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THE ALPERIN WEIGHT CONJECTURE AND DADE’S CONJECTURE
FOR THE SIMPLE GROUP J4

JIANBEI AN, E. A. O’BRIEN and R. A. WILSON

Abstract

The authors construct faithful permutation representations of max-
imal 2-local subgroups and classify the radical chains of the Janko
simple group J4; hence the Alperin weight conjecture and the Dade
reductive conjecture for J4 are verified.

1. Introduction

The program of deciding Dade’s reductive conjecture [10] for the sporadic groups has made
very substantial progress: it has been verified for all of the sporadic simple groups except
Fi′24, J4, B and M.

The use of computer algebra systems, namely Magma [7] and GAP [12], to study per-
mutation (or in some cases matrix) representations of the groups has been a central step
of the program. Since the smallest faithful permutation representation of J4 has degree
173067389, it is difficult to verify the conjecture directly. However, from the classification
of maximal subgroups of J4 (see [14]), we know that the normalizer of each radical 2- and
3-subgroup of J4 is a subgroup of one of precisely four maximal 2-local subgroups. Thus
we can classify radical chains in these four maximal subgroups without performing any
calculation in J4.

In this paper, we construct faithful permutation representations for each maximal 2-local
subgroup, classify radical chains, and hence verify the Alperin weight conjecture and the
Dade reductive conjecture for J4.

LetG be a finite group, p a prime and B a p-block ofG. Alperin [1] conjectured that the
number ofB-weights equals the number of irreducible Brauer characters ofB. Subsequently,
Dade [9] generalized the Knörr–Robinson version of the Alperin weight conjecture, and
presented his ordinary conjecture, exhibiting the number of ordinary irreducible characters
of a fixed defect in B in terms of an alternating sum of related values for p-blocks of some
p-local subgroups of G. Later, Dade [10] announced that his reductive conjecture needs
only to be verified for finite non-abelian simple groups; in addition, if a finite group has a
trivial Schur multiplier and trivial outer automorphism group, then the ordinary conjecture
is equivalent to the reductive conjecture.

The paper is organized as follows. In Section 2, we fix the notation, state the conjectures in
detail, and state two lemmas. In Section 3, we explain how to construct faithful permutation
representations of the four maximal 2-local subgroups. In Section 4, we recall the modified
local strategy [3, 4]; we also explain how we applied it to determine the radical subgroups
of each maximal subgroup, and how to fuse the radical subgroups in J4. In Section 5, we
use the list of radical subgroups of J4 given by [17] to verify the Alperin weight conjecture.
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The Alperin weight conjecture and Dade’s conjecture for the simple group J4

In Section 6, we do some cancellations in the alternating sum of Dade’s conjecture, and
then determine radical chains (up to conjugacy) and their local structures. Finally, we verify
the ordinary conjecture of Dade for J4.

2. Dade’s ordinary conjecture

Let R be a p-subgroup of a finite group G. Then R is radical if Op(N(R)) = R, where
Op(N(R)) is the largest normal p-subgroup of the normalizerN(R) = NG(R). Denote by
Irr(G) the set of all irreducible ordinary characters of G, and let Blk(G) be the set of p-
blocks,B ∈ Blk(G) and ϕ ∈ Irr(N(R)/R). The pair (R, ϕ) is called aB-weight if d(ϕ) = 0
and B(ϕ)G = B (in the sense of Brauer), where d(ϕ) = logp(|G|p) − logp(ϕ(1)p) is the
p-defect of ϕ and B(ϕ) is the block of N(R) containing ϕ. A weight is always identified
with its G-conjugates. Let W(B) be the number of B-weights, and let �(B) be the number
of irreducible Brauer characters of B. Alperin conjectured that W(B) = �(B) for each
B ∈ Blk(G).

Given a p-subgroup chain

C : P0 < P1 < . . . < Pn (2.1)

of G, define |C| = n, Ck : P0 < P1 < . . . < Pk , and

N(C) = NG(C) = N(P0) ∩N(P1) ∩ . . . ∩N(Pn). (2.2)

The chain C is radical if it satisfies the following two conditions:

(a) P0 = Op(G); and

(b) Pk = Op(N(Ck)) for 1 � k � n.

Denote by R = R(G) the set of all radical p-chains of G.
Let k(NG(C), B, d) be the number of characters ψ in Irr(NG(C)) such that d(ψ) = d

and B(ψ)G = B. In the notation used above, the Dade ordinary conjecture is stated as
follows.

Dade’s ordinary conjecture (see [9]). If Op(G) = 1 and B is a p-block of G with
defect group D(B) �= 1, then for any integer d � 0,∑

C∈R/G

(−1)|C|k(NG(C), B, d) = 0,

where R/G is a set of representatives for the G-orbits of R.

Let G be the Janko simple group J4. Then its Schur multiplier and outer automorphism
group are both trivial, so by [10], Dade’s ordinary conjecture is equivalent to his reductive
conjecture.

In Section 6, we shall use the following lemmas.

Lemma 2.1. Let σ : Op(G) < P1 < . . . < Pm−1 < Q = Pm < Pm+1 < . . . < P� be a
fixed radical p-chain of a finite group G, where 1 � m < �. Suppose that

σ ′ : Op(G) < P1 < . . . < Pm−1 < Pm+1 < . . . < P�

is also a radical p-chain such that NG(σ) = NG(σ
′). Let R−(σ,Q) be the subfamily of

R(G) consisting of chains C whose (�− 1)th subchain C�−1 is conjugate to σ ′ in G, and
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The Alperin weight conjecture and Dade’s conjecture for the simple group J4

R0(σ,Q) the subfamily of R(G) consisting of chainsC whose �th subchainC� is conjugate
to σ in G. Then the map g, sending any

Op(G) < P1 < . . . < Pm−1 < Pm+1 < . . . < P� < . . .

in R−(σ,Q) to

Op(G) < P1 < . . . < Pm−1 < Q < Pm+1 < . . . < P� < . . . ,

induces a bijection, denoted again by g, from R−(σ,Q) onto R0(σ,Q). Moreover, for any
C in R−(σ,Q), we have |C| = |g(C)| − 1 and NG(C) = NG(g(C)).

Proof. This is straightforward.

Lemma 2.2. If Q is a p-subgroup of a finite group G, then there is a radical p-subgroup
R such that

Q � R and NG(Q) � NG(R).

Proof. This follows by [2, Lemma 2.1].

