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Abstract

In this paper we have proved that the generalized incomplete gamma functions and their
extensions are mutually related through integral and differential representations.

1. Introduction

Chaudhry and Zubair considered the generalized gamma functions [4]

Y(a,x;b)= I r ^ V ^ ' dt, (1)
Jo

r(a,x;b)= I ta-le~-b/ldt, (2)
Jx

found useful in a variety of transient heat conduction problems [4, 5, 13, 14].
The extensions

Yv(a,x;b) = [ — ) / »"-*«-'Kv+i{b/t)dt, (3)
V * / Jo 2

Tv(a,x;b) = I — ) / t"-h-'Kv+i(b/t)dt (b>0, x>0, -oo<a<oo) (4)
\* J Jx

of the generalized incomplete gamma functions (1) - (2) were introduced in connection
with the generalization of the inverse Gaussian distribution [6]. It is to be noted that

ro(a, x; b) = T(a, x; b), and (5)

Yo(a,x;b) = y(or, x\b). (6)
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Some applications of the functions (3) - (4) to the representation of Laplace and
^-transforms were shown in [6]. Several properties of these functions including
decomposition formulae, recurrence relations and special cases were also discussed.
It was shown that when v = n is an integer, the functions (3) - (4) can be simplified
in terms of the generalized incomplete gamma functions (1) - (2). As a matter of fact,
it was shown that

For nonintegral values of v we were not able to develop a relationship between the
functions (1) - (2) and (3) - (4) and it was left as an open problem. The present paper
is a continuation of our earlier work [4, 6].

In this paper we have found interesting relationships between the functions (1) - (2)
and their extensions (3) - (4) for nonintegral values of v. Following Erdelyi [8,9], we
shall define the Laplace, Hankel and AT-transforms of a function fit) (0 < t < oo)
respectively as

L{f(t); s}= f e-stf(t)dt, (8)
Jo

HAfit); y) = r f(t)Jv(yt)(yt)l/2dt, (9)
Jo

RAfif); y}= [ f(t)Kv(yt)(yt?l2dt. (10)
Jo

2. Some preliminaries

In this section we recall some results from [6].

THEOREM 2.1. Let H(t) = \ be the Heaviside unit step function and
(0 i/f<0

f(t) = ra~le-b/'H (t--\ b > 0, x > 0. (11)

Then

RAf(f);y) = (^)i/2b-ayv_i(a,bx;by) (12)

and

f / 1\ 1
(*»0,;c>0). (13)
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THEOREM 2.2. Let

f{t) = ra-le-b/'H (- - tj Hit) ib > 0, x > 0, t > 0). (14)

Then

RAf(t);y} = {^)'2b-aTv_{ia,bx; by) (15)

and

L \t-a-le'b/'H | - - t ) Hit); y] = b'Tia, bx; by). (16)

I \x J \

3. Integral representations

According to (7), the extension !"„(<*, x\ b) can be simplified in terms of the gen-
eralized gamma functions P(ar, x; b) for integral values of v. In this section we shall
prove that these functions are related to each other through the integral representations
for all v > — 1. Some special cases of these results are found interesting.

THEOREM 3.1.

r (H- l ) Jy > I . — .

PROOF. Let

/1 \
(18)

Then, according to (15),

Moreover, according to (16) we have

L [ri+17(0; $] = r(o - v - 1/2, x; $). (20)

However, according to [9, p. 122]

1

;+v) Jy ^ J ' "V • ' V ' " * J ~ * " * " " 2
RAf(0;y}=n Ji, y\ f g2-y2)w~^ \ti+vf(t);$\d§ Rev>-^ (21)
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And from (19)-(21)

1/2 i
'-) r,_i(«,x;y)="r~

 7 / ($2 - y2y->r(a-v-l/2,x;$)d$. (22)

Multiplying both sides in (22) by ( | ) ' and replacing v.by v + \ completes the proof.

