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ON THE ASPHERICITY OF KNOT COMPLEMENTS 

VO THANH LIEM AND GERARD A. VENEMA 

ABSTRACT. TWO examples of topological embeddings of S2 in S4 are constructed. 
The first has the unusual property that the fundamental group of the complement is 
isomorphic to the integers while the second homotopy group of the complement is non-
trivial. The second example is a non-locally flat embedding whose complement exhibits 
this property locally. 

Two theorems are proved. The first answers the question of just when good n\ im­
plies the vanishing of the higher homotopy groups for knot complements in S4. The 
second theorem characterizes local flatness for 2-spheres in S4 in terms of a local irx 

condition. 

0. Introduction. In this paper we construct two examples of topological embed­
dings of S2 into S4 whose complements have unusual homotopy properties. In order to 
explain the context in which we are working, we begin with a question whose answer is 
well known. The question is this: If Z is a (topologically) locally flat (n — 2)-sphere in 
Sn such that 7r\(Sn — Z) = Z, then do the higher homotopy groups of Sn — Z necessarily 
vanish? (In case they do, Sn — £ is said to be aspherical and will have the homotopy type 
of Sl.) The answer to this question is "yes" in case n < 4 and "no" in case n > 5. For 
n = 3 this follows from the sphere theorem of Papakyriakopoulos [14]. In case n — 4, 
there are two quite different arguments that can be used. Both proofs begin by noting 
that, since Z is locally flat, there is a strong deformation retraction of S4 — Z to a com­
pact 4-manifold with S2 x Sl boundary and so S4 — Z has the homotopy type of a finite 
complex ([2, Corollary 2] or [19, Corollary 5.3]). The proof that S4 — Z is aspherical is 
then completed either by using Milnor Duality [13] to show that all the homology with 
Z[7ri]-coefficients of S4 — Z vanishes or, alternatively, by using an argument similar to 
a proof of Wall—see [8] or [11], for example. On the other hand, for n > 5 there exist 
smooth knots I c 5 " such that 7n(Sn - Z) ^ Z but 7T2(S

n - Z) ^ 0. In fact, it is pos­
sible [16] to make the first nontrivial homotopy group appear anywhere in the range 2 
through [(n- l ) /2] . 

We address two related questions. The first of these questions is: What happens if 
we drop the hypothesis that Z be locally flat? It is well known that the answer remains 
unchanged in case n = 3 and in case n > 5 (in fact, the proofs referred to above still work 
in those cases), but we show by example that the answer does change in dimension 4. 
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ASPHERICITY OF KNOT COMPLEMENTS 341 

EXAMPLE 1.1. There exists a topological embedding h\\S2 —> S4 such that 
iii(S4 - hi(S2)) ^ Z but ir2(S

4 - h{(S
2)) ^ 0. Furthermore, h\ is locally flat except 

at one point. 

If the non-locally flat point is removed from Example 1.1, an interesting embedding 
of R2 into R4 results. 

EXAMPLE 1.2. There exists a proper, locally flat, topological embedding /z0: l̂
2 —• 

R4 such that irx (R
4 - h0(R

2)) ^ Z but TT2(R
4 - h0(R

2)) ^ 0. 

When we drop the local flatness hypothesis, there is also a local version of the question 
considered in this paper. Before we can state it precisely it is necessary to make some 
definitions. 

DEFINITIONS. Suppose N is an (n — 2)-manifold topologically embedded in the in­
terior of the rc-manifold M and jcÇiV. We say that N is locally 1-alg at x if for every 
neighborhood U of x in M there exists a neighborhood V of x in U such that any loop in 
V — N which is null-homologous in V — N is also null-homotopic in U — N. (The "alg" 
stands for "abelian local groups." A duality argument shows that the image of n\ (V — N) 
in n\(U — N) is isomorphic to Z. Other authors, e.g. [6], use the terminology "M — N 
has good local IT\ at JC" to mean the same thing.) We say that TV is locally homotopically 
unknotted at x if N is locally 1-alg at x and if, in addition, for every neighborhood U 
of x in M there exists a neighborhood V of x in U such that the image of 717(V — AO in 
7T/(C/ — N) is trivial for every / > 2. • 

We can now state the second question considered in this paper: If N is an (n — 2)-
manifold topologically embedded in the interior of the «-manifold M and N is locally 
1-alg at JC G N, then is N locally homotopically unknotted at xl Again the answer to this 
question is "yes" in case n = 3 [1] and "no" in high dimensions. In order to construct an 
example for n > 6 we proceed as follows. Let Zrt~3 C Sn~l be a locally flat PL(n — 3)-
sphere such that 7Ti(Sn~l - ln~3) ^ 1 but ^(S7 1 - 1 - I" - 3) ^ 0. Take I ; to be the 
suspension of E in Sn. Then YJ is a PL(« — 2)-sphere in 5" which is locally 1-alg at every 
point but is not locally homotopically unknotted at either suspension point. In §2, below, 
we also construct an example of a 3-sphere in S5 which is locally 1-alg but not locally 
homotopically unknotted; however the example is topological and, in fact, we prove 
that no such 5-dimensional example can be piecewise linear (as the high dimensional 
example above is). Our second result shows that the answer to the question is also "no" 
in dimension 4. 