3. Construction of permutation representations of maximal 2-local subgroups

We use the notation of [8]. In particular, p1+2γ = p
1+2γ
+ is an extra-special group of

order p1+2γ with exponent p or type + according to whether p is odd or even. If X and Y
are groups, we use X.Y and X:Y to denote a nonsplit extension and a split extension of X
by Y , respectively. Given a positive integer n, we use pn to denote the elementary abelian
group of order pn, n to denote the cyclic group of order n, and D2n to denote the dihedral
group of order 2n.

The four maximal 2-local subgroups of J4 that we wish to construct are 211:M24,
210:L5(2), 23+12 · (S5 × L3(2)) and 21+12 · 3 · M22:2. The first two of these are easy
to construct abstractly as affine groups. The first can be written as 12 × 12 matrices over
GF(2), acting either with a fixed vector or with a fixed hyperplane. These representations
can be easily obtained from a submodule or quotient module (respectively) of the restric-
tion of the 112-dimensional representation of J4. These give rise naturally to permutation
representations on 759+1288+2048 non-zero vectors in the one case, or 1+1518+2576
in the second. Any of the three faithful representations, of degrees 2048, 1518, and 2576,
can then be used to generate the character table of the group.

Similarly, the group 210:L5(2) has two natural affine representations, in which the orbits
of non-zero vectors are either 155 + 868 + 1024 or 1 + 310 + 1736 in length, and again
any of the three faithful representations, of degree 1024, 310 and 1736, can be used as a
starting point for the calculations.

The other two maximal 2-local subgroups of J4 are harder to construct. They can be
obtained as subgroups of J4 using the words in the standard generators of J4 given in [5].
This, however, limits us to two particular representations of the groups, given by restricting
the representations of J4 in dimension 112 over GF(2) or dimension 1333 over GF(11).
For the purposes of calculating the character tables, we want to obtain faithful permutation
representations on a reasonably small number of points.

On the other hand, of course, the point stabilizer in a faithful representation cannot
contain any non-trivial subgroup that is normal in the whole group, and this puts severe
constraints on which subgroups we can use as a point stabilizer. For example, in the case
21+12.3.M22:2, if we are to avoid the central involution, the point stabilizer can have at most
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a subgroup of order 26 in the normal 21+12. Moreover, such a subgroup must be invariant
under a reasonable subgroup of 6.M22, which must again split off the central involution.
The biggest subgroup that we could identify as a potential point stabilizer was a group of
shape 26:3.A6, which we found as the subgroup generated by certain words in the given
generators of 21+12.3.M22:2.

This subgroup has index 27.2.77.16 = 630784. We obtained the corresponding per-
mutation representation on 630784 points by calculating the subgroup explicitly in the
112-dimensional representation over GF(2), and using Magma to calculate the permuta-
tion action on the cosets. We then found that in fact there is a block system of 315392 blocks
of size 2, such that the action on the blocks is still faithful. This representation was then
used as input to the next stage of calculation.

In the remaining case, we found a subgroup of shape 21+8(5 × S4) as a potential point
stabilizer in 23+12(S5 × L3(2)). We used the 1333-dimensional GF(11)-representation of
J4, and restricted to a 1120-dimensional submodule on which the maximal 2-local subgroup
acts faithfully and irreducibly. Restricting further to the potential point stabilizer, we found
a 15-dimensional invariant subspace. Taking the permutation action of our maximal 2-local
subgroup on the 61440 images of this 15-space gave us the desired faithful permutation
representation.

4. A local subgroup strategy and fusions

Kleidman and Wilson [14] classified the maximal subgroups of J4. From this, we know
that there are 4 maximal 2-local subgroups up to conjugacy. In addition, each radical 2- and
3-subgroup R of J4 is radical in one of the subgroups M and, further, NJ4(R) = NM(R).
The radical 2-subgroups of J4 are classified by [17].

In [3] and [4], a (modified) local strategy was developed to classify the radical p-
subgroups R. We review this method here.

LetQ = Op(M), so thatQ � R. Choose a subgroupX ofM . We explicitly compute the
coset action ofM on the cosets of X inM; we obtain a groupW representing this action, a
group homomorphism f from M to W , and the kernel K of f . For a suitable X, we have
K = Q and the degree of the action ofW on the cosets is much smaller than that ofM . We
can now directly classify the radical p-subgroup classes of W , and the preimages in M of
the radical subgroup classes of W are the radical subgroup classes of M .

After applying the strategy, we list the radical subgroups of eachM , and then we do the
fusions as follows.

Suppose thatR is a radicalp-subgroup ofM . Using the local structure, we can determine
whether or notNM(R) is a subgroup of another maximal subgroupM ′. Suppose thatNM(R)
is a subgroup ofM ′. By Lemma 2.2, there is a radical subgroup R′ ofM ′ such that R � R′
and NM(R) � NM ′(R′). Using the local structure, we can determine whether or not R
is radical in M ′; if so, we can identify R with a radical subgroup R′ of M ′. In this case,
NM(R) =G NM ′(R′). Some more details are given below.

The computations reported in this paper were carried out using Magma V2.9-9 on a Sun
UltraSPARC Enterprise 4000 server.

5. Weights

Let R0(G, p) be a set of representatives for conjugacy classes of radical p-subgroups
ofG. ForH,K � G, we writeH �G K if x−1Hx � K , and we writeH ∈G R0(G, p) if
x−1Hx ∈ R0(G, p) for some x ∈ G.
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Let G be the Janko simple group J4. Then

|G| = 221 · 33 · 5 · 7 · 113 · 23 · 29 · 31 · 37 · 43,

and we may suppose thatp ∈ {2, 3, 11}, since both conjectures hold for a block with a cyclic
defect group, by [9, Theorem 7.1]. Ifp = 11, then by [6, Proposition 1.3], a Sylow subgroup
ofG is a trivial intersection group, so that Dade’s ordinary conjecture and Alperin’s weight
conjecture follow, by [11]. Moreover, Uno’s ordinary conjecture, which is refinement of
Dade’s ordinary conjecture, also holds for J4. Thus we may suppose that p = 2 or p = 3.

We denote by Irr0(H) the set of ordinary irreducible characters of p-defect 0 of a finite
group H , and by d(H) the number logp(|H |p). Given R ∈ R0(G, p), let C(R) = CG(R)

and N = NG(R). If B0 = B0(G) is the principal p-block of G, then (see [3, (4.1)])

W(B0) =
∑
R

| Irr0(N/C(R)R)|, (5.1)

where R runs over the set R0(G, p) such that d(C(R)R/R) = 0. The character table of
N/C(R)R can be calculated by Magma, and so we find that | Irr0(N/C(R)R)|.

