MARKOV'S AND BERNSTEIN'S INEQUALITIES ON DISJOINT INTERVALS

PETER B. BORWEIN

1. Introduction. In 1889, A. A. Markov proved the following inequality:

Inequality 1. (Markov [4]). If p_{n} is any algebraic polynomial of degree at most n then

$$
\left\|p_{n}{ }^{\prime}\right\|_{[a, b]} \leqq \frac{2 n^{2}}{b-a}\left\|p_{n}\right\|_{[a, b]}
$$

where $\left\|\|_{A}\right.$ denotes the supremum norm on A.
In 1912, S. N. Bernstein established
Inequality 2. (Bernstein [2]). If p_{n} is any algebraic polynomial of degree at most n then

$$
\left|p_{n}^{\prime}(x)\right| \leqq \frac{n}{((x-a)(b-x))^{1 / 2}}\left\|p_{n}\right\|_{[a, b]}
$$

for $x \in(a, b)$.
In this paper we extend these inequalities to sets of the form $[a, b] \cup[c, d]$. Let Π_{n} denote the set of algebraic polynomials with real coefficients of degree at most n.

Theorem 1. Let $a<b \leqq c<d$ and let $p_{n} \in \Pi_{n}$. Then

$$
\left|p_{n}^{\prime}(x)\right| \leqq\left(\frac{c-x}{d-x}\right)^{1 / 2} \frac{n}{((b-x)(x-a))^{1 / 2}}\left\|p_{n}\right\|_{[a, b]} \cup[c, a]
$$

for $x \in(a, b)$.
We note that Inequality 2 is a special case $(b=c=d)$ of the above theorem.

Corollary 1. Let $a<b \leqq c<d$ and let $p_{n} \in \Pi_{n}$. Then

$$
\left|p^{\prime}(x)\right| \leqq\left(\frac{x-b}{x-a}\right)^{1 / 2} \frac{n}{((x-c)(d-x))^{1 / 2}}\left\|p_{n}\right\|_{[a, b] \cup[c, d]}
$$

for $x \in(c, d)$.

Received May 1, 1979.

Corollary 2. Let $a<b \leqq c<d$ and let $p_{n} \in \Pi_{n}$. Then,

$$
\left\|p_{n}^{\prime}\right\|_{[c, d]} \leqq\left(\frac{d-b}{d-a}\right)^{1 / 2} \frac{2 n^{2}}{d-c}\left\|p_{n}\right\|_{[a, b] \cup[c, d]} .
$$

Thus, we obtain sharper bounds than those we achieve by applying Inequality 1 or Inequality 2 directly to $[c, d]$.
On sets of the form $[-b,-a] \cup[a, b]$ we can derive an asymptotically "best possible" form of Markov's inequality.

Theorem 2. a) If $0<a<b, n$ is even and $p_{n} \in \Pi_{n}$, then

$$
\left\|p_{n}{ }^{\prime}\right\|_{[-b,-a]} \cup[a, b] \text { § }\left(1+\frac{9}{n^{2}}\right) \frac{n^{2} b}{\bar{b}^{2}-a^{2}}\left\|p_{n}\right\|_{[-b,-a] \cup[a, b]}
$$

provided that n is large enough to satisfy

$$
\frac{b^{2}-a^{2}}{3 a b n}+\frac{(b+a)}{2 b}\left(1+\frac{6}{n}\right)^{2} e^{6\left(b^{2}-a^{2}\right) 5 a b n} \leqq 1 .
$$

b) For each even n there exists $p_{n} \in \Pi_{n}$ so that

$$
\left\|p_{n}\right\|_{[-b,-a]} \cup[a, b]=\frac{n^{2} b}{b^{2}-a^{2}}\left\|p_{n}\right\|_{[-b,-a]} \cup[a, b] .
$$

Corollary 3. Suppose n is even and $n \geqq 50$. If $p_{n} \in \Pi_{n}$ then

$$
\left\|p_{n}^{\prime}\right\|_{[-2,-1] \cup[1,2]} \leqq\left(1+\frac{9}{n^{2}}\right) \frac{2 n^{2}}{3}\left\|p_{n}\right\|_{[-2,-1]} \cup[1,2] .
$$

