2 < y < l , we have ye 1(1) but not yef(y) = {0}U[l/2, y[, so (c3) fails as well.

Furthermore, a (complete) lattice with topological order convergence need not be
order-topological, as becomes evident from a counterexample due to A. Gingras [7] (who
also remarked that Kent's Example 2 in [10] is not correct):

EXAMPLE 4. The set

partially ordered by componentwise order, is a complete lattice with topological order
convergence, but neither the join- nor the meet-operation is continuous at x =(1,0) (see
Proposition 5).

For any ideal I of a lattice L and all x e L, x A I = x l n I is again an ideal. Now L is
called meet-continuous (written A-continuous) if for every ideal I in L and all xeL,
z = V implies XAZ = V (XAJ) . Note that we do not postulate completeness for L.
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^-continuity is defined dually. The lattice in Example 4 is neither v- nor A-continuous.
In [4], it is shown that the preceding definition in fact characterizes continuity of

certain intrinsic lattice operations:

PROPOSITION 5. For a lattice L, the following four conditions are equivalent:

(a) L is A-continuous;
(b) the meet-operation A : L X L — » L is continuous with respect to order convergence:

$ >x and © >y implies $ A © >xAy (where ^A® is the filter generated
o o o

by the sets FAG with F e g , Ge@);
(c) for all xeX, the local meet-operation <j)x:L-*L, y>->xAy is continuous with

respect to order convergence: $ >y implies X A § >xAy (where XA$ is the
o o

filter generated by the sets XAF with
(d) the local meet-operations <f>x are continuous in the order topology.

Each of these statements holds whenever the meet-operation A:LXL—>L is continuous
with respect to the order topology.

Let us conclude our preparing considerations by introducing the sets

I*(x) = (v e L • x e Uv)\
Y iye=A..xeiow (xeL).

D (x) = {yel :xeD(y)s
We are now able to prove that the equivalence of pre-topological and topological order
convergence, although being violated in certain lattices, holds for all v- and A-continuous
lattices.

THEOREM 1. For a lattice L, the following three conditions are equivalent:
(a) L is order-topological;
(b) L is v- and A-continuous, and order convergence is pre-topological on L;
(c) x = V I(x) = A D(x) for all xeL, and x < y implies I(x)sI(y), D(y)£D(x).

If one of these conditions holds then the sets I*(x) and D*(x) (x 6 L) form a subbase for the
order topology.

Proof, (a) => (b) is clear by Proposition 5.
(b) 4> (c). By Proposition 3, we have x = V I(x) = A D(x). Now suppose x < y. Then

for any ideal I, y = V I implies

x = XAy=V(xAl) , I ( X ) £ X A I C J .

Thus I(x)cJ(y)) and D(y)sD(x) can be shown analogously.
(c) ̂ > (a). First, we prove

(1) I(x) = U tf(z):z eI(x)} for all xeL.

Clearly zel(x) implies z<x, I(z)^I(x). Also $) = {I(z):zeI(x)} is a directed system of
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ideals since the coordination x >-» I(x) is isotone and I(x) is directed (being an ideal).
Hence I = [J g) is also an ideal, and V I(z) = z for all z implies

x = V K x ) = V { V l ( z ) : z e I ( x ) }

Thus I(x)£l, as desired.
Next, we show that for all y, zeL,

(2) I*(y) and D*(z) are open in £>.
Suppose g - ^ x e l * ( y ) . Then J = g4 is an ideal (cf. [5], [10]) with V I = x, and yel(x)
implies y €/(z) for some zel(x), by (1). Now we obtain zel*(y) and z e l ( x ) c j = ̂ i , so
zT c/*(y) and zfe3f, whence I*(y)e^. For D*(z), we conclude analogously.

Third, we claim that

(3) @(x) = U*(y): y e I(x)} U {D*(z): z 6 D(x)} is a subbase for U(x) = JB(x).