In Table 1, we recall the classification from [17] of the radical 2-subgroups of G = J4.
Suppose that p = 3. As shown in [14, Section 3],

R0(G, 3) = {1, 3, 32, 31+2+ },
where 3 = Z(31+2+ ). In addition, C(3) = 6.M22, C(32) = 32 × 23, C(31+2+ ) = 6 and

N(R) =




6.M22 : 2 � 21+12+ .3.M22 : 2, if R = 3,

(32 : 2 × 23).S4 � 211 : M24, if R = 32,

(2 × 31+2+ : 8) : 2 � 21+12+ .3.M22 : 2, if R = 31+2+ .

Lemma 5.1. LetG = J4 andB0 = B0(G), let Blk+(G, p) be the set ofp-blocks with a non-
trivial defect group, and let Irr+(G) be the characters of Irr(G) with positive p-defect. If a
defect group D(B) of B is cyclic, then Irr(B) is given by [13, p. 326].

(a) Ifp = 3, then Blk+(G, p) = {Bi | 0 � i � 6} such thatD(B1) � 31+2+ ,D(B2) � 32

and D(Bi) � 3 for 3 � i � 6. In the notation of [8, p. 188],

Irr(B) = {χ2, χ3, χ12, χ13, χ17, χ18, χ22, χ23, χ24, χ26, χ38, χ39, χ44, χ50},
Irr(B2) = {χ14, χ21, χ25, χ27, χ28, χ30, χ31, χ35, χ41},

and

Irr(B0) = Irr+(G)\(∪6
i=1 Irr(Bi)).

Moreover, �(B0) = �(B1) = 9, �(B2) = 5, �(Bi) = 2 for 3 � i � 5 and �(B6) = 1.

(b) Ifp = 2, then Blk+(G, 2) = {B0}, and so Irr(B0) = Irr+(G). Moreover, �(B0) = 22.

Proof. If B ∈ Blk(G, p) is non-principal with D = D(B), then Irr0(C(D)D/D) has a
non-trivial character θ and N(θ)/C(D)D is a p′-group, where N(θ) is the stabilizer of θ
in N(D). By [13, p. 326], we may suppose that D is non-cyclic. Thus D = 32 or 31+2+ .
In each case, N(D) has one orbit on the non-trivial character of Irr0(C(D)D/D) with
N(θ)/C(D)D a 3′-group.
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Table 1: Non-trivial radical 2-subgroups of J4

R C(R) N(R) | Irr0(N/C(R)R)|
210 210 210 : L5(2) 1

211 211 211 : M24 0

21+12 2 21+12.(3.M22) : 2 1

210 : 24 24 210 : 24.L4(2) 1

211 : 24 26 211 : 24.A8 1

23+12 23 23+12.(S5 × L3(2)) 0

23+12.2 23 23+12.2(S3 × L3(2)) 1

21+12.23 2 21+12.23.(S3 × L3(2)) 1

23.26+8 23 23.26+8.(S3 × L3(2)) 1

22.25+10 22 22.25+10.(S3 × S5) 0

21+12.24 2 21+12.24.3.S6 1

23+12.22 2 22+12.22.(S3 × S5) 0

210.23+4 2 210.23+4.L3(2) 1

23+12.D8 23 23+12.D8.L3(2) 1

23+12.23 22 23+12.23.(S3 × S3) 1

21+12.22+3 2 21+12.22+3.(S3 × S3) 1

211.21+6 23 211.21+6.L3(2) 1

21+12.25 2 21+12.25.S5 0

21+12.22.24 2 21+12.22.24.(S3 × S3) 1

21+12.2.22+3 2 21+12.2.22+3.(S3 × S3) 1

23+12.24 2 23+12.24.(S3 × S3) 1

21+12.23.23 2 21+12.23.23.S3 1

23+12.23.22 22 23+12.23.22.S3 1

211.22.23.24 2 211.22.23.24.S3 1

21+12.22+5 2 21+12.22+5.S3 1

21+12.2.23.23 2 21+12.2.23.23.S3 1

S 2 S 1
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Using the method of central characters, Irr(B) is as above. If D(B) is cyclic, then �(B)
is given by [13, p. 326].

If p = 3 and B = B1 or B = B2, then the non-trivial elements of D(B) are of type 3A,
and CG(3A) = 6.M22. It follows by [15, Theorem 5.4.13] that

k(B) = �(B)+
∑

b∈Blk(6.M22,B)

�(b),

where Blk(6.M22, B) = {b ∈ Blk(6.M22) : bG = B}.
If B = B2, then D(B2) =G 32, Blk(6.M22, B) = {b2, b

′
2} and, by [13, p. 78], �(b2) =

�(b′
2) = 2, and so �(B2) = 5.
If B = B1, then D(B1) =G 31+2+ , Blk(6.M22, B) = {b}; moreover, �(b) = �(b1)

for a unique block of 2.M22 with D(b1) � 32. Now 2.M22 has exactly one class x of
elements of order 3 and C2.M22(x) = 32 × 23. It follows, by [15, Theorem 5.4.13] again,
that �(b1) = k(b1)− 1 = 6 − 1 = 5, so that �(B1) = 14 − 5 = 9.

If �p(G) is the number of p-regularG-conjugacy classes, then �3(G) = 43 and �2(G) =
25. Thus �(B0) can be calculated by the following equation due to Brauer:

�p(G) =
∑

B∈Blk+(G,p)
�(B)+ | Irr0(G)|.

This completes the proof.

Theorem 5.2. Let G = J4, and let B be a p-block of G with a non-cyclic defect group.
Then the number of B-weights is the number of irreducible Brauer characters of B.

Proof. We may suppose that p = 2 and p = 3. If p = 2 and B = B0, then the result
follows by Lemma 5.1, Table 1 and (5.1).

Suppose that p = 3. Since Irr(N(31+2)/C(31+2)) has seven irreducible characters, and
since Irr(N(31+2)/31+2) has 14 characters, it follows that B ∈ {B0, B1} has 7-weights of
the form (31+2, ϕ). If (32, b) is a Brauer B-subgroup, then Irr0(N(32)/32) has exactly two
characters covering the canonical character of b, so Irr0(N(32)/C(32)) has two characters,
B has 2-weights of the form (32, ϕ), and B has no weight of the form (3, ϕ).

Irr0(N(32)/32) has 9 characters; hence B2 has 5-weights of the form (32, ϕ).

6. Radical chains

Let G = J4, C ∈ R(G) and N(C) = NG(C). We will do some cancellations in the
alternating sum of Dade’s conjecture. We first list some radical p-chains C(i) and their
normalizers for certain integers i, and then we reduce the proof of the conjecture to the
subfamily R0(G)of R(G), where R0(G) is the union ofG-orbits of allC(i). The subgroups
of the 2-chains in Table 3 are given either by Table 1 or in the proof of Lemma 6.1.

