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Mechanistic animal growth models can incorporate a description of the genotype as represented by underlying biological traits
that aim to specify the animal’s genetic potential for performance, independent from the environmental factors captured by the
models. It can be argued that these traits may therefore be more closely associated to genetic potential, or components of genetic
merit that are more robust across environments, than the environmentally dependent phenotypic traits currently used for genetic
evaluation. The prediction of merit for underlying biological traits can be valuable for breeding and development of selection
strategies across environments.

Model inversion has been identified as a valid method for obtaining estimates of phenotypic and genetic components of the
biological traits representing the genotype in the mechanistic model. The present study shows how these estimates were obtained
for two existing pig breeds based on genetic and phenotypic components of existing performance trait records. Some of the
resulting parameter estimates associated with each breed differ substantially, implying that the genetic differences between the
breeds are represented in the underlying biological traits. The estimated heritabilities for the genetic potentials for growth, carcass
composition and feed efficiency as represented by biological traits exceed the heritability estimates of related phenotypic traits
that are currently used in evaluation processes for both breeds. The estimated heritabilities for maintenance energy requirements
are however relatively small, suggesting that traits associated with basic survival processes have low heritability, provided that
maintenance processes are appropriately represented by the model.

The results of this study suggest that mechanistic animal growth models can be useful to animal breeding through
the introduction of new biological traits that are less influenced by environmental factors than phenotypic traits currently used.
Potential value comes from the estimation of underlying biological trait components and the explicit description of their
expression across a range of environments as predicted by the model equations.
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Introduction

Successful breeding strategies rely on their ability to ident-
ify animals whose genetic merit provides their offspring
with the ability to perform better than their competitors
across the prevailing range of environments. It is generally
accepted that the expression of genes varies between
environments and between growth stages, with at least
partly different genes involved, and consequently that the
genetic correlation of observable performance traits
between environments and different growth stages is gen-
erally not unity. This genotype by environment interaction

(G £ E) imposes difficulties for the traditional methods of
estimating genetic merit when specified in terms of obser-
vable traits, since these generally assume a unit genetic
correlation across environments. Statistical methods exist,
such as covariance functions, that can deal with non-unity
genetic correlations, but they rely on measurements from
multiple environments, which are often difficult to obtain.

Mechanistic growth models build upon an alternative
description of the genotype by using traits that are con-
sidered more closely related to the underlying biology (and
hence to the genes) and more likely to be stable across a
range of environments than the observable traits currently
used in genetic evaluation. These characteristics make
the model’s underlying biological traits potentially useful† E-mail: andrea.wilson@sac.ac.uk

Animal (2007), 1: Page 489–499 Q The Animal Consortium 2007
doi: 10.1017/S1751731107691848

animal

489

https://doi.org/10.1017/S1751731107691848 Published online by Cambridge University Press

https://doi.org/10.1017/S1751731107691848


predictors for genetic merit and promising traits for DNA
marker development. Although the potential benefits from
implementing traits derived from biological production
functions into breeding programs have long been recog-
nised (e.g. Fowler et al., 1976), their representation in cur-
rent selection objectives is sparse. The most likely reason
for this is the difficulty of measuring these traits in live ani-
mals and in obtaining accurate estimates of the genetic
parameters of these traits.

The present study explores the potential value of using
the underlying biological traits derived from a mechanistic
pig growth model for animal breeding purposes. This is
done by (i) illuminating the theoretical concepts that imply
that these underlying traits are closely related to the
biology and likely to be more stable across environments
than conventionally used phenotypic traits, by (ii) present-
ing a method for estimating variance components and phe-
notypic means of these traits, and by (iii) comparing the
estimated genetic and environmental components of these
traits associated with two genetically different commercial
breeds and by comparing them with the corresponding
components of more conventional phenotypic traits.

Materials and methods

Knap’s mechanistic pig growth model
Model concepts. The mechanistic model used in this study
is a predictive, semi-stochastic model for the performance
for a population of pigs (Knap, 1999, 2000b and 2000c).
Like many mechanistic pig growth models currently used in
science and industry, the model builds upon the principles
developed by Whittemore and Fawcett (1976), Whittemore
(1983), Moughan and Verstegen (1988), Black et al. (1995)
and Emmans and Kyriazakis (1997), which can be
summarised as follows: the genotype is characterised by
biological traits assumed to represent its genetic potential,
defined as the animal’s biological upper limit for growth
and for its ability to cope with various kinds of stressors.
These upper limits refer to hypothetical optimal
environmental conditions in which the genetic potential
can be fully expressed. Knap et al. (2003) demonstrated
that these conditions generally differ between different
traits and that the conditions in research or commercial
farms are generally suboptimal for at least one of the
biological traits describing the genetic potential. By
definition, the genetic potentials are assumed independent
of the environmental conditions that are included in the
model. The interactions between the traits representing
the genetic potentials and the prevailing physiological,
nutritional, social and environmental constraints are
described by a system of mathematical equations
that integrate the present knowledge about the metabolic
and physiological processes involved in pig growth. Model
outputs are simultaneous predictions for various
observable phenotypic performance traits (e.g. body
weight, feed intake, body composition, etc.). Some of

these traits serve as inputs to the statistical methods
currently used for genetic evaluations.

Model description. In addition to a description of the
genotype in the form of biological traits representing
genetic potentials, the mechanistic model uses as inputs
the pigs’ initial body weight, as well as a description of
the diet composition, and the physical and social
environment.