EXAMPLE 2.1. There exists a topological embedding hx S2 —» S4 and a point x G 
h2(S2) such that fi2(S2) is locally 1-alg at x but hiiS2) is not locally homotopically un­
knotted at x. 

This example is surprising and is the main result of this paper. It had generally been 
believed that the kind of argument used to show that a locally flat 2-sphere in S4 which 
has 7Ti of the complement equal to Z is aspherical could be localized to show that locally 
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1-alg implies locally homotopically unknotted in dimension 4. This is stated explicitly in 
Lemma 9.3B of [6], for example, and is also implicit in [5, Theorem 10]. Our construction 
in § 1 actually contains a counterexample to the proof of [6, Lemma 9.3B]—see Remark 2, 
below. 

The question of whether locally 1-alg implies locally homotopically unknotted is an 
important question because the proof in [6, §9.3] shows that a surface which is locally 
homotopically unknotted at every point is locally flat. Thus the real question is whether 
or not local flatness can be characterized in terms of the local n\ condition or if it is 
necessary to assume, in addition, that the higher local homotopy groups vanish in order 
to conclude that the surface is locally flat. 

In §3 of this paper we consider the problem of giving necessary and sufficient condi­
tions for the complement of a topological 2-knot in S4 to be aspherical. Our main result 
in that section (Theorem 3.1) gives such conditions; it shows that the only way in which 
a 2-knot complement in S4 with fundamental group Z can fail to be aspherical is if 7T2 
of the complement is nontrivial and that this will only happen if the structure of 7T2 as a 
module over T[ix\] is quite complicated. 

THEOREM 3.1. Suppose X is a 2-sphere topologically embedded in S4 and 
7T\(S4 — X) = Z. Then the following are equivalent: 

(1) S4 — X has the homotopy type ofS\ 
(2) 7T2CS4 - I ) = 0, 

(3) 7T2(54 — X) is a submodule of a free Z^iOS4 — *L)\-module, and 
(4) 7T2(54 — X) is finitely generated as a module over Z[TT\ (S4 — X)]. 

COROLLARY 3.2. lfii\(S4 - X) = Zand S4 - X is finitely dominated, then S4 - X 
has the homotopy type ofS1. 

COROLLARY 3.3. If X is a PL (not necessarily locally flat) 2-sphere in S4 such that 
TT\(S4 — X) = Z, then S4 — X has the homotopy type ofSx. 

COROLLARY 3.4. Ifit\(& - X) ^ Z, and 7n(e) ^ Z, where e is the end ofS4 - X, 
then S4 — X has the homotopy type ofS1. 

DEFINITION. A compact set X in the interior of a manifold M is said to be globally 
1-alg if for every neighborhood U of X in M there exists a neighborhood V of X in U 
such that each loop in V — X which is null-homologous in V — X is null-homotopic in 
U-X. m 

COROLLARY 3.5. Let X Z?e a 2-sphere topologically embedded in S4. 7/*X is globally 
7-alg and TT\(S4 — X) = Z, then S4 — X has the homotopy type ofSx. 

Corollaries 3.4 and 3.5 were first proved in [11]. It should be noted that TT\ (e) = Z is 
not a necessary condition: Guilbault [7] has given an example of a 2-sphere X C S4 such 
that S4—X has the homotopy type of Sl even though X is not globally 1-alg. Corollary 3.3 
appears in [17]. 
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Example 2.1 raises the question of whether or not a surface in a 4-manifold that is 

locally 1 -alg at every point will be locally homotopically unknotted. The example does 

not answer that question because it contains an infinite sequence of points converging to 

x at which the embedding fails to be locally 1-alg. As was mentioned above, the question 

is important because a positive answer would have a taming theorem as a corollary. 

(The proofs in [6, §9.3] show that an embedding of a surface into a 4-manifold which is 

locally homotopically unknotted at every point will be locally flat.) We do not answer 

the question in general, but do give positive answers in several special cases, the most 

important being the case in which the submanifold is a 2-sphere. 

THEOREM 4.1. Suppose Z is a 2-sphere topologically embedded in the interior of 

the 4-manifold M4. If the self intersection number of the homology class represented by Z 

is 0 and Z is locally I -alg at xfor every i G l , then Z is locally homotopically unknotted. 

By [6, §9.3] we have the following corollary. 

COROLLARY 4.2. If I, C S4 is a 2-sphere which is locally I -alg at xfor every x G Z, 

then Z is locally flat. 