Lemma 6.1. Let R0(G) be the G-invariant subfamily of R(G) such that

R0(G)/G =
{

{C(i) : 1 � i � 4}, with C(i) given in Table 2 if p = 3,

{C(i) : 1 � i � 16}, with C(i) given in Table 3 if p = 2.

Then ∑
C∈R(G)/G

(−1)|C|k(N(C), B0, d) =
∑

C∈R0(G)/G

(−1)|C|k(N(C), B0, d) (6.1)

for all integers d � 0.
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Table 2: Some radical 3-chains of J4

C N(C)

C(1) 1 J4

C(2) 1 < 3 6.M22 : 2

C(3) 1 < 3 < 32 (32 × 23).(2 × S3)

C(4) 1 < 32 (32 : 2 × 23).S4

Proof. Let C ∈ R(G) be given by (2.1), so that we may suppose that P1 ∈ R0(G, p).

Case (1). Suppose that p = 3. Let C′ : 1 < 3 < 31+2 and g(C′) : 1 < 31+2. Then
N(C′) = N(g(C′)) = N(31+2),

k(N(C′), B, d) = k(N(g(C′)), B, d), (6.2)

and we may suppose thatC �=G C
′ andC �=G g(C

′). Similarly, letC′ : 1 < 32 < 31+2 and
g(C′) : 1 < 3 < 32 < 31+2. Then N(C′) = N(g(C′)) =G 31+2.23, and we may suppose
that C �=G C

′ and C �=G g(C
′). Thus C =G C(i) for 1 � i � 4.

Case (2). Suppose that p = 2. Let M1 = 211 : M24, M2 = 21+12 · (3 ·M22) : 2, M3 =
210 : L5(2) and M4 = 23+12 · (S5 × L3(2)) be maximal subgroups of G = J4. For each
R ∈ R0(G, 2), we may suppose that R ∈ R0(Mi) such thatNG(R) � NMi

(R) for some i.
We first classify the radical 2-subgroups of Mi using the modified local strategy and

do the fusions in G by applying Lemma 2.2. Moreover, we carry out cancellation using
Lemma 2.1.

Case (2a). We may take

R0(M2, 2) = {21+12, 21+12.23, 21+12.24, 210.23+4, 23+12.22, 21+12.22+3,

21+12.25, 21+12.23.23, 21+12.22.24, 21+12.2.22+3, 211.22.23.24,

21+12.22+5, 21+12.2.23.23, S},
and by [17, Theorem 17],N(R) = NM2(R) for allR ∈ R0(M2, 2), so that we may suppose
that R0(M2, 2) ⊆ R0(G, 2).

LetR ∈ R0(M2, 2)\{21+12} and letσ(R) : 1 < Q = 21+12 < R, so thatσ(R)′ : 1 < R.
Then σ(R) and σ(R)′ satisfy the conditions of Lemma 2.1. Thus there is a bijection g
from R−(σ (R), 21+12) onto R0(σ (R), 21+12) such that N(C′) = N(g(C′)) and |C′| =
|g(C′)| − 1 for each C′ ∈ R−(σ (R), 21+12). So (6.2) holds, and we may suppose that

C �∈
⋃

R∈R0(M2,2)\{21+12}
(R−(σ (R), 21+12) ∪ R0(σ (R), 21+12)).

In particular, P1 �∈G R0(M2, 2)\{21+12} and if P1 = 21+12, then C =G C(6). We may
suppose that

P1 ∈G {210, 211, 210.24, 211.24, 23+12, 23+12.2, 23.26+8, 22.25+10,

23+12.D8, 23+12.23, 211.21+6, 23+12.24, 23+12.23.22}.
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Table 3: Some radical 2-chains of J4

C N(C)

C(1) 1 J4

C(2) 1 < 211 211 : M24

C(3) 1 < 211 < 21+12.24 21+12.24.3.S6

C(4) 1 < 211 < 23.26+8 < 21+12.22.24 21+12.22.24.(S3 × S3)

C(5) 1 < 211 < 23.26+8 23.26+8.(S3 × L3(2))

C(6) 1 < 21+12 21+12.3.M22 : 2

C(7) 1 < 210 < 26.28 26.28.L4(2)

C(8) 1 < 210 210 : L5(2)

C(9) 1 < 210 < 21+12.23 21+12.23(S3 × L3(2))

C(10) 1 < 210 < 21+12.23 < 210.22+6 210.22+6.(S3 × S3)

C(11) 1 < 210 < 23+12.2 23+12.2.(S3 × L3(2))

C(12) 1 < 210 < 23+12.2 < 26.28.23 26.28.23.L3(2)

C(13) 1 < 210 < 23+12.2 < 21+12.22+3 < 210.22.23+4 210.22.23+4.S3

C(14) 1 < 210 < 23+12.2 < 21+12.22+3 21+12.22+3.(S3 × S3)

C(15) 1 < 23+12 < 23+12.22 23+12.22.(S3 × S5)

C(16) 1 < 23+12 23+12.(S5 × L3(2))

Case (2b). Applying the local strategy [3, 4], we obtain sixteen radical subgroups ofM4.
Let

X = {23+12.2, 23.26+8, 22.25+10, 23+12.D8, 23+12.23, 23+12.24, 23+12.23.22},
so that each subgroup of X is radical in G and contained in M4, by [17]. Using the local
structures, we can identify each R ∈ X with a radical subgroup of M4.

Next we consider fusions of subgroups in R0(M2, 2) and R0(M4, 2). Let

R = 23+12.22 ∈ R0(M4, 2),

so thatZ(R) = 2 andNM4(R) = 23+12.22.(S3 ×S5). NowG has two classes of involutions
2A and 2B such that C(2A) = M2 and C(2B) = 211 : M22 : 2. Since |NM4(R)|2 >

|C(2B)|2, it follows that Z(R) is a 2A involution. In particular, we may suppose that
NM4(R) � M2. By Lemma 2.2, there is a radical subgroup P ∈ R0(M2, 2) such that
R � P and NM4(R) � NM2(P ). By the local structures of subgroups of R0(M2, 2), R
is a radical subgroup of M2 such that NM4(R) = NM2(R) = N(R), and so is a radical
subgroup of G.
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Applying the local strategy to NM4(R), we find that NM4(R) has exactly seven radical
subgroups W , and each is radical in M4 with NNM4 (R)

(W) = NM4(W). In particular,

R0(NM4(R), 2) = R0(M4, 2)\(X ∪ {23+12}). (6.3)

If we view R as a subgroup of R0(M2, 2) (we can identify R with a radical subgroup
of M2 using local structures), then each radical subgroup W of NM2(R) = NM4(R) is
radical in M2 with NM2(W) = NNM2 (R)

(W). It follows that each W ∈ R0(NM4(R), 2) is
radical in G with N(W) = NM4(W), and so each Q ∈ R0(M4, 2) is radical in G with
N(Q) = NM4(Q).