Based on the provided pigs’ initial body weight the
model first calculates the chemical composition of the
pig in terms of protein, lipid, ash and water mass at
the start of the simulation period according to the rules
of Emmans and Fisher (1996) and Emmans and Kyriaza-
kis (1995). The pig genotype is characterised by three
Gompertz function parameters Pmat, Lmat and B, which
specify the animal’s potential for protein (Prot) and lipid
(Lip) mass growth in optimal environmental conditions
according to

dðProtÞ=dt¼Prot £ B £ lnðPmat=ProtÞ ð1Þ

dðLipÞ=dt¼Lip £ B £ lnðLmat=LipÞ ð2Þ

where the same rate parameter B is used for protein
and lipid retention, assuming thus full allometry
between body protein and lipid. The different asymp-
totes Pmat and Lmat, correspond to protein and lipid
mass at maturity. Protein and lipid growth constitute
two of the resource demanding processes; all others are
characterised as maintenance processes, which are also
considered as genotype dependent.

Ad libitum feed intake is then predicted as the intake
required satisfying both the protein and energy needs of
the potential growth, as defined by equations (1) and (2),
plus maintenance requirements, subject to capacity con-
straints to feed intake volume. After the decomposition of
the consumed feed into its nutrient components, the parti-
tioning of the nutrients into growth and maintenance pro-
cesses is modelled according to the concepts of Knap and
Schrama (1996), with some modifications that take meta-
bolic changes imposed by constraints of the physical
environment into account. For example, cold thermoregula-
tory processes lead to increased feed intake in the model,
whereas hot thermoregulatory actions includes reduction of
ad libitum feed intake as well as reduction in physical
activity, increase in body temperature and skin wetting,
affecting thus body maintenance requirements.

The model follows these processes to iteratively calcu-
late the actual protein and lipid mass growth on a daily
basis for a growth period between 16 and 110 kg body
weight, subject to the physical, nutritional and environ-
mental constraints that are captured by the model. Empty
body weight, which excludes gut fill and is assumed as
95% of the full body weight, is calculated as the sum of
body protein, lipid, ash and water mass. The latter two
are determined according to the rules of Emmans and
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Kyriazakis (1995 and 1997):

Asht ¼ Asht21 þ 0:21 £ PR

Water ¼ 3:04 £ Pmat0:145 £ Prot0:855

where PR is the daily protein retention and the subscript t
refers to day t.

Backfat depth (BF) is calculated from the whole–body
subcutaneous fat depth (FAT) via the regression equation
(Knap, 2000c): BF ¼ 0.82 £ FAT1.212. Estimates of FAT
were derived from body weight and volumes and density
of the subcutaneous tissue according to

FAT ¼ ð3:376 £ pP;SCT £ Prot þ 1:227 £ pL;SCT

£ LipÞ=0:097 £ BW0:633

where pP,SCT and pL,SCT are the proportions of protein
and lipid in subcutaneous tissue, respectively,
calculated as pP,SCT ¼ 0.1285 þ 0.00 286 £ ln (Prot) and
pL,SCT ¼ 0.2260 þ 0.1310 £ ln(Lip) (Knap, 2000c).

The multivariate model output includes the average
daily feed intake (DFI), the body weight growth rate
described by the number of days to reach 110 kg (DAYS)
and backfat depth (BF), which were used in this study to
derive estimates for the underlying biological trait
characteristics.

A more detailed description of the model concepts and
the mathematical equations, including a pseudo code, is
provided in Knap (1999 and 2000c).

The underlying biological traits representing the model
genotype
The model uses four traits to describe the pig’s genetic
potential for growth and energy efficiency. According to
equations (1) and (2) the growth potential is characterised
by the three parameters Pmat, Lmat and B corresponding to
protein and lipid mass at maturity and a determinant of
the rates of tissue mass retention, respectively.

The parameters are expected to be correlated. For
example, ‘larger animals will have a lower growth rate
relative to body size’ (Ferguson et al., 1997), implying thus
a negative correlation between B and Pmat. According to
Emmans (1988), this can be remedied by applying Taylor’s
scaling rule (Taylor, 1985) to the parameter B to produce
the scaled rate parameter B* ¼ B £ P0:27

mat , which is theor-
etically uncorrelated to Pmat. Further, the parameter Lmat

has been replaced by its ratio to Pmat to produce LPmat (kg/
kg), which is assumed to be uncorrelated to both B* and
Pmat. This leads to three presumed-independent model par-
ameters Pmat, LPmat and B*, representing three of the four
underlying biological traits describing the animal genotype.

The fourth genotype specific model parameter, MEm0,
relates to the energy requirements of body maintenance
processes other than those required for protein turn-over
and thermoregulation, which are explicitly captured in the
model. These maintenance energy requirements (MEmaint)
are calculated according to Knap and Schrama (1996) as a

simple function of the metabolic body weight (BW0.75):

MEmaint ¼ MEm0 £ BW0:75 ð3Þ

MEmaint depends on Pmat, LPmat and B*, but the genotype
specific parameter MEm0 is assumed uncorrelated to all
three growth parameters. From now on, we will refer to
MEmaint, Pmat, LPmat and B* as the four underlying biologi-
cal traits.