2. Characterizing polynomials that maximize Markov's or Bernstein's inequalities. In this section we show that polynomials that maximize $\left|p_{n}{ }^{\prime}(t)\right|$, subject to $\left\|p_{n}\right\|_{I} \leqq 1$ where I is compact, must be of the form

$$
\alpha x^{n}+\beta x^{n-1}-q_{n-2}(x)
$$

where $g_{n-2} \in \Pi_{n-2}$ is the best approximation to $\alpha x^{n}+\beta x^{n-1}$ on I. In particular, we show, as Bernstein did for the interval $[0,1]$ (see [2]), that the polynomial that satisfies $\left\|p_{n}\right\|_{I} \leqq 1$ and has maximum derivative at $\max I$ is of the form

$$
p_{n}(x)=a x^{n}-q_{n-1}(x)
$$

where $q_{n-1} \in \Pi_{n-1}$ and g_{n-1} is the best approximation to $a x^{n}$ on I.
Theorem 3. Let I be any infinite compact set of real numbers and let $\zeta \in R$. Suppose $p_{n} \in \Pi_{n}$ satisfies
(1) $\frac{\left|p_{n}{ }^{\prime}(\zeta)\right|}{\left\|p_{n}\right\|_{I}}=\max _{\substack{q_{n} \in \Pi_{n} \\ n_{n} \neq 0}} \frac{\left|q_{n}{ }^{\prime}(\zeta)\right|}{\left\|q_{n}\right\|_{I}}$.

Then, there exist α and β so that $p_{n}(x)=\alpha x^{n}+\beta x^{n-1}-s_{n-2}(x)$ where $s_{n-2} \in \Pi_{n-2}$ is the best Chebyshev approximation to $\alpha x^{n}+\beta x^{n-1}$ on I. (The best Chebyshev approximation is the one that minimizes the supremum norm.)

We need the following lemma for the proof of this theorem:
Lemma 1. Let $p_{n} \in \Pi_{n}$ and let ζ be any point that is not a root of p_{n}. Suppose that there exist at most $k \leqq n-2$ points $x_{1}<x_{2}<\ldots<x_{k}$ where p_{n} changes sign. Then there exists $q_{n} \in \Pi_{n}$ so that
a) $\operatorname{sgn} q_{n}{ }^{\prime}(\zeta)=\operatorname{sgn} p_{n}{ }^{\prime}(\zeta)$,
b) $\operatorname{sgn} q_{n}(x)=-\operatorname{sgn} p_{n}(x)$, except possibly at the roots of q_{n}.

Proof. Let

$$
s(x)=-\left(\operatorname{sgn} p_{n}(-\infty)\right)(-1)^{k} \prod_{i=1}^{n}\left(x-x_{i}\right)
$$

and consider $q_{n}{ }^{y}(x)=s(x)(x-y)^{2}$. Then, if $s(\zeta) \neq 0$,

$$
\left.\frac{d q_{n}{ }^{y}(x)}{d x}\right|_{\zeta}=(\zeta-y)\left(2 s(\zeta)+(\zeta-y) s^{\prime}(\zeta)\right)
$$

which as a function of y changes sign at ζ. Thus, for an appropriate y close to $\zeta, q_{n}{ }^{y}$ satisfies a) and b).

Proof of Theorem 3. Let p_{n} satisfy the assumptions of the theorem (that such a p_{n} exists is a simple consequence of Π_{n} being finite dimensional).

Suppose p_{n} has at most $n-2$ changes of sign and suppose $p_{n}(\zeta) \neq 0$. If q_{n} satisfies the conclusion of Lemma 1 , then for sufficiently small $\epsilon>0$,

$$
\left\|p_{n}+\epsilon q_{n}\right\|_{I} \leqq\left\|p_{n}\right\|_{I} \text { and }\left|p_{n}^{\prime}(\zeta)+\epsilon q_{n}^{\prime}(\zeta)\right|>\left|p_{n}^{\prime}(\zeta)\right|
$$

which contradicts the assumption that p_{n} satisfies (1). Now suppose $p_{n}(\zeta)=0$ and p_{n} changes sign at $x_{1}<\ldots<x_{k}$. If

$$
q_{n}(x)=-\left(\operatorname{sgn} p_{n}(-\infty)\right)(-1)^{k}\left(\prod_{i=1}^{k}\left(x-x_{i}\right)\right)(x-\zeta)^{2}
$$

then, for sufficiently small $\epsilon>0$,

$$
\left\|p_{n}+\epsilon q_{n}\right\|_{I}<\left\|p_{n}\right\|_{I} \text { and }\left|p_{n}^{\prime}(\zeta)+\epsilon q_{n}^{\prime}(\zeta)\right|=\left|p_{n}^{\prime}(\zeta)\right|
$$

which also contradicts the assumption that p_{n} satisfies (1). Thus, p_{n} has at least $n-1$ sign changes.