We may take

R0(M4, 2) = {23+12, 23+12.2, 23+12.22, 23.26+8, 22.25+10, 23+12.D8,

21+12.25, 21+12.22+3, 23+12.23, 21+12.22.24, 23+12.24,

21+12.23.23, 21+12.22+5, 211.22.23.24, 23+12.23.22, S}
and N(R) = NM4(R) for all R ∈ R0(M4, 2), so that we may suppose that R0(M4, 2) ⊆
R0(G, 2).

Let R ∈ X and σ(R) : 1 < Q = 23+12 < R, so that σ(R)′ : 1 < R. Then σ(R) and
σ(R)′ satisfy the conditions of Lemma 2.1. A similar proof to that of Case (2a) shows that
we may suppose that

C �∈
⋃
R∈X

(R−(σ (R), 23+12) ∪ R0(σ (R), 23+12)).

In particular, P1 �∈G X, and if P1 = 23+12, then P2 �∈G X.
Let K = 23+12.22.(S3 × S5). We may take

R0(K, 2) = {23+12.22, 21+12.25, 21+12.22+3, 21+12.22.24,

21+12.23.23, 21+12.22+5, 211.22.23.24, S} ⊆ R0(M4, 2)

and NK(R) = NM4(R) = N(R) for all R ∈ R0(K, 2) ,and

R0(K, 2) = R0(M4, 2)\(X ∪ {23+12}).
Let R ∈ R0(K, 2)\{23+12.22} and let σ(R) : 1 < 23+12 < Q = 23+12.22 < R, so that
σ(R)′ : 1 < 23+12 < R. A similar proof to that of Case (2a) shows that we may suppose
that

C �∈
⋃

R∈R0(23+12.22.(S3×S5),2)

(R−(σ (R), 23+12.22) ∪ R0(σ (R), 23+12.22)).

In particular, if P1 =G 23+12, then C ∈G {C(15), C(16)}.

Case (2c). The fusions in G of subgroups of R0(M1, 2) with other subgroups in other
R0(Mi, 2) is similar to that of Case (2b). We may take

R0(M1, 2) = {211, 211.24, 21+12.24, 23.26+8, 211.21+6, 23+12.D8,

21+12.22.24, 21+12.2.22+3, 23+12.24, 21+12.22+5,

23+12.23.22, 211.22.23.24, 21+12.2.23.23, S}
and N(R) = NM1(R) for all R ∈ R0(M1, 2), so we may suppose that R0(M1, 2) ⊆
R0(G, 2).
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For R ∈ {211.24, 211.21+6} ⊆ R0(M1, 2), let σ(R) : 1 < Q = 211 < R, so that
σ(R)′ : 1 < R. A similar proof to that of Case (2a) shows that we may suppose that

C �∈
⋃

R∈{211.24,211.21+6}
(R−(σ (R), 211) ∪ R0(σ (R), 211)).

In particular, P1 �=G 211.24 or 211.21+6, and if P1 = 211, then P2 �=G 211.24 and 211.21+6.
Let L = 21+12.24.3.S6. We may take

R0(L, 2) = {21+12.24, 21+12.22.24, 21+12.2.22+3,

21+12.22+5, 211.22.23.24, 21+12.2.23.23, S} ⊆ R0(M1, 2)

and NL(R) = NM1(R) for all R ∈ R0(L, 2).
Let R ∈ R0(L, 2)\{21+12.24}, and let σ(R) : 1 < 211 < Q = 21+12.24 < R, so that

σ(R)′ : 1 < 211 < R. A similar proof to that of Case (2a) shows that we may suppose that

C �∈
⋃

R∈R0(21+12.24.3.S6,2)

(R−(σ (R), 21+12.24) ∪ R0(σ (R), 21+12.24)).

In particular, ifP1 = 211, thenP2 �∈G R0(L, 2)\{21+12.24}; if, moreover,P2 =G 21+12.24,
then C =G C(3).

Let H = 23.26+8.(S3 × L3(2)). We may take

R0(H, 2) = {23.26+8, 23+12.D8, 21+12.22.24, 23+12.24,

21+12.22+5, 23+12.23.22, 211.22.23.24, S} ⊆ R0(M1, 2)

and NH(R) = NM1(R) for all R ∈ R0(H, 2).
Let

Y = {23+12.D8, 23+12.24, 23+12.23.22} ⊆ R0(H, 2), R ∈ Y,

and let σ(R) : 1 < 211 < Q = 23.26+8 < R, so that σ(R)′ : 1 < 211 < R. A similar proof
to that of Case (2a) shows that we may suppose that

C �∈
⋃
R∈Y

(R−(σ (R), 23.26+8) ∪ R0(σ (R), 23.26+8)).

In particular, if P1 = 211, then P2 �∈G Y; if, moreover, P2 = 23.26+8, then P3 �∈ Y.
We may take

R0(2
1+12.22.24.(S3 × S3), 2) = R0(H, 2)\(Y ∪ {23.26+8};

moreover, N21+12.22.24.(S3×S3)
(R) = NH(R) = NM1(R).

For each

R ∈ R0(2
1+12.22.24.(S3 × S3), 2)\{21+12.22.24},

let σ(R) : 1 < 211 < 23.26+8 < Q = 21+12.22.24 < R, so that σ(R)′ : 1 < 211 <

23.26+8 < R. A similar proof to that of Case (2a) shows that we may suppose that

C �∈
⋃

R∈R0(21+12.22.24.(S3×S3),2)\{21+12.22.24}
(R−(σ (R), 21+12.22.24)∪R0(σ (R), 21+12.22.24)).

