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Hitting times of Markov chains,

with application to state-dependent queues

R.L. Tweedie

We present in this note a useful extension of the criteria given

in a recent paper {.Advances in Appl. Probability 8 (1976), 737-771]

for the finiteness of hitting times and mean hitting times of a

Markov chain on sets in its (general) state space. We illustrate

our results by giving conditions for the finiteness of the mean

number of customers in the busy period of a queue in which both

the service-times and the arrival process may depend on the

waiting time in the queue. Such conditions also suffice for the

embedded waiting time chain to have a unique stationary

distribution.

1 . F i n i t e n e s s c r i t e r i a f o r h i t t i n g t i m e s

We give our results for Markov chains on a general state space X ,

with a a-field F of subsets of X , since the proofs require no other

structure. Let {X } be such a chain, with temporally homogeneous

transition probabilities

P"(x, A) = Pr(Zn € A | XQ = x) , A € F , x € X ;

we assume r(x, •) is a measure on F for each x € X , and F (• , JO

is a measurable function on X for each A € F . We let A denote a

particular set in F , and let

N = inf [n > 0 : X € A)
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denote the number of steps until [X } enters A . In [70], Theorems 6.1

and 10.1, the following results are proved.

THEOREM 1. (i) If there exists a non-negative measurable function

g and an e > 0 such that

(1) j P(x, dy)g(y) 5 g(.x) - e

for all x f Ae j then

(2) E{N I XQ = x) 5 g(x)/£ , x € Ae ,

(3) E(N I XQ = x] 5 1 + J P(x, dy)g(y)/e , x € A .

(ii) If there exists a non-negative measurable function g such that

(k) g(x) > sup g{y) , x € Ae ,

(5) Pr(lim sup g[Xn) = °° | XQ = x) S 1 ,

(6) f P(x,

Afor all x € A ,

(7) Pr(iV < » U O = ^ 1 .

It is often the case in practice that the "negative mean drift"

conditions (l) or (6) can only be shown to hold for x outside some larger

set F containing A , and yet it is reasonable that if T is reached in

a finite (or finite mean) time, then the same is true for A . A typical

case is when X = {0, 1, ...} and A = {0} , but (l) or (6) only hold for

x outside {0, 1, . . . , j} where j is sufficiently large. For this case

(when also {x } is assumed irreducible), Foster [2] first proved Theorem

1 with A = {0} , whilst Pakes [6] gave auxiliary conditions for the above

type of generalization. This countable case is a simple corollary of our

results below. (I am grateful to Dr Pakes for pointing out to me that
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Foster himself gave the more general result, in the discussion of [3]; it

is surprising that in [2] Foster only presented the form with A .)

The extension of Theorem 1 which we prove is

THEOREM 2. (i) Suppose A e r and g is a non-negative function

such that

P(x, dy)g(y) 5 g{x) - e , x(8)

If further

(9) sup [f P(x, dy)g(y)-g(x)\ = I

xer\A Ux -•

and for some n > 0 ,

n

(10) inf Y. f / " ( x ' A) = 6 > 0 ,
1

then for some constant M > 0 ,

A c(11) E(N I XQ = x) 5 [ M + £ U ) ] / E , x € Ac .

(££j Suppose A c T j and (U)-(6) fcoZd / o r T rather than A . J /

(12) in f P[N < =» | X = a;) = X > 0 ,
xer\A u

then (7) holds. A sufficient condition for (12) i s tfozt, for some 9 < 1 ,

(13) inf j F ^ x , A)6m = X1 > 0 ,

so that in particular (10) suffices for (12) to hold.

Proof. Ci/I We show that (8)-(l0) enable us to construct a function

g* which satisfies (l), and is bounded above by M + g for some constant

M . The result then follows from Theorem 1 (i).

We will assume that for x ? A , P(x, {x}) = 1 : this affects

neither the hypothesis nor the conclusion of the theorem. From (10), for

every x € T\A there exists m with 1 5 m S n such that

F^"(x, A) > 8/n , and hence, since A is absorbing, P ^ x , A) 2: &/n . Let
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B < 1 be small enough tha t n& 5 &/n , and put F = A and for

k = 1 , . . . , n ,

rfe = {y •• A y , A) > kB} .

Note that F\A c. F . How by construction, if a; € F, , ,

k = 1, 2, ..., w-l , we have

, A) = Fix, dy)Pk(y, A) + Pix, dy)Pk(y, A)

k

5 p[x, rk) + %

so tha t for fe = 0, 1 , . . . , n-1 ,

P u t A/ = n(B+s)/Qn , w h e r e B, e a r e a s i n ( 8 ) a n d ( 9 ) ; a n d d e f i n e g*

by setting r* = F \
k-1
U F.