The conclusion of Theorem 4.1 is local. Since we are often able to take an embedding 

of some surface other than S2 and make it agree locally with an embedding of S2, we can 

use Theorem 4.1 to obtain information about embeddings of more general surfaces. For 

example, we have the following two corollaries. 

COROLLARY 4.3. Suppose N is a surface topologically embedded in the interior of 

the 4-manifold M. IfN is locally 7-alg at xfor every x G N and N is locally flat except 

possibly at a closed O-dimensional set, then N is locally flat at every point. 

COROLLARY 4.4. Suppose Z is a 2-sphere topologically embedded in the interior of 

the 4-manifold M. If Z is locally I -alg at every point and locally flat at at least one point, 

then Z is locally flat at every point. 

1. Construction of the main example. In this section we construct Example 1.1. 

The construction proceeds indirectly: we begin by constructing an open subset W of S4 

having the correct homotopy properties to be the complement of the example we seek 

and then show how to move W a little so that Z = S4 — W is a topological 2-sphere. We 

believe that the example is most easily understood if it is thought of as being analogous 

to the Whitehead continuum in S3. In that case, too, it is easiest to begin by constructing 

the Whitehead manifold which is the complement in S3 of the Whitehead continuum. 

Like the Whitehead manifold, our open manifold W is described as the union of a nested 

sequence of compact manifolds {Wn}. This similarity with the Whitehead continuum is 

not accidental; in fact, we will see that Z can be obtained by starting with the standard 

2-sphere S2 in S4 and attaching a copy of the Whitehead continuum to S2. Specifically, 

we find a copy Wh of the Whitehead continuum which is cellular in S4 and intersects S2 

in just one point but is tightly wound around S2. Then we construct Z as follows: 

Z = (S2 V Wh) / Wh C S4/ Wh ^ S4. 
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FIGURE 1 

We begin by fixing some notation. Let T denote an unknotted solid torus in (R3, let D 
be a flat disk in the interior of T and C = dD. 

We think of S4 as being R3 x (—00,00) U {00} and describe level pictures of the 
manifolds Wn. Define W2 to be a regular neighborhood of Tx [-1,0]UCx [0, l]UDx {1} 
in S4. Notice that W2 collapses to a copy of Sl V S2. We next define Wi C Int W2. Let Dx 

and D2 be two close parallel copies of D in Int T and let B be a band which joins D\ to 
D2 as pictured in Figure 2. 

FIGURE 2 

Define Cx = dDu C2 = dD2,D' = D{UBUD2 and C; = dD'. Choose e > 0 small 
enough so that T x [0, e] is contained in the interior of W2. Then W\ is defined to be a 
regular neighborhood of 

7 x [ - l , 0 ] U C ' x [0 ,e ]U£x { e } U ( d U C 2 ) x [e, 1] U (Dx UD2) x {1}. 
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The regular neighborhood should be chosen so that W\ C Int W2. Notice that D' is iso-
topic to D in T, so W\ = W2. In fact, W\ is embedded nicely enough so that there is an 
isotopy ht: S

4 —» S4,0 < t < 1, with ho = id, and h\(W\) — W2. We recursively define 
Wn,n > 3, by Wn = hi(Wn-i) and define W = U?=lWn. 

It is clear that Wn \ Sl VS2 and that the inclusion Wn C Wn+\ induces the identity map 
on the Sl factor. It follows that 7T\(W) = Z. The band B has a half-twist in it (see Figure 2) 
and so the inclusion induced map H2(Wn) —> H2(Wn+\) is trivial. Thus H2(W) = 0. 
However, we will see that the fact that the band goes around the Sl -factor of Wn+\ makes 
7T2(W) nontrivial. 

In order to describe ^(W) more explicitly, we fix some notation. We use J to denote 
TT\ ( W)\ so J = Z and we write a typical element of J as f, where ris a generator of J 
and n G Z. Let A denote the group ring T[J]. Then A consists of all Laurent polynomials 
in t with integer coefficients. Since Wn \ Sl V S2, 7T2(Wn) is naturally isomorphic to A. 
The important thing to notice is that it is possible to choose a A-generator for 7T2(Wn) in 
such a way that the inclusion map Wn <—> Wn+\ induces multiplication by t — 1; i.e., the 
diagram 

7r2(Wn) —-> ir2(Wn+l) 

^ I* 
A ^ A 

commutes. It is easiest to see this by looking at the universal covers Wn C Wn+\. 
It is now clear that ^(W) ^ 0. In particular, the generator of TT2(W\) represents (t— l)n 

in 7T2(Wn+\). Thus the generator of TT2(W\) does not die in 7T2(Wn) for any n and therefore 
does not die in TÏ2(W). 