Simulating populations with genetic variation
For simulation, a population of full-sib groups was created,
which varied in their values of the four underlying biologi-
cal traits Pmat, Lmat, B* and MEm0. A more complex gen-
eral pedigree was not adopted as it would only introduce
complexities that are unrelated to the validity of any con-
clusions to be made. The full-sibs were generated from a
non-inbred and unrelated base population of n dams and n
sires, with the number n chosen according to the criteria
outlined below. It was assumed that each founder has a
breeding value A for each of the four underlying biological
traits, which was sampled from N(0, s 2

A), where the gen-
etic variance s 2

A ¼ h2s 2
P is given by the model inputs for

the heritability h 2 and phenotypic variation s2
P. The simu-

lated population of full-sib groups was generated by mat-
ing randomly chosen dams and sire pairs of the base
population. Each pair produced n0 full-sib offspring. The
breeding value of each offspring was 1

2 (ASire þ ADam) plus
a Mendelian sampling deviation. The latter term was
drawn from a multivariate N 0;

p
1=2s2

A

� �
; which is unaf-

fected by inbreeding due to the short pedigree adopted.
The phenotypic value P for each of the four underlying bio-
logical traits was obtained using the trait mean, the indi-
vidual’s breeding value and an environmental deviation,
sampled from a multivariate normal distribution
N 0; 1 2 s2

A

� �
according to:

Pi ¼ mþ Ai þ PEi; ð4Þ

where Pi is the phenotype of animal i, m is the population
mean for the trait, and Ai and PEi are its additive genetic
and permanent environmental deviations. According to this
decomposition, the value of the underlying biological trait
of each animal is specified by the population mean m, the
heritability h 2 and the phenotypic variance s2

P. Due to the
above described transformations of the underlying biologi-
cal traits, Pmat, Lmat, B* and MEm0 are assumed
uncorrelated.

The simulated population for which model predictions
are generated consists thus of n £ n0 full-sibs, with
between animal variation in the four underlying biological
traits. The variation in the underlying biological traits leads
to variation in (and covariation between) the phenotypic
model output traits for feed intake, growth rate and body
composition, for which means, genetic and phenotypic var-
iances and covariances were calculated via sib analysis
(e.g. Cameron (1997) chapter 5) based on the decompo-
sition in equation (4).
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The data
Records describing feed consumption, growth rate and
body composition average were obtained in terms of daily
feed intake (DFI) between weaning and 110 kg body
weight, pig age (DAYS) and backfat depth (BF) at 110 kg
body weight for 13 268 pigs with four-generation pedigree
information of two PIC pig lines. From these records esti-
mates of line specific trait means and heritabilities for
these traits as well as genetic and phenotypic correlations
between the three traits were derived (Table 1, ‘Data’
values). Line A is a dam line selected mainly for good
reproductive performance, high robustness, and fast
growth; Line B is a sire line selected mainly for high feed
efficiency and leanness. Line differences in these character-
istics are reflected by the differences in the phenotypic
means of the three performance traits and – to a lesser
degree - in the heritabilities and genetic/phenotypic corre-
lations of the phenotypic traits (Table 1). Animals were
kept in normal performance test conditions (indoors, tem-
perate climate, partly slatted floors, about 10 animals per
single-sex group, unrestricted feeding) with electronic feed
intake recording. Animals were fed a diet containing
14.80 MJ digestible energy, 0.207 kg crude protein and
0.015 kg lysine per kg feed up to 60 kg body weight. For
higher body weights, digestible energy, crude protein and
lysine were set to 14.90 MJ/kg, 0.192 kg/kg and 0.0127 kg/
kg, respectively. The variance components in Table 1 were
estimated (PIC-USA, unpublished) using VCE-v3 (Groene-
veld, 1996) on data sets with 16 854 (5322 for DFI) records
for line A and 6414 (2070 for DFI) records for line B, with
a four-generation pedigree for both lines.

Estimating means and variance components for the
underlying biological traits using model inversion
Direct measurements of the underlying biological model
traits are difficult to obtain in practice. Therefore the gen-
etic and phenotypic characteristics of the recorded perform-
ance traits DAYS, DFI and BF listed in Table 1 were used to
infer estimates for the components m, h 2 and s2

P of the
underlying biological traits. For the remainder of this paper
the inference of the components of the underlying biologi-
cal traits from observed measures of performance traits is
denoted as model inversion process. The model is
‘inverted’ in the sense that the conventional model input
traits (the underlying biological traits) are treated as model
outputs that need to be determined through the inversion
process, and the parameters of the conventional model
output traits are treated as known inputs. Various methods
exist to carry out the inversion process, ranging from Baye-
sian inference methods (Tarantola, 1987) to the analytical
and numerical methods presented by Doeschl-Wilson et al.
(2006). Here, the inversion process was carried out by a
computational algorithm which determined the com-
ponents m, h 2 and s2

P of the underlying biological traits
that correspond to performance predictions for DAYS, DFI
and BF at 110 kg body weight with statistical properties
most similar to those derived from the collected records
shown in Table 1. In more detail, each iteration in the com-
putational algorithm provides parameter estimates for the
underlying biological trait components which the model
then uses to generate a population of full-sib groups as
outlined above. Consequently, the performance of these
pigs is simulated, producing simultaneous predictions for

Table 1 Genetic correlations (upper triangle of unshaded area), heritabilities (diagonal of white area) and phenotypic correlations (lower triangle
of unshaded area), as well as phenotypic means (shaded area) for the two PIC lines, A (Table 1a) and B (Table 1b) as estimated from data anal-
ysis (DATA) and predicted from model inversion (MODEL)†

Data/Model Days to 110 kg DFI (kg/day) BF (mm)

(a) Line A
Days to 110 kg Data 0.373 (0.044) 20.740 (0.092) 20.047 (0.066)

Model 0.375 (0.002) 20.700 (0.008) 20.047 (0.0002)
DFI Data 20.437 (0.011) 0.267 (0.063) 0.410 (0.118)

Model 20.454 (0.003) 0.257 (0.015) 0.411 (0.003)
BF Data 20.040 (0.009) 0.233 (0.010) 0.480 (0.040)

Model 20.040 (0.0001) 0.233 (0.0009) 0.482 (0.0035)
Phenotypic means Data 155 (0.097) 2.33 (0.004) 10.70 (0.021)

