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A deeper understanding of the cellular and subcellular organization of tumor cells and their interactions 

with the tumor microenvironment will shed light on how cancer evolves and guide effective therapy 

choices. Electron microscopy (EM) images can provide detailed view of the cellular ultrastructure and 

are being generated at an ever-increasing rate. However, the bottleneck in their analysis is the 

delineation of the cellular structures to enable interpretable rendering. We have mitigated this limitation 

by using deep learning to segment cells and subcellular ultrastructure. 

 

We segmented the cells, nuclei, nucleoli, mitochondria, endosomes and lysosomes in 3D focused ion 

beam-scanning electron microscopy (FIB-SEM) images of three tumor biopsies obtained from two 

patients with metastatic breast (Bx1, Bx2) and pancreatic (PDAC) cancers, respectively, and a 

microspheroid prepared using a breast cancer cell line (MCF7). All tissues were imaged with an 

isotropic resolution of 4 nm. The targeted intracellular organelles exhibited distinct appearances from 

the surrounding ultrastructure, allowing training of machine learning methods for semi-automated 

segmentation. ResUNet - a deep-learning architecture for image segmentation (Figure 2A) - trained with 

sparse manual labels resulted in accurate segmentation of nuclei, nucleoli and mitochondria with best 

Dice scores of 0.99, 0.98 and 0.86 respectively. In addition to the segmentation of the nucleoli, the 

method enabled visualization of the fenestrations within (Figure 2E). Segmentation performances of 

endosomes and lysosomes were evaluated qualitatively (Figure 1) as they were labelled only on a few 

slices that were used to train the ResUNet model. 

 

Unlike organelle segmentation [1, 2, 3], the segmentation of cells in FIB-SEM images of non-neural 

tissues has not been widely explored [4]. It is a complex task due to the lack of clear boundaries 

separating cancer cells. Therefore, methods designed for the widely studied neural cells that use cell 

boundaries as the strongest cue for delineation cannot be directly applied for cancer cell segmentation 

[1, 5]. The convoluted and intertwined nature of cancer cells and the presence of filopodia-like 

protrusions make it even more challenging. We chose a multi-pronged approach combining 

segmentation, propagation and tracking strategies for cell segmentation. ResUNet was employed to 

segment the intra-cellular space and optical flow [6] was used to propagate the cell boundaries from the 

nearest ground truth image to facilitate separation of individual cells. Finally, the filopodia-like 

protrusions were tracked to the main cells by calculating the intersection over union measure for all 

regions detected in consecutive images and connecting regions with maximum overlap. The proposed 
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cell segmentation methodology resulted in a best Dice score of 0.99. Figures 2C and 2D show the 

volume renderings of the FIB-SEM image stack and the predicted segmentation masks of cells and 

organelles for the PDAC dataset. Figure 2F shows the performance gain of the proposed multi-pronged 

cell segmentation framework over standalone segmentation or propagation methods per cell in Bx1 

dataset. Figure 1 shows 2D image slices overlaid with ground truth and predicted segmentations for all 

datasets. It also shows the volume occupied by the predicted organelles per cell in each dataset. 

 

Segmentation of cells and their organelles allowed us to characterize biologically relevant features such 

as their morphology and texture. The morphological measures were designed to capture the size and 

shape (figure 2G and 2H), while the texture features captured the spatial distribution of intensity 

patterns. These features are capable of capturing the differences between the samples, and can be 

potentially linked to biologically or clinically relevant variables such as patient drug response in 

downstream analysis. The proposed segmentation of EM images enabling interpretative rendering and 

quantitative analysis, fills the gap that has prevented modern EM imaging from being used routinely for 

research and clinical practices [7]. 

 

 
Figure 1. Qualitative results showing input images (first row) overlaid with nuclei (yellow), nucleoli 

(red), mitochondria (pink), endosomes (white), lysosomes (black) and cell segmentation (random colors) 

on ground truth masks (second row) and predicted segmentation masks (third row) for (A) Bx1 (B) Bx2, 

(C) PDAC, and (D) MCF7 datasets. The fourth row shows the volume occupied by the predicted 

organelles for each cell in each dataset. 
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Figure 2. (A) ResUNet architecture, input size is written on the side of each box. The number of feature 

maps in each residual layer is written on top of each box. (B) Residual block used in ResUNet, BN 

stands for batch normalization and ReLU stands for rectified linear unit. Xl and Xl+1 are the input and 

output features for the residual layer l, and F represents the residual function (C) Volume renderings 

showing the FIB-SEM image stack and (D) the predicted segmentation masks of cells and organelles for 

the PDAC dataset, (E) Volume renderings of the fenestrations in nucleoli from different datasets, (F) 

Cell segmentation performance measured by Dice score in Bx1 dataset using cell-interior mask 

segmentation alone (blue), optical flow alone (orange) and by the proposed multi-pronged approach 

combining optical flow and segmentation results (green). (G) Solidity measure for nuclei and (H) 

percentage of fenestrated volume in nucleoli in all datasets. 
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