We now turn our attention to the complements. Define Qn = S4 — Wn and X = 
^L\Qn — S4 — W. The first thing to notice is that, since Wn is a regular neighbor­
hood of Sl V S2 and both factors are unknotted in S4, we have that Qn \ S2 V S1; the 
52-factor of Qn links the Sl-factor of Wn and the the 5"2-factor of Qn links the Sl-factor 
of Wn. The Sl-factor of Q2 can be pictured as a loop A2 in the level R3 x {j } such that 
A2 links C x { \ } and the S2 -factor can be pictured as the suspension in 1R4 of a circle B2 

in IR3 x {^} such that B2 links T x {|}. This is indicated schematically in Figure 3. 
In general, Qn is a regular neighborhood of A„ U S(Bn), where A„ U #„ is a figure-8 in 

a level, S denotes suspension, and all the Bn's are the same. We wish to understand the 
embedding of Qn+\ in Qn. We concentrate on Q2 C Q\. In Figure 4 we show Ai, A2 and 
B\ = ^ 2 . 

Now A\ is the spine of the complement of C. Thus, to understand the embedding 
of Ô2 in Q\, we must redraw the picture so that C and Aj are straightened out. This is 
shown in Figure 5. 

We are now in a position to give a geometric description of X = S4 — W. We see 
that X = D^=lQn where each Qn a regular neighborhood of a copy of Sl V S2. Each 
Sl VS2 — An V S(Bn) where A„ U5n is a figure-8 in a hyperplane. Furthermore, Bn+\ — Bn. 
The embedding of An+\ U 5n+i in a neighborhood of A„ U Bn is indicated in Figure 6. 
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FIGURE 3 

FIGURE 4 

FIGURE 5 

We now re-embed the Qn's so that they are closer and closer regular neighborhoods of 
the spines An V S(Bn). After that adjustment, X consists of a locally flat 2-sphere, S(B\ ), 
together with a 1-dimensional continuum which we call Wh; i.e., X — S{B\) U Wh 
and S(B\) D Wh consists of a single point. Since An+\ is null-homotopic in a regular 
neighborhood of An, Wh is cell-like. In fact, Wh is cellular in S4 since it is the intersection 
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FIGURE 6 

of a sequence of neighborhoods with 1-dimensional spines. We can therefore shrink Wh 
to a point and the resulting manifold is still homeomorphic to S4. We define Zi to be the 
image of X in the decomposition space S4 / Wh. Since S4 / Wh —Zi = S4 — X — W, it is 
clear that Zi has the properties required of Example 1.1. • 

REMARK 1. It should be noted that Zj is locally flat except at the image of Wh; 
at that point Zi cannot be locally flat. In fact, Zj cannot even be locally 1-alg at the 
exceptional point. This is because Hollingsworth and Rushing [9] have shown that any 
2-sphere which is locally 1-alg at every point is globally 1-alg. Thus Corollary 3.5 would 
be contradicted if Zi were locally 1-alg at the exceptional point. • 

REMARK 2. Our construction contains a counterexample to the proof of [6, Lemma 
9.3B]. The manifolds {Wn} above satisfy conditions (l)-(3) on p. 142 of [6] as well as 
(i)-(iv) on p. 143, but it is not the case that the inclusion induced map 7T2(Wn) —• 7T2( Wn+k) 
is trivial for any k > 1. The error in [6] is the assertion (on p. 146) that "condition (iv) 
is equivalent to ... /(image) = image." In general it will only be the case that, in the 
terminology of [6], image C /(whole group). This is analyzed more carefully in the 
proof of Theorem 3.1, below. • 

REMARK 3. There exists a high dimensional version of our example. Let X = 
Sn~3(B\) U Wh C Sn, where B\ and Wh are the subsets of S3 described above and 
Sn~3(B\) denotes the (n — 3)-fold suspension of B\. Then 

Z"-2 = Xj Wh C Snl Wh ^ Sn 

is a topologically embedded (n — 2)-sphere in Sn, n > 4. The complement of Zn_2 has 
the property that 7r{(S

n - IT'2) ^ Z and 7n(Sn - Z"~2) = 0 for 2 < i < n - 3, but 
Kn-2(Sn — Z"~2) is nontrivial. This contrasts sharply with Levine's Theorem [10] which 
asserts the following: If Sn~2 is a smooth (rc-2)-spherein Sn such that n\(Sn-S^~2) = Z 
and 7Ti(Sn - Sn~2) - 0 for 2 < / < n/2, then Sn~2 is unknotted, n > 6. • 

REMARK 4. The embedding ho: R2 —> IR4 of Example 1.2 is constructed by removing 
the point Wh from (S4, Zj ). More generally, we can remove the point Wh from Zn~2 C Sn 
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(described in Remark 3, above), to construct an interesting example of an embedding of 
IRn_2 in W1. Again, this example contrasts sharply with Levine's Theorem. • 

EXAMPLE 1.2'. There exists a proper, smooth embedding h: Rn~2 —+ Rn, n > 4, 
such that iri(Rn - h(Rn~2)) ^ Z and nt{Rn - h(Rn~2)) = Ofor 2 < i < n - 3 but 

7rn_2(r-/i(r-2))^ o. 