Model 154 (0.75) 2.13 (0.014) 11.56 (0.087)
(b) Line B
Days to 110 kg Data 0.396 (0.059) 20.735 (0.116) 20.042 (0.095)

Model 0.400 (0.0016) 20.704 (0.008) 20.042 (0.0002)
DFI Data 20.438 (0.018) 0.267 (0.070) 0.411 (0.148)

Model 20.452 (0.0027) 0.257 (0.0014) 0.401 (0.0044)
BF Data 20.044 (0.010) 0.238 (0.022) 0.550 (0.061)

Model 20.045 (0.0006) 0.242 (0.002) 0.556 (0.008)
Phenotypic means Data 174 (0.170) 2.00 (0.007) 11.00 (0.031)

Model 175 (0.845) 1.97 (0.010) 11.23 (0.123)

† The ‘model’ results are the means of 15 independent optimisation runs per PIC line with different random number sequences for producing the pig populations
and different initial values in the optimization algorithm. The standard errors of the estimates are shown in brackets. Note that these cannot be directly compared
with the corresponding standard errors from the data analysis. DFI ¼ daily feed intake; BF ¼ backfat depth.
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the traits DAYS, DFI and BF at 110 kg body weight for each
simulated animal. This leads to phenotypic means, herit-
abilities and genetic and phenotypic correlations for these
traits that can be compared with those derived from real
records. The goodness of fit was evaluated according to
the relative prediction error sum of squares (RPESS),
defined as

RPESS ¼
X12

j¼1

ŷj 2 yj

yj

 !2

:

Here ŷj and yj are the values for the jth statistical measure
of the performance traits DAYS, DFI or BF predicted by the
model (MODEL in Table 1) and obtained from data analysis
(DATA in Table 1), respectively.

In an appropriate linear model, we would have a perfect
fit for 12 parameters derived from 12 data points. How-
ever, the non-linearity is such that we do not get a perfect
fit. The correlated patterns of influence of the input par-
ameters is such that we do not have the full 12 degrees of
freedom available to explain the 12 data points, and the
ensuing residuals drive the RPESS criterion.

The computational algorithm
The differential evolution (DE) algorithm (Storn and Price,
1997) was used to determine the set of statistical com-
ponents of the underlying biological traits that minimise
the RPESS. The DE is an evolutionary genetic algorithm
that has been modified for improved efficiency for complex
search spaces. Details of the algorithm are given in Storn
and Price (1997). Briefly, the DE algorithm adapts the con-
cepts of evolutionary theory to search efficiently through
the multi-dimensional (12D in the present study) parameter
space to find the optimum solution. It is an iterative pro-
cess consisting of many generations. In each generation a
number of solutions (12 in the present study) are simul-
taneously produced, of which the best (according to tour-
nament selection) contribute to the initial estimates of the
next generation. Each solution corresponds to a set of esti-
mates for the 12 model parameters. Convergence towards
a final solution was assumed if the RPESS of the best sol-
ution of a generation did not change by a relative magni-
tude greater than 1026 in 1000 successive generations.

Numerous case studies have demonstrated that the DE
algorithm searches efficiently through large and complex
search spaces before reaching the perceived global opti-
mum, overcoming therefore problems of differentiability,
non-smooth response surfaces including sharp cliffs and
multiple local optima, which are typically associated with
agricultural models (Mayer et al., 2005). Due to the com-
plex structure of the mechanistic model used in this study,
the existence of a globally unique optimal parameter set
cannot be guaranteed from mathematical theories. How-
ever, insight into the topography of the search space could
be obtained by monitoring the RPESS of the fittest candi-
date per generation over successive generations and by
repeating the optimisation process several times for the

same animal population, with different initial DE candi-
dates in the first generation of the optimisation algorithm.
By tracking the RPESS value it could be determined
whether different sets of parameters for the underlying
biological traits correspond to similar RPESS values for the
predicted performance traits, and how sensitive the RPESS
is to changes in these parameter values. The random pro-
cesses embedded in the DE imply that different search
routes are used in different repetitions of the optimisation
process applied to the same simulated animal population.
If the different optimisation processes associated with
different initial candidates converge to the same optimum,
the optimum is considered satisfactory.

Stochasticity and population size
The stochastic nature of the mechanistic model implies
that its predictions are influenced by the specific random
sampling used to generate the simulated animal popu-
lations. Two simulations with identical values for all input
parameters will thus produce different predictions and
possibly different covariance estimates for the performance
traits. Likewise, the optimisation process applied to differ-
ent simulated populations with the same means and
covariance estimates in the performance traits may pro-
duce different estimates of the statistical measures for the
underlying biological traits. The influence of individual ran-
dom drawings can be reduced by increasing the number of
replicates in the simulated population, but this also
increases the run time of the model and the statistical cal-
culations. In the inversion process the model is called
many thousands of times and numerous statistical calcu-
lations must be carried out for every run, mounting up to a
considerable computing time for producing the estimates
of the specific model parameters. Our simulated popu-
lations consisted of 7000 individuals comprising 700 full-
sib families with 10 sibs per family (the average number in
the populations whose performance trait records were
used). For this population structure, the coefficient of vari-
ation for the predicted means, variances and heritabilities
of the predicted performance traits DAYS, DFI and BF was
less than 10%, with an average run time on a standard PC
of 7 days per optimisation process, which was considered
as a good balance between model run time and variability
in the results. For each PIC sire line, the optimisation was
repeated 15 times, corresponding to 15 different popu-
lations with the same genetic specifications.