.7=0 3
, k = 1, •••, n , and putting

g*(x).= •

gix) ,

gix) + M -

gix) + M ,

i-k

x € A ,

, x € F* , k = 1, ..., n ,

x € U F*

With this construction, we have for any x £ V} , k = 2-, ..., n ,

from (9) and ilk),

(15) f Pix, dy)g*iy) - g*ix)
J v

Pix, dy)igiy)+M] -P[x, T x) in-k+l) lB+e

-gix) - M + in-k)iB+e]/8n~k

S B - [B+e ] /3 5 -E •

l-fe+1

Since F\A c U F* , for x € [U T*]° , we have (8) holding, so that
k k °
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(16) f P(x, dy)g*(y) < f P(x, dy)[g(y)+M]
JX JX

5 g(x) - E + M

= g*{x) - e •

From (15) and (l6) , we see that the function g* satisfies (l) for every

x If. A , and the theorem holds.

(ii) Again, let us consider A to be absorbing. From (*0-(6) we

have that

Pr(xw € r, some n > 0 | XQ = x) E 1 ;

this together with (12), implies, for a; € A ,

(IT) i n f P[N < <» | XQ = x) = X > 0 .

From (IT), then, we have that

inf P(N < °° | X = a) = X > 0
x€X U

s ince P{N = 1 \ X = x) = 1 , x € A ; now from Propos i t ion 1 .5 .1 of [ 5 ] ,

i t follows t h a t for a l l x € X ,

Pr(«? € A i n f i n i t e l y of ten \ X = x) = Vr{x ? X i n f i n i t e l y of ten | XQ = x)

= 1 ,

and so, in particular, (T) holds. That (13) implies (12) is shown in (1.5)

of [«].

REMARKS. (i) Clearly if T\A is finite, as it is in the countable

state space extension of Foster's result mentioned earlier, then (10)

00

holds when £ fix, A) > 0 for each x € T\A , and so in particular when
1

{X } is irreducible. In this case, (9) is also equivalent to

f P{x, dy)g(y) < » , x € T\A .
JX

Hence Pakes' results [6] follow from ours.

(ii) If A is a single point, then the assumptions of either part of
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Theorem 2 ensure tha t the chain {X } i s (((-irreducible, with <J>

concentrated a t A (of. [ 5 ] ) . I t then follows t h a t , i f (10) holds, r i s

a status set for {x } (Proposition 5.2 of [JO]) , and so, as shown in

1101, (8) and (9) suffice to ensure that

(a) a s ta t ionary dis t r ibut ion ir exists for ix ) ; and

(b) for fr-almost a l l x , E(N | XQ = x) < « .

However, (b) may be considerably weaker than the conclusion of Theorem 2

(i) : consider, for example, the case when A actually is absorbing, so

tha t TT i s concentrated a t A and (b) implies nothing about the mean

h i t t i n g times on t h i s absorbing set from points in A° .

( i i i ) To provide counter examples to possible weakenings of the

hypotheses of Theorem 2, consider a chain where F\A contains a countably

i n f i n i t e number of points x. , j = 1, 2, , and
3

Even if (8), (9) hold, then E[N | XQ = x) can be infinite for x € T\A

if Y, j p--ct.] = °° ; if this happens then (10) of course fails.
J

Similarly, if ] T a - > ® > * n e hypothesis and conclusion of Theorem 2
3

(ii) both fail; in this case, also, if A is absorbing £ r (x •> A) = °° ,

which indicates that 6 = 1 cannot be allowed in (13).

The condition (9) cannot be weakened, in general (unless F\A is

finite), to

(18) I P(x, dy)g(y) < °° , x (. T\A ;

for an example where (18) and (8) hold but the mean hitting times on T

itself are infinite, see Section 6 of [9].

2. State-dependent queues

In this section we apply our results to a very general state-dependent

queueing model. We consider a system where a customer, arriving to find a
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waiting time w "before he is served, has a service time with a

distribution S depending on w , with mean y ; and where also, if a
w w

customer arrives to find a waiting* time w , then the time T until the

next customer arrives has a distribution depending on the new virtual

waiting time after his service time has been added to w ; if this service

time is s , then we write

Pr(T « x | w+s) = Fix | w+s) .

This allows for a wide variety of input mechanisms: for example, if the

input is a Poisson process with rate X , and if a customer arriving to

find a waiting time w turns away with probability piw) , then for

x < w + s ,

I rW+S >,

F(x | w+s) = expj- \[l-p(u)]du> .
V 'J.l + O-T* '

This illustrates the fact that allowing the interarrival time to

depend on the virtual waiting time immediately after the last customer

arrives also allows the interarrival time to depend on all the waiting

times after that point; we do, however, assume that the interarrival times

are independent of the past before the last customer arrived, and the

service time of a customer is independent of the time he takes to arrive,

and all other service times, once w is prescribed.

When the interarrival time process is independent of the waiting time

process, such queues have been considered in [7], [7], [9], and [4]. In

our application of Theorem 2, we find conditions for the finiteness of the

mean number of customers in the busy period of such a queue; these lead to

conditions for the embedded waiting time chain to have a stationary

distribution.