2. The second example. In this section we construct Example 2.1. The method 
of constructing the local example from the global one is the same as that described by 
Daverman on p. 372 of [3]. 

Let D' be a 4-cell in S4 such that D' intersects Zi in a locally flat disk missing the 
exceptional point of Zi and let D — S4 — D'. Then (Z), D Pi Zi) is a knotted topological 
(4,2)-ball pair. Remove from S4 a sequence Di,Z)2,D3,... of pairwise disjoint 4-cells 
such that, for each n, (Dn, DnP\S2) is an unknotted (4,2)-ball pair and {Dn}™={ converges 
to a point x G S2. Replace each (Dn,Dn n S2) with a (4,2)-ball pair (£>„, Cn) such that 
dCn = d(Dn H S2) and (D„, Cn) = (D, D H Zi ). Then let 

^2= s2 - U(^n52) u M j q . 

Since 7ri(D — Zj) = Z, Van Kampen's theorem implies that Z2 is locally 1-alg at x. 
A Mayer-Vietoris argument in the universal cover of S4 — Z2 shows that the local 1x2 of 
S4 — Z2 is not trivial at x. Thus Z2 has the properties required of Example 2.1. • 

In the Introduction we described an example of a PL embedding of Sn~2 into Sn, n > 6, 
which shows that locally 1-alg does not imply locally homotopically unknotted. We have 
just constructed an example of such an embedding for n = 4 as well. For the sake of 
completeness, we now construct an example for n = 5. Let Z3 C S5 be a locally flat 
PL 3-sphere such that TT\ (S5 — I?) = l and TT2(S

5 — Z3) ^ 0. By removing an unknotted 
ball pair from (S5, Z3), we obtain a knotted ball pair (D5, D5 Pi Z3). Proceeding as in the 
construction of Example 2.1, we start with the unknotted sphere pair (S5, S3), remove a 
null-sequence of balls from it, and replace each with a copy of (Z)5, D5 D Z3) to produce 
a topological embedding of S3 into S5 having the following properties. 

EXAMPLE 2.2. There exists a topological embedding hy. S3 —> S5 and a point ;c3 G 
hi,(S3) such that hi(S3) is locally 1-alg at X3 but h?,(S3) is not locally homotopically un­
knotted at X3. 

Notice that hi(S3) is locally flat and PL at every point other than x^ and that it is the 
local 7T2 that is bad at X3. We could construct an example with bad local IT?, by applying 
the infinite construction to the example mentioned in Remark 3 at the end of § 1. The ex­
ample constructed in that way would have an infinite sequence of non-locally flat points. 
Obviously our 5-dimensional examples are not PL as the high dimensional examples 
were. Our next theorem shows that there can be no PL embedding of S3 in S5 having the 
properties mentioned in Example 2.2, but that PL embeddings of S3 into S5 follow the 
low-dimensional pattern. 

https://doi.org/10.4153/CJM-1993-016-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-016-5


ASPHERICITY OF KNOT COMPLEMENTS 349 

THEOREM 2.3. IfM3 is a 3-dimensional PL submanifold of the PL 5-manifold W5 

and M3 is locally 7-alg at xfor every x G M3, then M3 is (topologically) locally flat. 

PROOF. Let x £ M3 and let a be the simplex of M3 such that x G Int a. If Ik a 
denotes the link of a in W5, then (Ik a, Ik a D M3) is a PL sphere pair of dimension 
(4—dim a, 2—dim a). The fact thatM3 is locally 1 -alg at x implies that TT\ (Ik o—M3) = Z. 
As long as dirna > 2, it is obvious that (lkcr, lkcr D M3) is an unknotted sphere pair. 
In case dim a = 1, this follows from the Loop Theorem [14] and in case dim a = 0, 
(Ik cr, Ik a H M3) is a topologically unknotted (4,2)-sphere pair by [5, Theorem 6]. • 

3. Aspherical 2-sphere complements. We next turn our attention to the problem 
of proving a positive theorem regarding aspherical 2-spheres in S4. For the remainder of 
this section, we let Z denote a 2-sphere topologically embedded in S4 and W = S4 — Z. 
We assume that Z is embedded in such a way that n\(W) = Z. In §1 we showed that 
7T2(W) may be nontrivial and thus W is not necessarily aspherical. In this section we give 
conditions which imply that W is aspherical. It should be noted that, by the Whitehead 
theorem, W has the homotopy type of Sl if and only if 717(W) = 0 for / > 2. But the 
Hurewicz theorem implies that 7T/(W) = 0 for / > 2 if Ht(W) = 0 for / > 2, where W 
is the universal cover of W. Thus we will concentrate in this section on the problem of 
computing the homology of W. The main result of this section (Theorem 3.1) shows that 
any nontrivial higher homology groups must appear at the H2 level and that this will only 
happen if H2 is quite complicated. Our other results in this section show that most of the 
algebraic properties of Example 1.1 are common to all examples. 