COROLLARY 3.1.

r(ja,x;y)= [ r ( a - 1,*; f)df y > 0. (23)

PROOF. This follows from (17) when v = 0. It should be noted that (23) can be proved
directly from the definition (2). In particular, when y = 0 in (23) an interesting relation

/•OO

F(a,x)= r ( a - l , *;£)</£ (24)

between the classical incomplete gamma function F(a, x) and the generalized gamma
function F(or — 1, x\ | ) is found. Several special cases of (24) can be listed. For
example, the substitution a = 0 leads to

-Ei(-*)= [°°r(-l,x;$)d$ (25)
Jo

while the substitution a = 1/2 leads to (cf. [4])

"r I e^Er fc Ux-y/^/x \ -e '^ f Erfc Ux+^/x \ I ^= = 2Erfc (v^) . (26)

THEOREM 3.2.

2 —v,,—v r<x>
y 1 2 2 v

r(v+i) Jy ' ; y -

PROOF. This is similar to the proof of (17). In particular, substituting v = 0 in (27),
we get

y(a,x;y)= y(a - l,x;ftd$, (28)
Jy

which can be verified directly from (1).
The substitution y = 0 and a = 1/2 in (28) leads to

(29)f y(-l/2,x;&dS = yfr&rf [y/x~\.
Jo
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THEOREM 3.3.

rv(a + M, *; b) =2'-" [rOOr1 ft"+1 [ r"""(?2 - b2r~l ru+M(a, *; § )d$
Jb

(v>-l,/z>0,ft>0). (30)

PROOF. Let f{t) = r"-le-l"H(l/x - t)H(t). Then, according to (15),

g(y; v) = Rv{f(t)\ y] = ( ^ ) rw_.(a,*;y), (31)

/?v ( r 7 ( O ; b) = ( | ) ' / 2 rv_i (a + ^ x- by (32)

However (see [9, p. 126(7)]),

Rv |r"/(O;^} = 21-"[raor1 *u+^ Ct-^-^S2 -*2)"-'«(?; v + /*)*/?

( fe>0 ,Ai>0 , v > - i j . (33)

From (31)-(33), we get

Fv_{(a+n,x;b)= 2 ' <tfr"+i r^~\H2 - fc2)M-Tv + M_i(a ,x;g)^. (34)

Replacing v by v + | in (34) completes the proof.

COROLLARY 3.2.

^ f ° 1 2 2 1 (35)

f
Jo

PROOF. This follows from (30) when v = - 1 and the fact that

T(a, JC; ft) = r_,(a, x\ b) = ro(a, x; ft). (36)

In particular, substituting /x = 1 in (35), we get

r(a + l,x;b)= I r(a,x;f)df, (37)

which can be verified directly from (2).
The substitution ft = 0 in (35) leads to

(38)

where r(or, x) is the classical incomplete gamma function.
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THEOREM 3.4.

y v ( a+ /*,*; 30 = 2'-"[
Jy

(/A > 0, v > - l , y > 0). (39)

PROOF. Let

. .. / 1\
x > 0. (40)

Then, following the steps of Theorem 3.3, we get the proof of (39). In particular, the
substitution v = — 1 in (39) leads to

(x > 0, /x > 0, y > 0). (41)

4. Differential representations

The properties of the #-transforms and the relations (11) - (14) could be ex-
ploited to prove the differential representations of the generalized incomplete gamma
functions and their extensions. In this section we prove these representations.

THEOREM 4.1.

— — I [ym~vyv-m(ci, x; y)]

(*> 0,77! = 0 , 1 , 2 , 3 , . . . , ) . (42)

PROOF. Let f(t) = t-a-]e-l/'H(t - l/x), x > 0. Then, according to (12)

g(y; v) = Rv{f(0; y] = (-z-j yv-i(a,x; y)m, (43)

K {tmf(t); y) = ( | ) ' / 2 j/p_i (a - m, x; y). (44)

However, according to [9, p. 125(4)],

( 1 a \ m

— — ) |ym-"-^(y;v-m)). (45)

ydy/ I J
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Therefore, from (43) - (45), we get

( ^ ) { ^ ) (46)

Replacing v by v + 1 in (46) completes the proof of (42). In particular the substitution
v = m in (42) leads to

ym(a-m,x;y) = yml——I {y(a, x; y)} (m = 0, 1,2, 3 , . . . , ) . (47)

THEOREM 4.2.