By Proposition 3, order convergence is pre-topological, and

93(x) = {[y,z]:yeI(x),z€D(x)}

is a base for 93(x). But for yel(x), zeD(x), we have

x e I*(y) n D*(z) £ yf n zA = [y, z],

and by (2), J*(y)DD*(z) is an open member of U(x). Observing that the inclusion
U(x)sSS(x) always holds, we see that lt(x) coincides with 9?(x), and by Proposition 1,
order convergence is topological.

Finally, we prove

(4) L is A-continuous.

Let I be an ideal possessing a join y. For any xeL, xAySy implies

We have to verify that x A y is the least upper bound of the ideal x A I. In fact, if z is any
upper bound of x A I then x A y = V K* A y) < z since I(x A y) c x A I. On the other hand,
it is clear that x A y is itself an upper bound for x A I. By dual arguments, we find that L is
also v-continuous.

Since order convergence is topological, the implication (a) => (b) in Proposition 5
ensures that the meet operation is continuous with respect to the order topology, and by
duality, the join operation is also continuous. Thus (L, ©) is a topological lattice.

It is not hard to see that either of the conditions (c2) and (c3) implies

1 ' D(xvy) = D(x)nD(y)

for all x, y € L, so that Kent's results in [10] are immediate consequences of the
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implication (c) =£> (a) in Theorem 1:

COROLLARY 6. A lattice satisfying (cl) and (c2') is an order-topological lattice in which
the order topology has a base of convex open sublattices.

In fact, (c2') means that each 7*(y) is a dual ideal and each D'*{z) is an ideal whence
the system

®(x) = U*(y) n D*(z): y 61(x), z e D(x)}

is an open neighbourhood system consisting of convex sublattices. D. P. Strauss [16] has
shown a powerful partial inversion of Corollary 6: if (L, 20 is a compact (T2) topological
lattice with a base of open convex sublattices then !£ must already coincide with the order
topology (and with the interval topology). See also [5] and [13].

3. S-continuous lattices. In the last years, the so-called continuous lattices introduced
by D. Scott [15] have turned out to be a fundamental concept of modern lattice theory.
Let us call a lattice S-continuous if

x = V js(x) for all x e L,

where Is(x) is the intersection of all ideals I in L possessing a join z with x^z. The
complete S-continuous lattices are exactly the continuous lattices in the sense of Scott. An
easy computation shows

PROPOSITION 7. In a A-continuous lattice L, the ideal I(x) coincides with Is(x), for each
xeL.

COROLLARY 8. For a lattice L, the following three conditions are equivalent:

(a) L is S-continuous;
(b) L is A-continuous, and x=\J I(x) for all x e L ;
(c) x = V I(x) for all xeL, and x :£ y implies I{x)£ J(y).

Proof. (a)=> (c). The inclusion Is(x) Z I(x) c xl always holds, so x = V hW implies
I(x) = Is(x) and x = V I(x). If x < y and I is any ideal with y = \J I then I(x) = Js(x)c I.
Hence I(x) is contained in I(y).

(c) ̂ > (b). See Part (4) in the proof of Theorem 1.
(b) => (a). Proposition 7.
Now from Theorem 1, we derive immediately

THEOREM 2. A lattice L is order-topological iff L and the dual lattice L* are
S-continuous.

By an upper segment of L, we mean a subset U with I ' C U for all xeL. The
©(L)-open upper segments form a topology a(L), the so-called Scott-topology (S-
topology). In [4] and [5], it is shown that a set U is ©(L)-open iff for every ideal I and for
every dual ideal D with V 1 = /\DeU, there exist y e I and zeD such that the whole
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interval [y, z] = yr Dzl is contained in U. From this observation, one easily derives that
an upper segment U is ©(L)-open (hence cr(L)-open) iff it intersects every ideal which has
a join contained in U. The bi-S-topology ©S(L) is the coarsest topology comprehending
<T(L) and the S-topology o-{L*) of the dual lattice L*. Thus £>S(L) has a base of convex
sets (moreover, a subbase of upper and lower segments) and is always contained in the
order topology O(L). However, ©S(L) may be even strictly contained in the so-called
convex order topology ©C(L) which has as a base the set of all convex ©(L)-open sets (cf.
[13]).