We begin the proof of Theorem 3.1 by constructing two sequences of submanifolds 
of S4 which will be useful in the proofs below. Let U\ D U2 D U3 D • • be a sequence 
of compact connected PL manifold neighborhoods of Z such that U„+\ C Int Un for each 
n and n^=xUn = X. Since Z is an ANR, there is a retraction rn\ Un —• Z for large n. 
We may assume that Un is chosen in such a way that rn is homotopic to the inclusion 
in Un-\. Since Z is 2-dimensional, Z does not separate any neighborhood and so we 
may also assume that dUn is connected for each n. (If not, connect up the boundary 
components with arcs lying in Un — Z and remove regular neighborhoods of the arcs.) 
Define Wn = S4 - Un. It follows from Alexander duality that H2(W) = HlÇL) = 0. 
Each H2(Wn) is finitely generated (since Wn is a compact PL manifold) so we may also 
assume that the inclusion induced map of H2(Wn) into H2(Wn+\) is trivial. In addition, 
we use the fact that ix\ ( W) = Z to arrange that any loop in Wn which is null-homotopic 
in W is null-homotopic in Wn+\ and that TT\ (Wn) —> TV\ (W) is onto. Let/?: W —-> W denote 
the covering projection. 

LEMMA 3.6. For each n, the image ofH\(Un+\ — Z) in H\(Un — Z) is canonically 
isomorphic to H\ (W) = Z. It follows that bothp~l(Un — Z) andp~l(dUn) are connected 
and that W has one end. 

PROOF. Fixn.Let7:Hi((/n+i-Z)—>//i(t/w-Z)andr/:Hi(t/w-Z) —>//i(W) denote 
the inclusion induced homomorphisms. We will show that 771 im7: im7 —-»• H\(W) = Z 
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is an isomorphism. We begin by showing that im7 is cyclic. Consider the commutative 
diagram 

ffitt/n+1-I) —+ tfi(t/„+i) 

H I ' 
H2(Un,Un-Z) - ^ Hi(Un-L) - ^ /fi(t/n). 

Since the inclusion É/n+i -̂> £/„ factors, up to homotopy, through a retraction onto Z, we 
havethat<5 = 0. Therefore/3 07 = 0andsoim7 C ker/3 = ima.ButH2(Un, £/„-Z) = Z 
by Alexander duality, so im 7 is cyclic. 

Now consider the commutative diagram 

Hi(S*-I) —> / / i ( S 4 - Z , £ / „ + 1 - Z ) 

/ / i (S 4 -Z ) . 

By excision, H[(S4 — Z, £/n+i — Z) = H\(S4, Un+\). Since £/n+i is connected, it follows 
that H\(S4, Un+\) = 0. Therefore £ is onto and hence 77 o 7 is onto. This implies that 
r/l im7: im7 —̂  //i(54 — S) = Z is an isomorphism since the only onto homomorphisms 
from a cyclic group to Z are isomorphisms. 

In order to see that each p~l(Un — Z) is connected, it is enough to note that the com­
position 7T\(Un — Z) —> H\(Un — Z) —» H\(W) = TT\(W) is onto. A similar proof shows 
thatp~l(dUn) is connected. Since dUn is connected, the only other ingredient we need is 
a representative of the generator t of H\ ( W) in dUn. We have already seen that there is a 
representative of tin Un — Z and the choice of Wn shows that there is a representative of t 
in Wn. Hence, a Mayer-Vietoris sequence argument shows that there is a class in H\ (dUn) 
which is homologous in W to t. 

For each n, we can find a compact connected polyhedron Kn C W such that Wn C 
/?(/£„). A typical neighborhood of 00 in W has the form 

VnJc=P~\Un-It)u(\J l/Kn) 
V |/|>* 7 

Since Vn̂  is connected for every n and k, W has one end. • 

As in §1, we use J to denote TT\(W)= Z, A to denote the integral group ring Z[7], and 
/ to denote a generator of J. Let /r. \V —-> W be the universal cover. If A is a subset of W 
such that 7ri(A) —» 7ri(W0 = Z is onto, we write Hk(A;A) for Hk{p~~x(A); Z). Here we 
are thinking of A-coefficients as local coefficients in the sense of Steenrod [15]. In case 
A is a compact /i-dimensional submanifold of W, there is a Poincaré duality theorem for 
H*(A; A). It asserts that Hk{A\ A) = Hn~k(A, dA; A). In order to avoid confusion it should 
be remembered that Hl(A\ A) is the same as Hl

c(p~x(A)\ Z). 

tfl(£/n-Z) 
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LEMMA 3.7. For each n, H3(Wn;A) = 0, H3(Wn\ A) = 0, and H2(Wn\A) is a 
submodule of a finitely generated free A-module. 