We now suppose that the coefficient of x^{n} is non-zero for p_{n}. It follows that p_{n} has n real roots $x_{1}<x_{2}<\ldots<x_{n}$. We claim that in each interval $\left(x_{j}, x_{j+1}\right)$ there exists a point $y_{i} \in I$ so that
(2) $\left|p_{n}\left(y_{i}\right)\right|=\left\|p_{n}\right\|_{I}$.

If (2) is false then as in the proof of the lemma, we can, for a suitably
chosen y, construct

$$
\begin{aligned}
& q_{n}(x)=-\left(\operatorname{sgn} p_{n}(-\infty)\right)(-1)^{n}\left(\prod_{i=1}^{j-1}\left(x-x_{i}\right)\right)\left(\prod_{i=j+2}^{n}\left(x-x_{i}\right)\right) \\
& \times(x-y)^{2}
\end{aligned}
$$

where
a) $\operatorname{sgn} q_{n}{ }^{\prime}(\zeta)=\operatorname{sgn} p_{n}{ }^{\prime}(\zeta)$
and
b) $\operatorname{sgn} q_{n}(x)=-\operatorname{sgn} p_{n}(x)$,
except possibly for $x \in\left\{x_{1}, \ldots, x_{n}, y\right\} \cup\left[x_{j}, x_{j+1}\right]$. We note that since the y of Lemma 1 can be chosen from an interval, we may assume that $\left|p_{n}(y)\right| \neq\left\|p_{n}\right\|_{I}$. It follows from a), b) and the assumption

$$
\left\|p_{n}\right\|_{\left[x_{j}, x_{j}+1\right]}<\left\|p_{n}\right\|_{I}
$$

that for sufficiently smail $\epsilon>0$,

$$
\left\|p_{n}+\epsilon q_{n}\right\|_{I}<\left\|p_{n}\right\|_{I}
$$

and

$$
\left|p_{n}{ }^{\prime}(\zeta)+\epsilon q_{n}{ }^{\prime}(\zeta)\right| \geqq\left|p_{n}{ }^{\prime}(\zeta)\right| .
$$

This contradiction establishes (2).
We may by a similar argument show that there exists y_{n} so that

$$
y_{n} \in I \cap\left(-\infty, x_{1}\right) \text { or } \quad y_{n} \in I \cap\left(x_{n}, \infty\right)
$$

and

$$
\left|p_{n}\left(y_{n}\right)\right|=\left\|p_{n}\right\|_{I} .
$$

Thus, if $p_{n}(x)=\alpha x^{n}+\beta x^{n-1}-s_{n-2}(x)$ where $\alpha \neq 0$, then p_{n} achieves its maximum norm, with alternate sign, at n points $y_{1}<y_{2}<\ldots<y_{n}$ in I. This suffices to establish the theorem.

If p_{n} is actually of degree $n-1$, then $p_{n}(x)=\beta x^{n-1}-q_{n-2}(x)$. A similar argument shows that $q_{n-2}(x)$ is the best approximation to βx^{n-1} on I.

Theorem 4. Let I be any infinite compact set and let $\zeta \geqq \delta=\max I$. Suppose $p_{n} \in \Pi_{n}$ satisfies
(1) $\frac{\left|p_{n}^{\prime}(\xi)\right|}{\left\|p_{n}\right\|_{I}}=\max _{\substack{q_{n} \in n_{n} \\ q_{n} \neq 0}} \frac{\left|q_{n}{ }^{\prime}(\zeta)\right|}{\left\|q_{n}\right\|_{I}}$.

Then $p_{n}(x)=\alpha x^{n}-q_{n-1}(x)$ where $q_{n-1} \in \Pi_{n-1}$ and q_{n-1} is the best Chebyshev approximation to αx^{n} on I.