It follows that if P1 = 211, then C =G C(i) for some 2 � i � 5.
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Case (2d). The fusions inGof subgroups of R0(M3, 2)with subgroups in other R0(Mi, 2)
is similar to that of Case (2b). We may take

R0(M3, 2) = {210, 210.24, 26.28, 23+12.2, 21+12.23, 210.23+4, 26.28.23,

210.21+6, 21+12.22+3, 210.22+6, 23+12.23, 21+12.23.23,

210.2.23+5, 210.22.23+4, 210.26.23, S}
and N(R) = NM3(R) for R ∈ R0(M3, 2)\Z, where

Z = {26.28, 26.28.23, 210.21+6, 210.22+6, 210.2.23+5, 210.22.23+4, 210.26.23}.
In addition, for R ∈ Z, CM3(2

6.28) = 26, CM3(2
6.28.23) � 23 � CM3(2

10.21+6),

CM3(2
10.22+6) � CM3(2

10.2.23+5) � CM3(2
10.22.23+4) � 2,

CM3(2
10.26.23) � 22 and, moreover,

NM3(R) =




26.28.L4(2), if R = 26.28,

26.28.23.L3(2), if R = 26.28.23,

210.21+6.L3(2), if R = 210.21+6,

210.22+6.(S3 × S3), if R = 210.22+6,

210.2.23+5.S3, if R = 210.2.23+5,

210.22.23+4.S3, if R = 210.22.23+4,

210.26.23.S3, if R = 210.26.23.

Let σ : 1 < Q = 210 < 210.24, so that σ ′ : 1 < 210.24. A similar proof to that of Case
(2a) shows that we may suppose that

C �∈ (R−(σ, 210) ∪ R0(σ, 210)).

In particular, P1 �=G 210.24, and if P1 = 210, then P2 �=G 210.24.
Let J = 26.28.L4(2). We may take

R0(J, 2) = {26.28, 26.28.23, 210.21+6, 210.22+6,

210.2.23+5, 210.22.23+4, 210.26.23, S} ⊆ R0(M3, 2)

and NJ (R) = NM3(R) for all R ∈ R0(J, 2).
Let R ∈ R0(J, 2)\{26.28} and let σ(R) : 1 < 210 < Q = 26.28 < R, so that

σ(R)′ : 1 < 210 < R. A similar proof to that of Case (2a) shows that we may suppose that

C �∈
⋃

R∈R0(26.28.L4(2),2)

(R−(σ (R), 26.28) ∪ R0(σ (R), 26.28)).

In particular, if P1 = 210, then P2 �∈G R0(J, 2)\{26.28}; if, moreover, P2 =G 26.28, then
C =G C(7).

Let T = 21+12.23.(S3 × L3(2)). We may take

R0(T , 2) = {21+12.23, 210.23+4, 21+12.22+3, 210.22+6,

21+12.23.23, 210.2.23+5, 210.22.23+4, S} ⊆ R0(M3, 2)

and NT (R) = NM3(R) for all R ∈ R0(T , 2).
Let

T = {210.23+4, 21+12.22+3, 21+12.23.23} ⊆ R0(T , 2),
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R ∈ T , and let σ(R) : 1 < 210 < Q = 21+12.23 < R, so that σ(R)′ : 1 < 210 < R.
A similar proof to that of Case (2a) shows that we may suppose that

C �∈
⋃
R∈T

(R−(σ (R), 21+12.23) ∪ R0(σ (R), 21+12.23)).

In particular, if P1 = 210, then P2 �∈G T ; if, moreover, P2 = 21+12.23, then P3 �∈ T .
Let V = 23+12.2.(S3 × L3(2)). We may take

R0(V , 2) = {23+12.2, 26.28.23, 21+12.22+3, 23+12.23,

21+12.23.23, 210.22.23+4, 210.26.23, S} ⊆ R0(M3, 2)

and NV (R) = NM3(R) for all R ∈ R0(V , 2).
Let σ : 1 < 210 < Q = 23+12.2 < 23+12.23, so that σ(R)′ : 1 < 210 < R. A similar

proof to that of Case (2a) shows that we may suppose that

C �∈ (R−(σ, 23+12.2) ∪ R0(σ, 23+12.2)).

In particular, if P1 = 210, then P2 �∈G 23+12.23 and if moreover, P2 = 23+12.2, then
P3 �= 23+12.23.

We may take

R0(2
10.22+6.(S3 × S3), 2) = {210.22+6, 210.2.23+5, 210.22.23+4, S} ⊆ R0(M3, 2);

moreover, N210.22+6.(S3×S3)
(R) = NM3(R).

For each

R ∈ R0(2
10.22+6.(S3 × S3), 2)\{210.22+6},

let

σ(R) : 1 < 210 < 21+12.23 < Q = 210.22+6 < R,

so that

σ(R)′ : 1 < 210 < 21+12.23 < R.

A similar proof to that of Case (2a) shows that we may suppose that

C �∈
⋃

R∈R0(210.22+6.(S3×S3),2)\{210.22+6}
(R−(σ (R), 210.22+6) ∪ R0(σ (R), 210.22+6)).

It follows that if P1 = 210 and P2 = 21+12.23, then C ∈ {C(9), C(10)}.
We may take

R0(2
6.28.23.L3(2), 2) = {26.28.23, 210.22.23+4, 210.26.23, S} ⊆ R0(M3, 2);

moreover, N26.28.23.L3(2)(R) = NM3(R).
For each

R ∈ R0(2
6.28.23.L3(2), 2)\{26.28.23},

let

σ(R) : 1 < 210 < 23+12.2 < Q = 26.28.23 < R,

so that σ(R)′ : 1 < 210 < 23+12.2 < R. A similar proof to that of Case (2a) shows that we
may suppose that

C �∈
⋃

R∈R0(26.28.23.L3(2),2)\{26.28.23}
(R−(σ (R), 26.28.23) ∪ R0(σ (R), 26.28.23)).
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So if P1 = 210 and P2 = 23+12.2, then P3 �∈G R0(26.28.23.L3(2), 2)\{26.28.23}, and if
moreover, P3 = 26.28.23, then C =G C(11).

We may take

R0(2
1+12.22+3.(S3 × S3), 2) = {21+12.22+3, 21+12.23.23, 210.22.23+4, S} ⊆ R0(M3, 2)

and, moreover, N21+12.22+3.(S3×S3)
(R) = NM3(R).

Let

σ : 1 < 210 < 23+12.2 < Q = 21+12.22+3 < 21+12.23.23,

so that

σ ′ : 1 < 210 < 23+12.2 < 21+12.23.23.

A similar proof to that of Case (2a) shows that we may suppose that

C �∈ (R−(σ, 21+12.22+3) ∪ R0(σ, 21+12.22+3)).

It follows that if P1 = 210 and P2 = 23+12.2, then P3 �=G 21+12.23.23 and if, moreover,
P3 = 21+12.22+3, then P4 �=G 21+12.23.23.

Let

σ : 1 < 210 < 23+12.2 < 21+12.22+3 < Q = 210.22.23+4 < S,

so that

σ ′ : 1 < 210 < 23+12.2 < 21+12.22+3 < S.