Results and discussion

Performance of the optimisation algorithm
In all optimisation runs, convergence was obtained within
10 000 generations in the DE algorithm. For every simu-
lated animal population the optimisation process was
repeated three times with different initial values for the
parameters in question. For each animal population, the
different processes consistently converged to the same
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solution, implying that the algorithm successfully found the
global optimum instead of getting stuck at a local RPESS
minimum. Tracking the best solution of every generation in
the DE algorithm together with its corresponding RPESS
provided the necessary evidence that the algorithm
searched widely through the parameter space and that the
optimum corresponding to each animal population was
unique, i.e. that there is no other parameter set outside a
given neighbourhood of the optimal set with a RPESS suffi-
ciently similar to the RPESS corresponding to the optimum.
More accurately, for every parameter set in the algorithm’s
search trajectory, for which at least one of the parameters
deviated from the optimum by more than 10%, the corre-
sponding RPESS was more than 30% higher than that cor-
responding to the optimum. It could be easily verified that
an RPESS greater than 130% RPESS of the optimum
implies a deviation of more than 5% in at least one of the
statistical components of the predicted performance traits
from that corresponding to the optimum. Thus, any combi-
nation of the underlying biological trait parameters for
which one parameter deviates more than 10% from the
derived optimum value implies a deviation of more than
5% in at least one of the statistical components of the per-
formance traits.

Sensitivity analysis was carried out to determine the
effects of changes in the parameters of the underlying bio-
logical traits on the predictions for the genetic and pheno-
typic parameters of the performance traits DAYS, DFI and
BF. In this analysis one parameter was gradually altered at
a time, while the others were kept fixed to their optimum
(Table 1). As expected, gradual changes in the underlying
biological trait parameters led to gradual changes in the
phenotypic performance trait parameters, resulting in
RPESS values greater than those referring to the optimum.
The means of the traits DAYS, DFI and BF were primarily
affected by changes in the means of the underlying bio-
logical traits. The biggest effect was achieved by altering
average B*- a 5% variation in average B* resulted in a
5% variation in the average growth rate (DAYS). Modifying
one biological trait parameter by up to 5% affected in
most cases simultaneously heritabilities, genetic and phe-
notypic correlations at the order of magnitude of 1023.
In all cases, the absolute difference was found less than
0.03. Genetic and phenotypic correlations between the

traits DAYS and BF were found most sensitive to changes
in the biological trait parameters. Overall, the model pre-
dictions were found robust to gradual changes in the
underlying biological trait parameters.

Estimates of the underlying biological trait components
and their implications
Table 2 shows the average values together with standard
errors for the 12 parameters specifying the underlying bio-
logical traits corresponding to the two PIC lines, obtained
from the inversion process. All runs corresponding to differ-
ent simulated populations from each PIC line produced
very similar estimates, which are reflected in the low stan-
dard errors. The unanimous results imply that the under-
lying biological trait values depend little on the simulated
population.

The estimates of the means and phenotypic variances
for the underlying biological traits Pmat, Lmat, B* and MEm0

obtained through the inversion process in this study
(Table 2) can be compared with independent estimates
obtained from direct measurements in previous empirical
experiments, which are summarised in Table 3. However,
as pointed out in the footnotes of Table 3, some of the
experimental conditions were unlikely to correspond to
the optimal conditions required for the full expression of
the genetic growth potential and the intrinsic maintenance
energy requirements, decreasing thus the confidence in the
validity of the empirical estimates.

The average values for the Gompertz parameters LPmat

and B*, and for the maintenance energy coefficient MEm0

obtained through model inversion fall within the range
estimated in previous studies (Table 3), with the estimate
for LPmat situated towards the lower end of the spectrum
and the coefficient MEm0 slightly exceeding the maximum
value of the empirical estimates. The inversion estimate of
Pmat (above 57 kg) is however considerably higher than the
estimates from previous data analyses (below 41 kg).
Decreasing Pmat in the simulation model to the previous
estimates provided in Table 3 and leaving the remaining
parameters fixed leads to drastic changes in the estimated
average body weight growth (DAYS) and backfat depth
(BF) as well as in some of the genetic and phenotypic
covariances. The model predictions would thus provide a
poor fit to the data used in the optimisation criterion.

Table 2 Estimates of the mean values and standard errors (in brackets) of the genetic model parameters for the two PIC lines derived by model
inversion using the DE algorithms for 15 replications per PIC line

PIC line† Parameter Pmat (kg) LPmat (kg/kg) B* (kg/(day £ kg)) MEm0 (kJ/(day £ kg0.75))

Line A Mean (s.e.) 59.395‡(0.328) 1.287** (0.026) 0.032*** (0.0005) 747.9 (1.34)
h 2 (s.e.) 0.527* (0.029) 0.516 (0.017) 0.445 (0.019) 0.107 (0.006)
CV (s.e.) 0.053 (0.002) 0.125 (0.004) 0.051 (0.003) 0.083 (0.004)

Line B Mean (s.e.) 57.499 (0.878) 1.145* (0.040) 0.028* (0.0004) 737.94 (6.847)
h 2 (s.e.) 0.670* (0.042) 0.517 (0.009) 0.424 (0.020) 0.114 (0.007)
CV (s.e.) 0.050 (0.004) 0.127 (0.009) 0.049 (0.004) 0.079 (0.005)

† Line A was selected for fast growth, robustness, high meat quality, etc. Line B was selected for feed efficiency, leanness, etc.
Superscripts refer to probability levels for significance tests for differences between the PIC lines (‡ P , 0.1, *P , 0.05, **P , 0.01, ***P , 0.001).
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Various reasons could however explain the observed dis-
crepancy in Pmat between inversion results and previous
estimates. First, the majority of pigs in the experiments
that provided the data for the statistical analyses were
slaughtered before they reached maturity. The scarcity of
data relating to mature animals may have led to poor esti-
mation of the parameter Pmat in the statistical analysis
(Knap et al., 2003). Second, as Knap (2000a) points out,
the steady progression towards larger and leaner animals
due to breeding strategies is expected to be reflected by
higher values for Pmat and lower values of LPmat over time.
The data used in the inversion process were generated in
2004, and correspond to pigs that had been selected over
many generations for fast growth and leanness. In con-
trast, the data from which the earlier estimates were
derived correspond to pigs of a variety of breeds slaugh-
tered 20 to 7 years earlier. As Figure 1 shows, the esti-
mates for PDmax ¼ Pmat/(BGomp £ e) and LPmat derived here
follow the trends predicted by Knap (2000a).