Proof. Let $\gamma=\min I$. The preceding theorem guarantees the existence of $n-1$ points $\gamma<x_{1}<\ldots<x_{n-1}<\delta$ where p_{n} changes sign. We first show that p_{n} has n distinct roots in $[\gamma, \delta]$. Suppose p_{n} does not change sign at any point in $[\gamma, \delta]$ other than x_{1}, \ldots, x_{n-1}. Consider

$$
\begin{aligned}
& q_{n}{ }^{y}(x)=-\operatorname{sgn}\left(p_{n}(\delta)\right)\left(\prod_{k=1}^{n-1}\left(x-x_{k}\right)\right)(y-x) \\
& =s_{n}(x)(y-x)
\end{aligned}
$$

then

$$
\left.\frac{d q_{n}{ }^{y}(x)}{d x}\right|_{\zeta}=s_{n}{ }^{\prime}(\zeta)(y-\zeta)-s_{n}(\zeta)
$$

Since $\operatorname{sgn} s_{n}{ }^{\prime}(\zeta)=\operatorname{sgn} s_{n}(\zeta) \neq 0$ we may, for a suitable choice of $y>\zeta$, set $t_{n}=q_{n}{ }^{y}$ where
a) $\operatorname{sgn} t_{n}{ }^{\prime}(\zeta)=\operatorname{sgn} p_{n}{ }^{\prime}(\zeta)$
b) $\operatorname{sgn} t_{n}=-\operatorname{sgn} p_{n}$ on I.

Thus, for sufficiently small $\epsilon>0$,

$$
\left\|p_{n}+\epsilon t_{n}\right\|_{I}<\left\|p_{n}\right\|_{I} \text { and }\left|p_{n}^{\prime}(\zeta)+\epsilon t_{n}^{\prime}(\zeta)\right|>\left|p_{n}^{\prime}(\zeta)\right|
$$

which is a contradiction. Thus, p_{n} has n distinct roots $\gamma \leqq x_{1}<x_{2}<\ldots$ $<x_{n} \leqq \delta$. We now show that

$$
\left|p_{n}(\delta)\right|=\left|p_{n}(\gamma)\right|=\left\|p_{n}\right\|_{I}
$$

This, coupled with (2) of the proof of Theorem 3, suffices to complete the result. We will only show that $\left|p_{n}(\delta)\right|=\left\|p_{n}\right\|_{I}$ since the proof that $\left|p_{n}(\gamma)\right|=\left\|p_{n}\right\|_{I}$ is similar. Suppose $\left|p_{n}(\delta)\right|<\left\|p_{n}\right\|_{I}$. Let

$$
q_{n}(x)=-\left(\operatorname{sgn} p_{n}(-\infty)\right)(-1)^{n-1}\left(\prod_{i=1}^{n-1}\left(x-x_{i}\right)\right)(y-x)
$$

where, as before, $y>\zeta$ is chosen so that

$$
\operatorname{sgn} q_{n}^{\prime}(\zeta)=\operatorname{sgn} p_{n}^{\prime}(\zeta)
$$

Then, for sufficiently small $\epsilon>0, p_{n}+\epsilon q_{n}$ contradicts the assumption that p_{n} satisfies (1).
3. Bernstein's inequality on $[a, b] \cup[c, d]$.

Proof of Theorem 1. Let $A=[a, b] \cup[c, d]$ and let $\tau \in A$. Let $p_{n} \in \Pi_{n}$ satisfy

$$
\frac{\left|p_{n}^{\prime}(\tau)\right|}{\left\|p_{n}\right\|_{A}}=\max _{q_{n} \in \Pi_{n}} \frac{\left|q_{n}^{\prime}(\tau)\right|}{\left\|q_{n}\right\|_{A}}
$$

and

$$
\left\|p_{n}\right\|_{A}=1
$$

We may, by the proof of Theorem 3, assume that p_{n} has all its roots in A with the possible exceptions of a root $\lambda_{1} \in(b, c)$ and a root $\lambda_{2}>d$ or $\lambda_{2}<a$. We treat the case where $\lambda_{1} \in(b, c)$ and $\lambda_{2}>d$. The other cases proceed analogously. We observe that if we increase c or a and if we decrease b or d we strengthen the inequality in the statement of the theorem. Thus, we may also assume that for $y \in\{a, b, c, d\}$,

$$
\left|p_{n}(y)\right|=1 \quad \text { and } \quad\left|p_{n}^{\prime}(y)\right| \neq 0
$$