EXAMPLE 5. Let / denote the real unit interval and K the complete Boolean lattice of
all regular open subsets of /. Form the disjoint union of I and K, and identify the
corresponding greatest and least elements, respectively. Thereby, a complete lattice L is
obtained in which the set Y = J\{0,1} is convex and open in ©C(L) but not in ©S(L)
since every nonempty <x(L)-open set intersects every nonempty cr(L*)-open set outside
from Y (cf. E. E. Floyd [6]).

This example also shows that a filter may converge to x both in cr(L) and in a(L*)
but not in the order topology £>(L) (otherwise, £>(L) would always agree with €)S(L)).

In an order-topological lattice, each of the sets /*(y) is an £)(L)-open upper
segment, i.e. a cr(L)-open set. Dually, each D*(z) is <r(L*)-open. In particular, the order
topology has a base of ©s(L)-open sets, and we infer

COROLLARY 9. In an order-topological lattice L, the bi-S-topology ©S(L) coincides with
the order topology 25(L), and, consequently, the following three conditions are equivalent for
a filter gf on L :

(a) §f order converges to x in L;
(b) g converges to x in £){L);
(c) $ converges to x in <r(L) and in a(L*).

Similarly, one can prove that in a v- and A-continuous lattice L, the topologies ©S(L) and
©C(L) coincide.

Observing that every completely distributive lattice is S-continuous (see [16], p. 38)
and that complete distributivity is a self dual property, we derive from Theorem 2.

COROLLARY 10. Every completely distributive lattice is order-topological. Moreover, it is
a compact T2 space in its order topology which agrees with the interval topology.

In fact, every ultrafilter on a completely distributive lattice has a unique order limit
[17], and since order convergence is topological, the order topology must be compact and
T2. The last statement is due to A. J. Ward [18].

4. Compactly generated lattices. An element x of a lattice L (not necessarily complete)
is called compact if it is contained in every ideal I possessing a join y with x<y. The dual
notion is cocompact. A lattice L is compactly generated if every element of L is a join of
compact elements. (Again, we do not postulate completeness for L, contrary to the
convention in [3]). If both L and L* are compactly generated then we speak of a
bicompactly generated lattice. We collect some obvious characterizations of compact
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elements in
PROPOSITION 11. The following five conditions are equivalent:

(a) x is compact;
(b) xels(x);
(c) I*(x) = xT;
(d) xT is not only closed but also open in the order topology;
(e) xf is open in the Scott-topology.

Notice that every principal ideal x^ and every principal dual ideal xT is not only
closed in the order topology but also in the coarser interval topology. On the contrary, xT

is not closed in the Scott-topology unless x is the only element of L, while xT is always
Scott-closed (being the complement of an upper segment).

A straightforward calculation shows

PROPOSITION 12. (1) A lattice L is compactly generated iff for all x,yeL with x<y,
there exists a compact element u such that u < y but not u < x.

(2) In a compactly generated lattice, the ideal I(x) is generated by the compact
elements below x. Furthermore, x = V I(x), and I(xAy) = I(x)DI(y).

(3) Every compactly generated lattice is S-continuous.

Moreover, one can show
THEOREM 3. For a lattice L, the following four conditions are equivalent:

(a) L is bicompactly generated;
(b) The system & = {yT: y is compact} U {zA: z is cocompact} is a subbase for the order

topology of L;
(c) The order topology of L has a subbase consisting of principal ideals and principal

dual ideals;
(d) L is v- and A-continuous, and the order topology of L has an open base consisting

of closed intervals.

If one of these conditions holds then L is order-topological and satisfies (cl), (c2') and (c3).
Moreover, L is a zero-dimensional regular space in its order topology (possessing a base of
closed-open sets).

Proof, (a) ^> (b) by Theorem 1, Proposition 11 and Proposition 12.
(b) => (c). Trivial.
(c) => (a). For x < y, there exist u f , D l e Q with y e [u, u] = u T n u 4, x£[u, t>] (since the

order topology is always T^. It follows that u < y, x s v, uj^x. But, by Proposition 11, u is
compact, and applying Proposition 12.(1), we conclude that L is compactly generated, and
by duality, so is L*.