The coefficients of variation in underlying traits esti-
mated by the inversion procedure are between 0.05 and
0.13 for all four traits with LPmat having the highest
between animal variation in both PIC lines (Table 2). The
estimates agree well with the estimates obtained in pre-
vious data analyses. Heritability estimates for the under-
lying biological traits do not exist from empirical studies
since these would require huge experimental settings invol-
ving a large number of pedigreed animals.

Except for the maintenance energy coefficient MEm0, for
which the model inversion predicts a low heritability of
0.1, the heritabilities of the three underlying biological
traits associated with leanness, growth rate and body com-
position vary between 0.42 and 0.67 and exceed the herit-
abilities of the phenotypic traits DAYS, DFI and BF (0.27–
0.55) associated with the same characteristics (Table 2) for
both PIC lines. The results of the model inversion thus
suggest that the underlying biological traits for growth and
body composition used in the model are more closely
related to the underlying genetic potential for growth and
composition than the phenotypic traits DAYS, DFI and BF,
since a closer relation to the genetic level is reflected by
higher heritabilities.

The estimated heritability of 0.1 of the maintenance
energy coefficient MEm0 is lower than the value of 0.3
obtained by Knap et al. (2003) from a literature review.
The low value also stands in disagreement to the theory
of Glazier (2002), who hypothesised that traits with
higher priority (e.g. maintenance) in the resource allocation
have also higher heritability than lower priority traits
(e.g. growth traits). Model runs with higher MEm0 herit-
abilities yield higher values for the predicted heritabilities
of DFI and weaker genetic correlations between DFI and
DAYS and DFI and BF than those provided by data analysis
(Table 1). However heritabilities for processes that are vital
for the basic survival are generally low because many
generations of natural and artificial selection for these
traits have fixed favourable alleles. It is also possible that
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Figure 1 Estimated values and trends for the 1969 to 1993 population
averages of the biological traits LPmat and PDmax as produced by Knap
(2000a), together with the corresponding estimates from the present
analysis (2004).

Table 3 Estimates of the underlying biological traits used to describe the genetic growth potential in Knap’s pig growth model derived from data
analysis

Source† Parameter Pmat (kg) LPmat (kg/kg) B* (kg/(day £ kg)) MEm0 (kJ/(day £ kg0.75))

Ferguson and Gous Mean 28.4–38.7 2.60–3.89 0.0287–0.0296 –
CV 0.05 0.10 0.09 –

Knap Mean 24.5–38.5 0.97–5.16 0.0226–0.0445 489–733‡

CV 0.036–0.549 0.048–0.289 0.045–1.894 0.06–0.15
Knap et al. Mean 27.7–40.7 1.95–3.49 0.0218–0.0348 –

CV 0.15 0.27 0.14 –

† Ferguson and Gous (1993a and b) and Ferguson et al. (1997): Regression analysis of repeated measurements from 27 pigs raised under experimental conditions
which were likely to allow the expression of the genetic potentials for protein and lipid growth. In their experiments dietary and environmental conditions
were carefully balanced, so that protein retention could reach its maximum without causing lipid retention to exceed the animal’s intrinsic desire; Knap (2000a and
c): Estimates derived from 5 independent data sets including pigs of different breeds and sex. The experimental conditions were likely to differ from those necessary
for the full expression of the genetic potentials. Knap et al. (2003) D2 O dilution method of data from 14 pigs raised under conditions that were likely to differ
from those necessary for the full expression of the genetic potential.
‡ Estimates were derived from Knap’s estimates of MEmaint ¼ MEm0 £ BW0.75 for body weights between 25 and 110 kg under thermoneutral conditions (Knap,
2000c).
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the estimated low heritabilities are partly an artifact of the
crude definition of maintenance processes in the model.
The term maintenance in the model comprises all physio-
logical and metabolic processes that are not involved in
protein or lipid retention, including resting metabolism,
hair growth, basic activity, coping with infectious and other
stress, etc. Consequently, part of the genetic variation in
true maintenance could have been captured by the growth
and body composition traits.

Differences between the PIC lines
The relatively high heritabilities of the underlying biological
traits used to represent the genotype in the growth model
support the contention that these traits may be more clo-
sely related to the true genetic potential than the perform-
ance traits DAYS, DFI and BF. One would then also expect
that the moderate differences in the means and co-var-
iances of the performance traits DAYS, DFI and BF between
PIC lines A and B manifest themselves into differences in
the genotypic model parameter values. The differences in
the estimated genotypic model parameters associated with
each line were assessed using the MANOVA option in the
SAS procedure PROC GLM (Statistical Analysis Systems
Institute, 1999). This was done under the assumption that
the line-specific parameter estimates from DATA (Table 1)
were made without error, such that sampling error relates
only to repeatability of simulated dataset replicates. The
analysis revealed a difference (P , 0.05) between the esti-
mated parameter sets associated with each line. However,
considering each parameter individually, differences with
P , 0.05 were only found in the mean of LPmat and B*
as well as in the heritability of Pmat (indicated by ** in
Table 3). In addition, the average value for Pmat was found
different between both lines at P ¼ 0.057. The significantly
higher values for B* and LPmat for PIC line A v. B portray
the faster body weight growth rate and lower backfat
depth, which characterise PIC line A on a phenotypic
level (Table 2). The optimisation results suggest that
within-animal variations and heritabilities (with exception
of Pmat) in the underlying biological traits are similar for
both PIC lines.