(If there is no point $z \in(b, c)$ where $\left|p_{n}(z)\right| \geqq 1$ then we can deduce the result from Inequality 2.) We have guaranteed the existence of points

$$
b<\epsilon_{1}<\delta_{1}<\lambda_{1}<\delta_{2}<\epsilon_{2}<c
$$

and

$$
d<\epsilon_{3}<\delta_{3}<\lambda_{2}<\delta_{4}
$$

so that

$$
\left|p_{n}^{\prime}\left(\epsilon_{i}\right)\right|=0 \quad i=1,2,3
$$

and

$$
\left|p_{n}\left(\delta_{i}\right)\right|=1 \quad i=1,2,3,4
$$

We deduce from Theorem 3 and a comparison of roots and leading terms that

$$
\begin{array}{r}
\left(p_{n}^{\prime}(x)\right)^{2}(x-a)(x-b)(x-c)(x-d)\left(x-\delta_{1}\right)\left(x-\delta_{2}\right)\left(x-\delta_{3}\right) \\
\times\left(x-\delta_{4}\right)
\end{array}
$$

$$
=n^{2}\left(\left(p_{n}(x)\right)^{2}-1\right)\left(x-\epsilon_{1}\right)^{2}\left(x-\epsilon_{2}\right)^{2}\left(x-\epsilon_{3}\right)^{2} .
$$

Thus, if $\tau \in(a, b)$,

$$
\begin{aligned}
&\left(p_{n}{ }^{\prime}(\tau)\right)^{2} \leqq \frac{n^{2}\left(\tau-\epsilon_{2}\right)^{2}}{|(\tau-a)(\tau-b)(\tau-c)(\tau-d)|} \cdot \frac{\left(\tau-\epsilon_{1}\right)^{2}}{\left(\tau-\delta_{1}\right)\left(\tau-\delta_{2}\right)} \\
& \cdot \frac{\left(\tau-\epsilon_{3}\right)^{2}}{\left(\tau-\delta_{3}\right)\left(\tau-\delta_{4}\right)} \leqq \frac{n^{2}(\tau-c)^{2}}{|(\tau-a)(\tau-b)(\tau-c)(\tau-d)|}
\end{aligned}
$$

and the result now follows.
Corollary 1 follows immediately from Theorem 1 . Corollary 2 is a consequence of Corollary 1 and the next inequality.

Inequality 3. (Schur [3] p. 41). If $p_{n-1} \in \Pi_{n-1}$ and

$$
\left|p_{n-1}(x)\right| \leqq \frac{L}{((x-a)(b-x))^{1 / 2}} \text { for } a<x<b
$$

then

$$
\left\|p_{n-1}(x)\right\|_{[a, b]} \leqq \frac{2 L n}{b-a}
$$

4. Markov's inequality on $[-b,-a] \cup[a, b]$. We require the following results for the proof of Theorem 2.

Theorem 5. (Achieser [1], p. 287). Let n be an even integer. The polynomial $p_{n} \in \Pi_{n}$ with leading coefficient 1 that deviates least from zero on $[-b,-a] \cup[a, b]$ is

$$
S_{n}(x)=\frac{\left(b^{2}-a^{2}\right)^{n / 2}}{2^{n-1}} T_{n / 2}\left(\frac{2 x^{2}-b^{2}-a^{2}}{b^{2}-a^{2}}\right)
$$

where T_{n} is the $n^{\text {th }}$ Chebyshev polynomial $\left(T_{n}=\cos n \cos ^{-1} x\right)$.
Lemma 2. Let n be even and let S_{n} be defined as in Theorem 5. Then,

$$
\frac{\left\|S^{\prime}\right\|_{[-b,-a]} \cup[a, b]}{\|S\|_{[-b,-a]} \cup[a, b]}=\frac{\left|S^{\prime}(b)\right|}{\|S\|_{[-b,-a]} \cup[a, b]}=\frac{n^{2} b}{b^{2}-a^{2}}
$$

The proof of Lemma 2 is straightforward and is omitted.
Lemma 3. Suppose n is even. Then

$$
\max _{\substack{p_{n} \in \Pi_{n} \\ p, \neq 0}} \frac{\left|p_{n}^{\prime}(b)\right|}{\left\|p_{n}\right\|_{[-b,-a]} \cup[a, b]}=\frac{n^{2} b}{b^{2}-a^{2}} .
$$

Proof. This is a direct consequence of Theorem 4, Theorem 5 and Lemma 2.