(a) ̂ > (d). Clear by Proposition 12 Part (3) and the implication (a) => (c).
(d) >̂ (c). It suffices to show that for any O-open interval [u, v]=u't Hvl, u t and vl

are also open. By Proposition 5, the mapping <j>v:y >-*y AV is continuous, and, conse-
quently, uT = (^([u, u]) is open in £). By duality, the same holds for vl.
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The other statements are clear (cf. [1], [11]). As a trivial consequence of Theorem 3,
we notice

COROLLARY 14. Every lattice without infinite chains is order-topological, and its order
topology is discrete.

5. Boolean lattices. By a Brouwerian lattice (or a Heyting algebra) there is meant a
lattice L with least element 0 such that each element x of L has a pseudo-complement x'
satisfying the equivalence

y<x'OxAy = 0.

(In other words, the sets {y £ L: x A y = 0} are principal ideals). The following result is
well-known for complete lattices:

PROPOSITION 15. Every Brouwerian lattice is A-continuous. In particular, every Boolean
lattice is v- and A-continuous.

One can show somewhat more: if L is a Brouwerian lattice and Y is an arbitrary
subset of L with join z then for all xeL, XAZ is the join of the set x A Y. (See [2, p.
174].)

In Boolean lattices, it is possible to describe the ideals I(x) explicitly in terms of
atoms:

PROPOSITION 16. In a Boolean lattice L, the ideal I(x) consists of all finite joins of
atoms below x. In particular, 1(1) is the ideal generated by the atoms of L. (If there is no
atom below x then I(x) = {V 0 } = {O}.)

Proof. In order to show that I(x) is generated by the atoms below x, we may assume
that x = 1 (since I(x) is also the intersection of all ideals in the Boolean sublattice [0, x]
with join x). Let I be any ideal with V 1=1- If there exists an atom a with a&I then
I s a'1, and it follows that 1= V I — o', a contradiction. Hence 1(1) contains all atoms.
Conversely, assume y e 1(1), and let I denote the ideal generated by the atoms of L.
Furthermore, let P be an arbitrary prime ideal containing I. If 1 is not the join of P then
there exists an upper bound z of P with z < 1. Thus P^z1, and by the maximality of P,
equality holds, and z is a dual atom. But then z' is an atom belonging to P, which is
impossible because z' cannot be dominated by z. Accordingly, we have \/ P=l, ysP,
and it follows that 1(1) is a subset of the intersection of all prime ideals containing I. But
this intersection coincides with I, on account of the Prime Ideal Theorem. Finally, it is
clear that I consists of all finite joins formed by atoms of L.

COROLLARY 17. Every Boolean lattice satisfies condition (c3), and the ideal 1 = 1(1)
consists of all compact elements. Furthermore, I is the intersection of all non-principal ideals.

Proof. In a Boolean lattice, the compact elements are precisely the finite joins of
atoms. By relativization, we find that I(x) consists of all compact elements below x, and
this implies the first half of (c3). The second follows analogously, by observing that L is
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self dual. If P is a non-principal prime ideal then \/ P=l, and I is contained in P. On the
other hand, as we have seen before, I cannot be contained in any principal prime ideal
(which would be generated by a dual atom).

As a little application, we obtain the well-known fact that the filter of all co-finite
subsets of an infinite set is the intersection of all non-principal ultrafilters (cf. [14]).

Another immediate consequence of Proposition 16 is

COROLLARY 18. A Boolean lattice L has no atoms iff I(x) = {0} for all xeL. Hence for
no (non-trivial) atomless Boolean lattice can order convergence be pre-topological.

Examples of such atomless (complete) Boolean lattices are the lattices of all regular
open subsets of R and of all measurable sets modulo null sets, respectively (cf. [18]).