A similar proof to that of Case (2a) shows that we may suppose that

C �∈ (R−(σ, 210.22.23+4) ∪ R0(σ, 210.22.23+4)).

It follows that if P1 = 210, then C ∈ {C(i) : 7 � i � 14}.

7. The proof of Dade’s ordinary conjecture

Let L = N(C) be the normalizer of a radical p-chain. If L is a maximal subgroup of
J4, then the character table of L can be found in the library of character tables distributed
with GAP. If L is not a maximal subgroup, its character table can be calculated easily using
Magma.

The tables listing the degrees of irreducible characters referenced in the proof of Theo-
rem 7.1 are given in Appendix A.

Theorem 7.1. LetB be a p-block ofG = J4 with a positive defect. ThenB satisfies Dade’s
ordinary conjecture.

Proof. By [11] and [9], we may suppose that p = 2 or p = 3, and a defect group of B is
non-cyclic. By Lemma 5.1, B ∈ {B0, B1, B2} when p = 3 and B = B0 when p = 2.

Case (1). Suppose that p = 3. If B = B2, then

k(N(C(1)), B2, d) = k(N(C(4)), B2, d) =
{

9, if d = 2,

0, otherwise,

and

k(N(C(3)), B2, d) = k(N(C(2)), B2, d) =
{

18, if d = 2,

0, otherwise.
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Table 4: Values of k(i, d, u) when p = 2 and d(N(C(i))) = 20

Defect d 20 19 18 17 16 15 14 13 12 11 10 otherwise

k(7, d, u) 32 16 36 28 2 2 10 2 0 0 1 0

k(8, d, u) 32 16 20 8 2 0 2 0 0 0 1 0

k(9, d, u) 32 32 52 24 18 8 18 12 2 2 1 0

k(10, d, u) 32 32 84 100 26 26 26 14 6 4 1 0

k(11, d, u) 32 56 28 16 38 32 6 0 0 0 0 0

k(12, d, u) 32 56 44 36 38 34 14 2 0 0 0 0

k(13, d, u) 32 72 92 124 62 58 30 22 10 2 0 0

k(14, d, u) 32 72 60 48 54 40 22 20 6 0 0 0

This proves the theorem when B = B2.
If B = B0 or B1, then

k(N(C(1)), B, d) = k(N(C(2)), B, d) =




9, if d = 3,

5, if d = 2,

0, otherwise,

and

k(N(C(3)), B, d) = k(N(C(4)), B, d) =




9, if d = 3,

2, if d = 2,

0, otherwise.

This proves the theorem when p = 3.

Case (2). Suppose that p = 2, so that B = B0. We set k(i, d, u) = k(N(C(i)), B, d, u)
for integers i, d and u.

We first consider the chains C with d(N(C)) = 20, so that C =G C(i) for 7 � i � 14.
The values k(i, d, u) are given in Table 4.

It follows that
14∑
i=7

(−1)|C(i)|k(N(C(i)), B0, d) = 0.

Finally, suppose that C = C(i) is a chain with d(N(C)) = 21. Then C =G C(i) for
1 � i � 6 or 15 � i � 16. The values k(i, d, u) are given in Table 5.

It follows that ∑
d(N(C))=21

(−1)|C|k(N(C), B0, d, u) = 0,

and Theorem 7.1 follows.
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Table 5: Values of k(i, d, u) when p = 2 and d(N(C(i))) = 21

Defect d 21 20 19 18 17 16 15 14 13 12 11 7 otherwise

k(1, d, u) 32 8 4 4 1 0 4 4 1 0 0 1 0

k(2, d, u) 32 8 4 12 7 0 4 4 1 0 0 0 0

k(3, d, u) 32 24 12 28 11 12 11 12 11 6 1 0 0

k(4, d, u) 32 40 28 40 21 30 27 14 15 4 1 0 0

k(5, d, u) 32 24 20 24 9 18 20 6 1 0 0 0 0

k(6, d, u) 32 24 12 4 1 4 5 12 11 6 1 1 0

k(15, d, u) 32 40 28 16 11 22 21 14 15 4 1 0 0

k(16, d, u) 32 24 20 16 3 18 20 6 1 0 0 0 0

Appendix A. Degrees of character tables for chain normalisers of J4

Table A.1: The degrees of characters in Irr(J4)

Degree: 1 1333 299367 887778 889111
Number: 1 2 2 2 1

Degree: 1187145 1776888 3403149 4290927 32307363
Number: 2 1 2 1 2

Degree: 32897107 35411145 95288172 230279749 259775040
Number: 2 2 1 1 2

Degree: 300364890 366159104 393877506 394765284 460559498
Number: 1 1 1 1 1

Degree: 493456605 690839247 786127419 789530568 885257856
Number: 1 1 3 1 2

Degree: 1016407168 1085604531 1089007680 1182518964 1183406741
Number: 2 1 1 1 2

Degree: 1184295852 1445942610 1509863773 1579061136 1842237992
Number: 1 3 1 1 1

Degree: 1903741279 1981808640 2001151845 2267824128 2692972480
Number: 1 3 3 1 1

Degree: 2727495848 3054840657
Number: 1 1
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Table A.2: The degrees of characters in Irr(211 : M24)

Degree: 1 23 45 231 252 253 483
Number: 1 1 2 2 1 1 1

Degree: 759 770 990 1035 1265 1288 1771
Number: 1 2 2 3 1 2 1

Degree: 2024 2277 3312 3520 5313 5544 5796
Number: 1 1 1 1 2 1 1

Degree: 10395 10626 11385 15180 15939 21252 26565
Number: 1 1 1 1 3 1 1

Degree: 28336 34155 41216 42504 48576 53130 57960
Number: 1 4 1 1 1 1 2

Degree: 68310 69552 70840 79695 85008 91080 127512
Number: 1 2 2 3 2 1 2

Degree: 141680 154560 159390 185472 226688 239085
Number: 1 2 1 2 2 2

Table A.3: The degrees of characters in Irr(21+12.24.3.S6)

Degree: 1 5 6 9 10 12 15 16 18 30
Number: 2 4 2 2 2 1 4 1 3 5

Degree: 45 60 72 90 108 135 180 270 288 360
Number: 8 1 2 8 1 12 5 4 4 10

Degree: 384 540 576 640 720 768 1080 1152 1280 1440
Number: 2 4 1 4 4 1 16 4 1 8

Degree: 1536 1728 1920 2160 2304 2560 2880 3072 3840
Number: 2 4 2 6 4 4 6 1 5

Table A.4: The degrees of characters in Irr(21+12.22.24.(S3 × S3)