Lemma 4. (Soble [5]). If $p_{n} \in \Pi_{n}$ has non-negative coefficients then, for $x>0$

$$
\left|p_{:}^{\prime}(x)\right| \leqq \frac{n}{x}\left|p_{: 3}(x)\right|
$$

Proof of Theorem 2. Suppose $p_{n} \in \Pi_{n}$ satisfies

$$
\frac{\left\|p_{n}^{\prime}\right\|_{[-b,-a]} \cup[a, b]}{\left\|p_{n}\right\|_{[-b,-a]} \cup[a, b]}=\max _{q_{n} \in \Pi_{n}} \frac{\left\|q_{n}^{\prime}\right\|_{[-b,-a]} \cup[a, b]}{\left\|q_{n}\right\|_{[-b,-a]} \cup[a, b]}
$$

Suppose $\zeta \in[a, b]$ is a point where

$$
\left|p^{\prime}(\zeta)\right|=\left\|p^{\prime}\right\|_{[-b,-a]} \cup[a, b]
$$

and
(1) $\left|p_{n}{ }^{\prime}(\zeta)\right|>\frac{n^{2} b}{b^{2}-a^{2}}\left\|p_{n}\right\|_{[-b,-a] \cup[a, b]}$.

Then, by Inequality 2 applied to $[a, b]$

$$
\frac{n^{2} b}{b^{2}-a^{2}} \leqq \frac{n}{((b-\zeta)(\zeta-a))^{1 / 2}}
$$

and

$$
(b-\zeta)(\zeta-a) \leqq \frac{\left(b^{2}-a^{2}\right)^{2}}{n^{2} b^{2}}
$$

Since either $(b-\zeta) \geqq \frac{1}{2}(b-a)$ or $(\zeta-a) \geqq \frac{1}{2}(b-a)$, either

$$
(b-\zeta) \leqq \frac{2(b+a)\left(b^{2}-a^{2}\right)}{b^{2} n^{2}} \text { or } \quad(\zeta-a) \leqq \frac{2(b+a)\left(b^{2}-a^{2}\right)}{b^{2} n^{2}} .
$$

Suppose

$$
\begin{equation*}
(b-\zeta) \leqq \frac{2(b+a)}{b} \cdot \frac{\left(b^{2}-a^{2}\right)}{b n^{2}} \leqq \frac{4\left(b^{2}-a^{1}\right)}{b n^{2}} . \tag{2}
\end{equation*}
$$

Then, by Lemma 3 and (2), for $n \geqq 10$,

$$
\begin{aligned}
& \max _{\substack{p_{n} \in \mathbb{I n}_{n} \\
p_{n} \neq 0}} \frac{\left\|p_{n}{ }^{\prime}\right\|_{[-b,-a]} \cup[a, b]}{} \leqq \max _{n}\left\|_{[-b,-a] \cup[a, b]} \frac{\left|p_{n}{ }^{\prime}(\zeta)\right|}{\substack{p_{n} \in \Pi_{n}, p_{n} \neq 0}}| | p_{n}\right\|_{[-\zeta,-a] \cup[a\}]} \leqq \frac{n^{2} \zeta}{\xi^{2}-a^{2}} \\
& \leqq \frac{n^{2} b}{\left(b-\frac{4\left(b^{2}-a^{2}\right)}{b n^{2}}\right)^{2}}-a^{2} \leqq\left(1+\frac{9}{n^{2}}\right) \frac{n^{2} b}{b^{2}-a^{2}} .
\end{aligned}
$$