Now we are in position to give a lot of alternative characterizations of order-
topological Boolean lattices:

THEOREM 4. For a Boolean lattice L, the following conditions are all equivalent:

(a) L is S-continuous;
(b) L is atomic (i.e. every non-zero element dominates at least one atom);
(c) L is a point lattice (i.e. every element is a join of atoms);
(d) 1 is a join of atoms;
(e) L is compactly generated;
(f) x = V *(x) forallxeL;
(g) Order convergence is pre-topological on L;
(h) Order convergence is topological on L;
(i) {a r : a is an atom of L}U{z •*• :z is a dual atom of L} is a subbase for the order

topology;
(j) {ar :a is an atom of L} is a subbase for the Scott-topology;
(k) L is order-topological.

Proof. The equivalence of the first five purely order-theoretical statements is well-
known (at least in the case of complete lattices, cf. [3, pp. 32-35] and [16, p. 59]).

(e)«(f) . Proposition 16 and Corollary 17.
(f) O (g). Propositions 3. (Recall that a Boolean lattice is selfdual).
(g) O (h) €> (k). Theorem 1 and Proposition 15.
(e) ^ (i). By Theorem 3, the set

® = {y r '• y is compact in L} U {z i : z is cocompact in L}

is a subbase for the order topology. But any compact element y is a finite join of atoms,
say y = V -Ay Thus y T= f] {aT: aeAy}, and a dual argument holds for dual atoms.

(i)=>(e). Theorem 3.
(e) <£ (j) Analogously.

COROLLARY 19. For a complete Boolean lattice L, the following conditions are

https://doi.org/10.1017/S0017089500003980 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003980


r
ORDER-TOPOLOGICAL LATTICES 67

equivalent:

(a) L is atomic;
(b) L is completely distributive;
(c) L is isomorphic to a power set;
(d) L is continuous in the sense of Scott;
(e) L is order-topological;
(f) L is a Boolean space in its interval topology (which coincides with the order

topology);
(g) L is a T2 space in its interval topology.

Proof. The equivalence of (a)*, (b) and (c) is a standard result of lattice theory (cf. [3,
p. 35]). As M. Katetov has shown in [8], a Boolean lattice is atomic iff its interval
topology is T2. An application of Corollary 10, Theorem 3 and Theorem 4 completes the
proof. (Recall that a Boolean space is a totally disconnected compact T2 space.)

It should be emphasized that an atomic Boolean lattice need not be complete. (For
example, the lattice of all finite and cofinite subsets of an infinite set is not). The order
topology of an atomic Boolean lattice is compact if and only if the lattice is complete. In
[11], this additional requirement has not been stated explicitly. In the same paper, it has
been shown that the order topology of a complete atomic Boolean lattice is uniformizable.
But this is now clear since a compact T2 space is always uniformizable.

6. Concluding remarks and problems. We have seen in Proposition 5 that every
lattice which is a topological lattice in its order topology must be v- and A-continuous. We
wonder if the converse is also true. Probably, a counterexample is the complete atomless
Boolean lattice of all regular open subsets of U (and it may be that every atomless
Boolean lattice is a counterexample). However, it can be shown that a v- and A-
continuous lattice L for which the order topology £)(LxL) coincides with the product
topology O(L)<8)£)(L) is a topological lattice with respect to the order topology. It seems
to be a deeper problem to classify those lattices L for which the identity

is valid (cf. [4]).
The equivalence of pre-topological and topological order convergence (resp. S-

convergence) in v- and A-continuous lattices has an analogue in the theory of topological
groups: if G is a group with a pre-topological convergence function for which the group
operations are continuous then G is already a topological group (cf. H.-J. Kowalsky [12]).
However, it should be emphasized that we have derived the corresponding result for
lattices only in one special case, namely that of order convergence. It is conjectured that an
arbitrary pre-topological lattice need not be topological.

Finally, it should be mentioned that the generalization of notions like compactness
and continuity from complete to arbitrary lattices proposed in this paper is not the only
one which allows us to extend many "classical" results on complete lattices. Another
"natural" possibility (which even works in arbitrary posets) is to replace all statements of
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the form x < V V by x e Yn and all identities x=\/ Y by xl = Yn. This alternative
procedure will be discussed elsewhere.
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