Model fit and validation
As Table 1 shows, the model predictions for the multiple
phenotypic and genetic components of the performance
traits DAYS, DFI and BF including their phenotypic and gen-
etic correlations closely match those derived from real
measurements. Except for an 8% discrepancy between the
predicted and estimated average backfat depth, the predic-
tions generally differ from the data estimates by less than
5%. The low standard errors in the estimates of the geno-
typic model parameters corresponding to the sampling
error derived from different simulated populations (Table 2)
are accompanied by low standard errors in the predictions
for the statistical measures (Table 1).

The close match between predictions and data estimates
in all 12 measures for two different breeds suggests that
the growth model is capable of simultaneously accurately
predicting several traits up to the level of their co-vari-
ation, provided that the genotype and environment are
appropriately specified.

However, proper verification that the obtained estimates
for the underlying biological trait components are genuine
for the corresponding PIC lines requires independent
records of these lines derived from different environmental
settings or covering different growth stages (the perform-
ance trait components listed in Table 1 refer exclusively to
data measured at 110 kg body weight). Unfortunately such
data do not exist for the PIC lines considered in this study.
Therefore validation of the results of the inversion process
was restricted to comparing predicted growth trajectories
of various performance traits for the simulated PIC lines A
and B with those derived from repeated measurements of
various PIC cross-breeds for different environmental con-
ditions. It was found that the predicted curves for PIC lines
A and B generally matched the cross-breed curves reason-
ably well, considering the differences in the genetic specifi-
cations between the optimised lines and the cross-breeds.
For example, as Figure 2 shows, compared with the cross-
breeds, the selection lines A and B achieve 110 kg body
weight faster, which is accompanied by higher feed
consumption during the faster growth period, and are
considerably leaner at given body weights. The change in
backfat depth with increasing body weight, for which no
significant difference was found between the different
cross-breeds, was also found not significantly different
from that of the PIC lines A and B (P ¼ 0.7). In particular,
PIC line A, which was selected amongst other criteria for
fast growth, has the highest growth rate according to the
simulations, whereas PIC line B that was selected amongst
others for higher feed efficiency and leanness, has lower
feed intake and lower backfat depth for a given body
weight than line A (Figure 2).

Implications for animal breeding
In this study attention has been called to a new set of
traits emerging from mechanistic animal growth models
that are defined as intrinsic drivers of phenotype. The
value of traits related to biological models for animal
breeding has long been recognised. Fowler et al. (1976)
investigated the potential of biological models for con-
structing selection objectives that can be applied to a var-
iety of situations and concluded that these models would
exceed classical index construction methods in their ability
to provide greater flexibility in a rapidly changing industry.
Varona et al.’s (1997) seminal paper describes the method-
ology for estimating genetic and phenotypic relationships
between parameters of biological growth functions, which
is essential for the integration of these biological traits into
breeding programmes. It has been followed by numerous
studies of genetic and phenotypic variations and co-
variations of traits emerging from a variety of functions

Doeschl-Wilson, Knap, Kinghorn and Van der Steen

496

https://doi.org/10.1017/S1751731107691848 Published online by Cambridge University Press

https://doi.org/10.1017/S1751731107691848


describing growth for a range of animal species (e.g.
Varona et al., 1998; Chang et al., 2001; Fernandez et al.,
2002). Further steps have been taken to explore inheri-
tance, effects of selection and evolution of growth function
parameters (e.g. Kirkpatrick et al., 1990; Blasco et al.,
2003). The implementation of mathematical functions for
describing biological processes is not restricted to growth.
For example, De Vries and Kanis (1992) proposed the use
of a mathematical function for feed intake based on pro-
tein retention and minimum lipid to protein retention ratio
for optimising selection for feed intake.

Adding biological function parameters as new traits in the
selection objective has the advantage that these traits
describe a growth trajectory instead of the state of the animal
at a specific growth stage, having also a biological interpret-
ation. However, it is also well known that the parameters of
the biological production curves depend strongly on the pre-
vailing environmental conditions (e.g. Wood, 1976; McKay,
1992), implying that they need to be re-estimated whenever
the environmental conditions change.

The novelty of the present study is that the considered
biological traits emerge from mechanistic models for ani-
mal performance instead of from single production func-
tions. The benefit of using the more complex model is that
it integrates the present knowledge of the biology of pig
performance containing descriptions of the relevant meta-
bolic and physiological processes and of the environmental
influences on these. Because the influence of various
environmental factors on animal performance is explicitly
captured by the model equations, the biological traits can
be defined as independent of these factors. The mechanis-
tic model intends to ‘soak up’ all the interactions into the
model main effects that are combined non-linearly to give
the phenotype. Of course we cannot claim to have cap-
tured all possible factors and interactions, so we will not
obtain a perfect fit across environments. The biological
traits emerging from mechanistic models have however,
next to the above described benefits of traits related to

single biological production functions, the additional
advantage of being independent from a range of environ-
mental factors. This increases their validity across a range
of environments and would make redundant the re-esti-
mation of the trait values in environments that differ in
these factors. Having only a single environment to test, we
cannot test to what extent the estimated biological trait
components are independent from the environment. But
compared with conventional estimation methods for gen-
etic value, the mechanistic model gives environmental
effects the chance to explain differences in the phenotype
between environments and even some G £ E effects mana-
ged purely by the biological correctness of the model,
which we have limited power to test – but the concept is
made. For appropriate mechanistic models, the availability
of records over different ages across the growth trajectory
could partly substitute for lack of phenotypic information
across different environments. However, it does not elimin-
ate the need for information across environments.
A powerful solution would be to collect records over differ-
ent ages and to subject one individual to more than one
environment during the growth performance test.