Degree 1 2 3 4 6 9 12 18 24 36 48
Number 4 4 16 1 10 12 5 26 4 22 1

Degree 72 96 144 192 256 288 384 512 576 768 1024
Number 36 4 20 13 4 26 14 4 14 11 1
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Table A.5: The degrees of characters in Irr(23.26+8.(L3(2)× S3))

Degree: 1 2 3 6 7 8 9 12 14 16
Number: 2 1 6 4 2 2 4 1 1 1

Degree: 18 21 24 42 63 84 126 168 252 336
Number: 2 10 2 8 8 6 8 6 13 5

Degree: 448 504 672 896 1008 1344 1792 2016 2688 4032
Number: 4 14 8 4 3 14 1 10 2 2

Table A.6: The degrees of characters in Irr(21+12.3.M22 : 2)

Degree: 1 21 42 45 55 90 99 154
Number: 2 2 1 4 2 2 2 2

Degree: 198 210 231 385 420 462 560 640
Number: 1 4 2 2 1 2 1 4

Degree: 660 693 768 1386 2016 2772 3465 3584
Number: 1 4 1 2 2 4 4 2

Degree: 4158 5544 6930 7680 8316 8448 10395 13440
Number: 2 2 4 2 1 2 8 2

Degree: 13860 15360 16128 19712 20160 20790 21120 22176
Number: 5 1 3 1 5 4 2 2

Degree: 24192 26880 27720 28160 42240 49152
Number: 4 3 2 2 1 1

Table A.7: The degrees of characters in Irr(26.28.L4(2))

Degree: 1 7 14 15 20 21 28 35 45 56 64
Number: 1 1 1 3 1 3 1 1 8 1 1

Degree: 70 90 105 120 140 210 280 315 420 448 560
Number: 1 3 9 3 4 5 4 6 13 2 1

Degree: 630 840 1260 1680 2240 2520 3360 4032 4480 6720 7168
Number: 6 8 17 1 4 12 2 2 2 1 1
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Table A.8: The degrees of characters in Irr(210 : L5(2))

Degree: 1 30 124 155 217 280 310 315
Number: 1 1 1 3 1 1 1 6

Degree: 465 496 651 868 930 960 1024 1085
Number: 8 1 3 3 7 1 1 2

Degree: 1240 1860 2170 2480 3255 4340 6510 7812
Number: 3 1 1 1 4 4 4 2

Degree: 8680 9765 13020 13888 19530 26040 39060
Number: 2 4 5 1 2 2 4

Table A.9: The degrees of characters in Irr(21+12.23.(S3 × L3(2)))

Degree: 1 2 3 6 7 8 12 14 16
Number: 2 1 4 4 6 2 1 5 1

Degree: 21 28 42 63 64 84 126 128 168
Number: 12 1 8 8 2 17 14 1 10

Degree: 192 252 336 384 448 504 512 672 768
Number: 4 33 5 4 6 12 2 6 1

Degree: 896 1008 1024 1344 1792 2016 2688
Number: 5 12 1 6 1 2 2

Table A.10: The degrees of characters in Irr(210.22+6.(S3 × S3))

Degree: 1 2 3 4 6 8 9 12 16 18 24 36 48
Number: 4 4 12 5 10 4 16 26 1 18 14 53 1

Degree: 64 72 96 128 144 192 256 288 384 512 576 768 1024
Number: 4 82 4 4 24 18 5 22 10 4 4 1 1

Table A.11: The degrees of characters in Irr(23+12.2.(S3 × L3(2))

Degree: 1 2 3 6 7 8 12 14 16
Number: 4 2 8 8 4 4 2 2 2

Degree: 21 42 63 84 112 126 168 224 252
Number: 8 16 8 10 8 28 2 8 16

Degree: 336 448 504 672 1008 1344 2016
Number: 16 2 10 16 12 4 8
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Table A.12: The degrees of characters in Irr(26.28.23.L3(2))

Degree: 1 3 6 7 8 14 21 28 42 56
Number: 4 8 4 12 4 16 8 10 36 2

Degree: 84 112 168 224 336 448 672 896 1344
Number: 34 16 30 20 22 10 14 2 4

Table A.13: The degrees of characters in Irr(210.22.23+4.S3)

Degree: 1 2 3 4 6 8 12 24 48 64 96 128 192 256 384 512
Number: 16 20 16 10 52 2 82 122 62 16 58 20 14 10 2 2

Table A.14: The degrees of characters in Irr(21+12.22+3.(S3 × S3))

Degree: 1 2 3 4 6 9 12 18 24 36 48
Number: 8 8 16 2 16 8 4 48 4 54 22

Degree: 64 72 96 128 144 192 256 288 384 576 768
Number: 8 44 14 8 32 10 2 26 12 4 4

Table A.15: The degrees of characters in Irr(23+12.22.(S3 × S5))

Degree: 1 2 3 4 5 6 8 10 12 15 18
Number: 4 2 4 4 4 2 2 2 5 12 2

Degree: 30 45 60 90 120 180 240 360 480 576 640
Number: 6 8 1 26 2 18 5 12 20 8 8

Degree: 720 768 960 1152 1280 1440 1536 1920 2304 2560 3072
Number: 6 6 13 4 8 2 2 2 1 2 1

Table A.16: The degrees of characters in Irr(23+12.(S5 × L3(2)))

Degree: 1 3 4 5 6 7 8 12 15 18
Number: 2 4 2 2 3 2 2 4 4 2

Degree: 24 28 30 32 35 36 40 42 48 105
Number: 2 2 2 2 2 1 2 1 1 8

Degree: 210 315 420 630 840 1120 1344 1260 1680 2240
Number: 8 8 6 8 4 8 6 5 1 8

Degree: 2520 2688 3360 4032 4480 5040 5376 6720 5040 8064
Number: 6 2 8 2 2 1 1 4 2 2
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Table A.17: The degrees of characters in Irr(6.M22.2)

Degree: 1 10 21 42 45 55 56 90 99 120 132 154 198
Number: 2 4 2 1 4 2 2 2 2 2 2 2 1

Degree: 210 231 240 252 308 330 385 420 440 462 560 660 768
Number: 6 2 1 3 1 2 2 4 2 2 1 2 2

Table A.18: The degrees of characters in Irr((32 × 23).(2 × S3))

Degree: 1 2 3 4 6 12
Number: 8 8 8 2 12 2

Table A.19: The degrees of characters in Irr((32 : 2 × 23).S4)

Degree: 1 2 3 4 6 8 12 16 24
Number: 4 6 4 2 4 4 1 2 4
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