REMARK. Since H*(W) is the direct limit of the images of the groups H*(Wn; A), 
we can conclude from the Lemma that every complement W of the sort studied in this 
section will possess many of the same algebraic properties that the complement of Ex­
ample 1.1 had. In particular, Ht(W) = 0 for / > 3 and H2(W) is the direct limit of a 
sequence of modules, each of which is a submodule of a finitely generated free module. 
In Theorem 3.1 we show that the only way in which H2(W) itself can be a submodule of 
a free module is if it is trivial. • 

PROOF OF LEMMA 3.7. First observe that the pair (W, Un - I ) is 1-connected. 
By Poincaré duality and excision we have H3(Wn\A) ^ H\(Wn,dWn\A) 9* HX(W, 
Un - I ; A) = 0. Similarly,H3(Wn; A) ^ Hl(Wn,dWn;A) = Hl(W, Un - I ; A) = 0. 

Since Wn collapses to a compact 3-dimensional polyhedron, the chain complex for 
H*(Wn\ A) can have the form 

o — c3 A c 2 A» c, A» Co -^i —>o 

Because H3{Wn\ A) = 0, d3 is injective and im33 is a finitely generated free A-module. 
We can think of [83] as an element of H3(Wn\ im33). Moreover H3(Wn\ im33) = 0 since 
im33 is a finitely generated free A-module and H3(Wn;A) = 0. So there exists 6 G 
HomA(C2,im33) such that 83 = 63(6) — 0 o d3.^ Z2 = ker32. Then d\Z2 splits the 
sequence 

0 - ^ i m 8 3 ^ Z 2 - > / / 2 ( W n ; A ) - ^ 0 . 

Thus 7/2(Wn\ A) is isomorphic to a submodule of Z2 C C2. • 

PROOF OF THEOREM 3.1. It is obvious that condition (1) implies each of the others 
and that condition (2) implies each of (3) and (4). It follows from Lemma 3.7 along with 
the Whitehead and Hurewicz theorems that (2) implies (1). We will show that (3) implies 
(2) and that (4) implies (2). 

Suppose, first, that H2(W) is a submodule of a free A-module. The short exact se­
quence 

0 —> C*(W) - ^ C*(W) -^ C*(W) —• 0 

of chain complexes gives rise to the exact sequence 

0 = H3(W) —> H2(W) ^ H2(W) -^ H2(W) = 0 

of homology groups. Thus (t—l): H2(W) —• H2(W) is onto. This means that each element 
of H2(W) is infinitely divisible by (t—l), but the only element of a free module with that 
property is 0. Thus H2(W) cannot be a submodule of a free module unless it is trivial. 

Second, suppose that H2( W) is finitely generated over A. We fix a finite set of gener­
ators and choose W\ in such a way that p~l(W\) contains representatives of this set of 
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generators for H2(W; A). Each H2(Wn; A) is finitely generated, so we can choose Wn+\ 
large enough that each element of 7/2( Wn\ A) is homologous in Wn+\ to some combination 
of the fixed set of generators. This will mean that the image of H2(Wn; A) in H2(Wn+\ ; A) 
will be equal to the image of fyiW\ ; A) in H2(Wn+\ ; A). In this way we arrange that, for 
each/*, the image of H2 (p~{(Wn) ) mH2(p~l(Wn+2)) isthesameasthatof//2(/?_1(^n+i)) 
in H2(p~l(Wn+2)). As in the previous paragraph, the rows in the following diagram are 
exact. 

H2{p-l(Wn)) - U H2{p-\Wn)) - ^ H2(Wn) 

H2(p-\Wn+0) ^ H2(p-{(Wn+l)) -^ H2(Wn+l) 

H2(p-\Wn+2)) - ^ H2(p-\Wn+2)) - ^ H2(Wn+2) 

This means that iman C (t — l)(//2(/?-1(Wn+i)) j and so 

im(an+i oan) C (t - l)iman + i = (t - l)im(aw+i o an) 

Therefore every element of im(an+i oan) is infinitely divisible by (t— 1). By Lemma 3.7, 
H2(p~x(Wn+i)) is a submodule of a free A-module and thus im(an+i o an) is a submodule 
of a free A-module. This means that im(ûrn+i o an) = 0 and hence H2(HO = 0. The proof 
of the theorem is complete. • 

PROOF OF COROLLARY 3.4. Since 7ri(c) = Z and the natural map 7n(e) —> TT\(W) 

is an isomorphism (Lemma 3.6), W has one simply connected end. This means that 
H\W) ^ Hf{W) = 0. (H?(W) denotes the homotopy based on infinite chains.) It 
follows that H2(W) is a projective module over A (by the argument of [11, Lemma 2.4] 
or [18, Lemma 2.1]) and so the Theorem applies. • 

4. Surfaces which are locally 1-alg at every point. In this final section of the pa­
per we consider the question of whether or not a topologically embedded surface in a 
4-manifold which is locally 1-alg at every one of its points is locally homotopically un­
knotted (and therefore locally flat). We are not able to answer that question in general, but 
do prove a positive result in the important special case in which the surface is a 2-sphere. 
In this section we will make use of the following technical lemma from homological 
algebra. 