( f 1 ^ \ m

— T- ) {y'Tv-mdu, x; 30} (m = 0, 1, 2, 3 , . . . , ).(48)
y °y )

PROOF. If we take f(t) = ra-ie-l/'H(l/x - t)H(t) and follow the steps of the proof
of Theorem (4.1), we get the proof of (48). In particular the substitution v = m in
(48) leads to

{T(a,x;y)} (m = 0, 1, 2, 3 , . . . , ) . (49)

5. Functional recurrence relations

THEOREM 5.1.
y

yv(a + \,x;y) = -——r[Yv+\(a,x;y) - yu-i(a, x; y)]. (50)
2v + 1

PROOF. Let fit) = r"-le-l/'H(t - \/x), x >0. Then, according to (12),
2yv_,2(a + l,x;y)=g(y;v). (51)

However, according to [9, p. 125(5)],

R» {t"' / ( * ) ; y} = ^ [g(y, v + l)-g(y;v-l)]. (52)
From (51)-(52), we get

yu-i2(a+ l,x;y) = — \yv+i(a,x;y) - n _ 3 (a , * ; > > ) ] . (53)

Replacing v by v + \ in (53) completes the proof.

THEOREM 5.2.

^ y ) - r v _ ] ( a , x ; y ) ] ( x > 0 , y > 0 ) . ( 5 4 )

PROOF. This is similar to the proof of Theorem 5.1.
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6. CM(a, x,y) and S(">(a, x; y) functions

The Hankel and A"-transforms are related to each other via [9, p. 121]

HAfit); y} = ^ [eUv+l>RAf(ty, iy} + e-W)'RAf(t); -iy)] . (55)

Taking f(t) as defined by (18), replacing v by v + i in (55) and using (15), we get

Hv+i {t—le-l"H Q - 1 \ H(0; y\ =

L \ei(v+1)rv(a, x; iy) + e-L^+1)rv(cc, x; -iy)] . (56)

Substituting x = 0 in (56) and using the relation

tf(oo - r ) = l, (57)

we get

Hv+{ {r—'e-I/r; y) = -j= [^^"r^o, 0; iy) + e^("+1)rv(a, 0; -iy)] . (58)

According to [9, p. 30(15)],

Hv+h { r 3 ^ - 1 " ; y) = 2Jy-Jv+h ( ^ ) ATU+, ( ^ ) . (59)

Substituting a = \'m (58) and using (59), we get an interesting relation

ei(w+1>rw(l/2, 0; iy) + <r^+1>rp(l/2, 0; -iy)

= iJhTy Jv+, (727) ^ + i ( v ^ ) • (60)

In particular, for v = — 1 in (60) and using F_i (a, x; b) = T{a, x; b), we get

Td/2, 0; iy) + T(l/2, 0; -iy) = ijh^/ J.l/2 (v^y) AT_1/2 (y/2y)

= 2V^ e"^25 cos (^27) , (61)

which can be verified directly from (2). Similarly, the substitution v = 0 in (60) leads
to

ei"T{\/2, 0; iy) + e-i*r(l/2, 0; -iy) = 2«Jn g-^s in (>/2y) • (62)
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Therefore, it seems natural to introduce a new pair of functions defined by

C(u)(a, x; y) = X- [el(u+1W2ru(a, x; iy) + e-'(l>+1)ir/2ry(a, x; -iy)], (63)

5M(a, x; y) = 1 [e^+X)n'2Tv(a, x; iy) - e-Kv+i)"/2rv(<x, x; -iy)]. (64)

The identities (60) - (62) can now be written as

C(l"(l/2, 0; y) = iJl^J^i

C(-n(l/2, 0; y) = 2 ^ ^ cos

C(0)(l/2, 0; y) = 2e~^ sin
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