Since the traits considered here are defined to rep-
resent the underlying biology, direct measurements of
these traits are often difficult to obtain in practice.
Nevertheless, accurate estimates of the trait values are
crucial for accurate model predictions and thus for the
appropriate application of mechanistic models to breed-
ing purposes. We have shown how realistic and unique
estimates of phenotypic and genetic components of
these biological traits can be derived from those of
recorded performance traits that are represented as out-
puts of the mechanistic model. We further found that
genetic differences between two breeds that for many
generations had been selected according to different
breeding goals are reflected in the biological traits. In
addition, the underlying biological traits related to
growth and body composition were found to have higher
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Figure 2 Model predictions for growth rate, average daily feed intake and backfat depth for PIC lines A and B together with statistical curves derived
from repeated measurements of pigs from four different cross-bred lines†

†Cross breds were expected to have slower growth, higher or similar feed intake and larger backfat depth than the pure-bred lines.
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heritabilities than performance traits corresponding to
growth and body composition. These properties combined
provide some scientific evidence for the theoretical infer-
ence of a close association of these traits to the genetic
makeup of the animals and may encourage further con-
sideration of these traits for genetic improvement.

In this study, simulated populations with a simple
balanced pedigree structure (full-sibs) have been used to
derive the estimates for the underlying biological trait com-
ponents, since the more complex pedigree structures of
real animal populations would complicate the estimation
of genetic and phenotypic variance and covariance com-
ponents without increasing the accuracy (and meaningful-
ness) of the estimates. The approach presented here was
not designed to and cannot produce estimates of these
traits for individual animals of real pig populations. If the
biological traits however were to be integrated into genetic
evaluation programs in the future, estimates of their values
for specific animal populations could be derived by adapt-
ing the methods of Varona et al. (1997) to the correspond-
ing mechanistic growth model. Also, in the decomposition
of the phenotype (equation (4)) several other possible var-
iance components, including those given by random
environmental effects, have been ignored. Inclusion of
additional variance (and co-variance) components would
be theoretically possible, but would increase the number of
parameters to be estimated and therefore require most
likely additional information to obtain robust solutions in
the inversion process.

By integrating mechanistic models into the genetic evalu-
ation methodology, several shortcomings of the current
methods for predicting genetic merit may be overcome.
First, regression models, which lie at the heart of current
breeding value estimation, are designed to fit a specific
data set rather than to represent the underlying biological
processes. This approach usually results in useful statistics
(estimated breeding values, EBVs) appropriate for the pre-
vailing conditions. However, it provides a narrow scope of
use; in particular, empirical models assume simple linear
relationships between (combinations of) individual model
components, which are renowned to cause problems when
extrapolating to conditions not covered in the data. In order
to avoid unexpected poor performance in environments that
differ from the data conditions, new data need to be pro-
duced and the covariances required for the EBVs need to be
re-estimated whenever the production conditions change.
This is not always feasible at the commercial level.

Second, genetic markers and quantitative trait loci (QTL)
have proved valid contributions to the description of the
animal’s true genetic merit, since they refer directly to the
animal’s intrinsic capacities in the prevailing environment.
However, in order to be useful for breeding purposes, their
association with the phenotypic performance traits of inter-
est needs to be established in each environment and gen-
etic background. In addition to the risk that this
association is not sufficiently strong to translate into a sig-
nificant genetic gain, current methods for determining the

genotype-phenotype association generally lack the ability
to quantify how gene expression varies across different
environments and during different growth stages (Ma et al.,
2002). Encapsulating both, validity across a range of
environments and describing the processes along part of or
the entire growth trajectory, the biological traits of
mechanistic growth models may add value to marker
development.

It can be speculated that the underlying crux of these
shortcomings of the current methods for estimating genetic
merit is their lack of integrating knowledge of the bio-
chemical, metabolic and physiological mechanisms that
determine how the genetic merit may be expressed in the
prevailing conditions. In contrast, mechanistic animal
growth models aim to describe the metabolic and physio-
logical pathways that link the genotype with predictions
for phenotypic performance traits. As a consequence of the
explicit description of the interactions between genetic
potential and physiological and environmental constraints
in the growth models, the mechanistic models are expected
to be more able to provide for proper extrapolation outside
the data range.

Conclusions

This paper suggests a novel use of mechanistic growth
models for estimating genetic components of biological
traits that could be advantageous for animal breeding. The
biological traits specified as input parameters of mechanis-
tic growth models are considered as intrinsic drivers of the
observed phenotype. They are considered less dependent
on the environment, as environmental factors are also
fitted in these models.

It is therefore suggested that implementation of these
traits into breeding programs would reduce the deleterious
impact of G £ E, and give more robust genetic gains across
environments. For example, genetic gain made under
favourable nucleus environments would give better corre-
lated responses under less favourable commercial con-
ditions that involve poorer nutrition, greater temperature
stress, etc.

Implementation of biological traits into breeding pro-
grams requires the prediction of these traits for selection
candidates, and this depends on having appropriate
observed traits and the prevailing environmental conditions
recorded. Further implications would follow for QTL map-
ping and/or marker association studies on the new set of
traits. Such associations may well be stronger than for the
more easily measured but less heritable observed traits –
conditions that are conducive to more efficient marker-
assisted selection programmes.
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