We let X denote the waiting time in the queue immediately before

the arrival of the nth customer. The queue-size at this time is no

longer a Markov chain, since we have dependence of the system on waiting

times; however, \x } is a Markov chain on ([0, » ) , B ] , where 8

denotes the Borel subsets of [0, °°) ; and we can exploit the fact that,

if A = {0} and N = inf(n > 0 : X € A) as in the previous sections,

then the mean number of customers in a busy period is merely
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E{N \ XQ = 0) .

THEOREM 3 . (a) The mean number of customers given X = x > 0 in

the above queueing model satisfies

E[N I X= xj 5 a + bx , x > 0 ,

for some a > 0 ., b 2 0 , provided

(i) lim sup u - [ tdF{t | v+y)dS(y)\ < 0 ;
u-w L J0 J0 -1

ii>' / o r awz/ ^ > 0 j

sup u = \i(K) < oo ;

i i i / ' for any K > 0 , there exists 6(K) > 0 and z{K) > 0

such that for every x € [0, K] , either

| x) < 1 - eU) ,

F{x | x) < 1 - E U ) .

r&>) Consequently the mean number of customers in a busy period

satisfies E[N | X = o) < [l+a] + fey. j and so is finite if y < » .

Proof. Let {P(x, i4)} be the transition law of the waiting time

chain {x } • From (i) , there exists a K > 0 and an e > 0 such that

for x > KQ ,

(•oo f " rtJ

P(a;, dy)y - x < y -
Jo x Jo Jo

iw +y
' - ' • • ' - (y) « - e ;

hence (8) holds with gU) = x and T = (o, #Q] . From Cii^ a t KQ , (9)

holds with A = {0} . Also from (ii) , for w e (0, X ] , there must be a

g > 0 such tha t for each w ,

t h a t i s , with probabi l i ty bounded away from zero the jumps out of (0, XQ]
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stay below K + u(# ) = K , say. Now applying (Hi) for K = K , we

find that for each x € (o, K "] , there is probability, bounded from zero

by C{KA , either of no jump until zero is reached, or of waiting at least

\I(K ) + 8(K ] before the next jump; that is, of the waiting time

decreasing again by at least yfc) + <5 (# ) before the next jump. Since

p is an increasing function, there is thus probability bounded from zero

by B e ^ ) that Xn+± ^\- 6 ^ ) , given ^ € [ 6 ^ ) , #Q] . Repeating

this K /6[K ) times, we see that by choosing n = K/6[K ) , we have from

(i.%) and (Hi) that (10) holds. Hence for x > 0 , the mean of the hitting

time N on zero from x is bounded above by a + bx , for some a > 0 ,

h > 0 , from Theorem 2 (i).

Now finally, we have that the mean number of customers in a busy

period is given by

{N I XQ = 0) = 1 + j *(ff I XQ = i/)dS0(i/)

< 1 + a + 2>u0 ,

and the theorem is proved.

REMARKS. (i) In the case of an independent renewal input process, as

studied in the references cited above, the condition (Hi) of the theorem

is not a great improvement on the condition that the (independent and

identically distributed) interarrlval times T be unbounded; that is,

F{x) < 1 for all x . However, in one case it is a distinct improvement:

this occurs when

sup u = u(°°) < °° ,
w

for then (Hi) gives our results provided for some 6 > 0 ,

F(x) < 1 , x < v7(«>) + 6 .

(ii) In [77], Theorem 2 is applied to continuous time processes.

There, we derive extra conditions under which the mean length of a busy

period (in contrast to the mean number of customers) can be shown to be

finite.
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Finally, we note that since A is a single point, as mentioned in

Remark ( i i) after the proof of Theorem 2 we can also show

THEOREM 4. If the conditions of Theorem 3 hold, then the waiting

time chain \X } admits a unique stationary distribution v ; and

provided, say, for every x 5 u , there is 6 > 0 , e > 0 such that

(2k) F(yo+6 | i ) < 1 - e ,

then for any initial distribution A of waiting times,

I f°
(25) sup \(dy)fl(y, A)-TJ(A) ->- 0 , n -+ •*, .

A(S l J 0

If (2k) fails then at least

( 2 6 ) s u p . I f \ ( d y ) [ ± Z f ( y , i O l - n U ) + 0 , n - » .

Proof. From Theorem 3, if 4> is a measure concentrated at {0} , the

chain is <|>-recurrent [5], and thus has a unique invariant measure TT ,

which must be finite since Ef\Ji \ XQ = x) < <*> , x > 0 , and

E[N I X = 0) < o° (see [70] or 141). From Theorem 1.7.1 of [5], then,

(26) holds, and can be strengthened to (25) if the chain is aperiodic. The

condition (2*0 ensures (as in the proof of Theorem 3), that P(0, {0}) > 0 ,

which is enough for aperiodicity.

Even when the arrival process is an independent renewal process,

Theorem h improves the results of [4], which demanded either

(a) that the service times be continuously dependent on waiting

times in some way; or

(b) that the service times be deterministic, but T have a

density not concentrated on a finite interval.

Some of the cases when (a) holds may not be covered by Theorem k, but

(b) is superseded by the present approach.
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