Suppose now that $(\zeta-a) \leqq 4\left(b^{2}-a^{2}\right) / b n^{2}$. Write $p_{n}(x)=q_{m}(x) r_{h}(x)$ where $q_{m}(x)$ has all its roots in $[-b,-a]$ and $r_{n}(x)$ has no roots in $[-b,-a]$. By Theorem 3, p_{n} oscillates between its maximum and minimum at least n times on $[-b,-a] \cup[a, b]$. Hence, p_{n} has at least $n-2$ distinct roots in $[-b,-a] \cup[a, b]$. By the proof of Theorem 3, between any two roots of p_{n} there is a point of $[-b,-a] \cup[a, b]$ where p_{n} attains its norm. Suppose now that $m \geqq 2+n / 2$. Then, $p_{n}(x)-p_{n}(-x)$ $\in \Pi_{n-1}$ has at least $n / 2$ roots in $[-b,-a]$ and at least $n / 2$ roots in $[a, b]$ and hence, $p_{n}(x)=-p_{n}(-x)$. However, if p_{n} is even, then it follows from Theorem 3, Theorem 5 and Lemma 3 that $p_{n}=S_{n}$ and we are done. Thus, we may assume $m \leqq n / 2+1$. Similarly, since r_{n} has at least $h-2$ roots in $[a, b]$, we may assume that $h \leqq n / 2+3$. We may also assume that $n \geqq 10$.
(3) $\left|q_{m}{ }^{\prime}(\zeta)\right| \leqq \frac{m}{a+\zeta}\left|q_{m}(\zeta)\right| \leqq \frac{n+2}{4 a}\left|q_{m}(\zeta)\right|$.

Also, since $q_{m}(x)=\alpha \Pi\left(x+x_{i}\right)$ with $x_{i} \geqq a$,

$$
\begin{array}{r}
\frac{\left|q_{m}(\zeta)\right|}{\left|q_{m}(a)\right|}=\dot{\Pi}\left(\frac{\xi+x_{i}}{a+x_{i}}\right) \leqq \Pi\left(1+\frac{\zeta-a}{a+x_{i}}\right) \leqq\left(1+\frac{2\left(b^{2}-a^{2}\right)}{a b n^{2}}\right)^{(n+2) / 2} \tag{4}\\
\leqq e^{6\left(b^{2}-a^{2}\right) / 5 a b n} .
\end{array}
$$

By Inequality 1,
(5) $\left|r_{h}{ }^{\prime}(\zeta)\right| \leqq \frac{2 h^{2}}{b-a}\left\|r_{h}\right\|_{[a, b]} \leqq \frac{2\left(\begin{array}{l}n \\ 2\end{array}+3\right)^{2}}{b-a}\left\|r_{h}\right\|_{[a, b]}$.

Thus, by (3), (4) and (5),

$$
\begin{aligned}
\left|p_{n}^{\prime}(\zeta)\right| & \leqq\left|q_{m}^{\prime}(\zeta)\right|\left|r_{h}(\zeta)\right|+\left|r_{n}^{\prime}(\zeta)\right|\left|q_{m}(\zeta)\right| \\
& \leqq \frac{n+2}{4 a}\left\|p_{n}\right\|_{[a, b]}+\frac{2\left(\frac{n}{2}+3\right)^{2}}{b-a}| | r_{n} \|_{[a, b]}\left|q_{m}(\zeta)\right| \\
& \leqq \frac{n+2}{4 a}\left\|p_{n}\right\|_{[a, b]}+\frac{2\left(\frac{n}{2}+3\right)^{2}}{b-a}\left\|p_{n}\right\|_{[a, b]} \frac{\left|q_{m}(\zeta)\right|}{\left|q_{m}(a)\right|} \\
& \leqq\left(\frac{b^{2}-a^{2}}{3 a b n}+\frac{(b+a)}{2 b}\left(1+\frac{6}{n}\right)^{2} e^{6\left(b^{2}-a^{2}\right) / 5 a b n}\right) \frac{n^{2} b}{b^{2}-a^{2}} \\
& \times\left\|p_{n}\right\|_{[a, b] .}
\end{aligned}
$$

References

1. N. L. Achieser, Theory of approximation (Ungar, New York, 1956). (Translated from the Russian.)
2. S. N. Bernstein, Collected works, Akad. Nauk SSSR, Moscow 11 (1954).
3. G. G. Lorentz, Approximation of functions (Holt, Rinehart and Winston, New York, 1966).
4. A. A. Markov, On a problem of D. I. Mendeleev, Izv. Akad. Nauk 62 (1889), 1-24.
5. A. B. Soble, Majorants of polynomial derivatives, Amer. Math. Monthly 64 (1957), 639-643.

University of British Columbia,

 Vancouver, British Columbia