LEMMA 4.5. Suppose W is a PL manifold with TT\ (W) = Z and A C B are two poly­
hedral subsets of W such that the pairs (W, W—A) and(W, W — B) are (q— \)-connected 
for some q. If the inclusion induced homomorphism Hq(W, W—B\ A) —> Hq(W, W— A\ A) 
is the zero homomorphism, then the restriction homomorphism Hq(W, W — A; A) —> 
Hq(W, W-B;A) is also zero. 

SKETCH OF PROOF. First notice that (W, W~A) and (W, W-B) are simple homotopy 
equivalent to pairs with no relative n-cells, n < q (cf. [ 18] Lemma 1.1). Thus the cellular 
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chain complexes have the form 

••• —> Cq+i(W,W-B;A) - ^ Cq(W,W-B;A) —>0 

I I 
••• —> Cq+i(W,W-A;A) - ^ Cq(W,W-A;A) —>0 

Take HomA(-, A) of the diagram above. Then the proof is completed by a straightforward 
argument using the definitions of homology and cohomology. • 

To begin the proof of Theorem 4.1, we assume that Z is a 2-sphere topologically 
embedded in the interior of the 4-manifold M4 in such a way that the self intersection 
number is 0. Our next two lemmas do not require the hypothesis that Z be locally 1-alg 
at every point, but only the weaker hypothesis that Z is globally 1-alg. Thus that is all we 
will assume for the moment. (It is shown in [9] that if Z is locally 1-alg at every point, 
then Z is globally 1-alg. Hence the global hypothesis is strictly weaker than the local 
one.) 

Since Z is globally 1-alg and the self intersection number is 0, the main theorem of 
[12] implies that there is a collar C of the end of M — Z. Specifically, there exists a 
compact neighborhood N of Z and a homeomorphism <j>: Sl x S2 x [0,1) —•* C = N — Z. 
Let p.C —> C be the universal cover of C. As before, we use J to denote n\(C) and 
A = Z[7]. For 0 < a < 1 we use Ca to denote the subcollar Ca = 4>(Sl x S2 x [a, 1)). 

LEMMA 4.6. Suppose B is a PL4-ball in the interior o / C U l , 0 < a < 1, and 
B — (Int Ca U Z) is PL with respect to the PL structure on C induced by <j>. IfP = 
B-(CaU Z), then H3(P;A) = 0, H3(P;A) = 0, and H2(P;A) is a submodule of a 
finitely generated free A-module. 

PROOF. We first prove that C - P is connected. Notice that C - P = Ca U (C - B) 
and that it is obvious that Ca is connected. Given two points y and z in C — B, there exists 
an arc A C C joining them. Put A in general position with respect to dB. Then A PidB will 
consist of a finite number of points which divide A into a finite number of subarcs, each 
of which is entirely inside B or entirely outside B. We replace each subarc of A which 
lies inside B with an arc lying on dB. The new arc from y to z can be pushed into the 
complement of B. Since Z is 2-dimensional, Z does not separate any open set so we can 
adjust the arc slightly to miss Z as well. Thus C — B is connected and so is C — P. 

Since TT\ (C—P)—+ TT\ (C) is onto, we conclude that the pair (C, C—P) is 1-connected. 
The Lemma can now be proved by the same argument as was used to prove Lemma 3.7. • 

LEMMA 4.7. Fix x G Z. Suppose B\ is a 4-ball in C U Z such that x € IntZ?i. Let 
D be a disk on Z such that x G Int/) and D C IntZ?i and let #2 be a 4-ball such that 
x G Int#2> ^ H l C IntD, andB2 C IntZ?i. For every a, 0 < a < 1, there exists a 
number b, a < b < 1, such that ifP\ = B\ — (Q, U Z) and P2 — #2 — (Ca U Z), then 
the inclusion induced homomorphismH\(C — IntP\ ; A) —> H\(C — IntPi\ A) is trivial. 

PROOF. Let x, B\, D, #2, and a be given. Choose V to be a connected PL manifold 
neighborhood of dD in Int ((#1 — #2) H Ca). Then choose b > a so that V separates 
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CbnB2 from CbC\(C-B\) in Cb. Define P{ = B{ - (Cb UZ) and P2 = B2 - (Ca U5L). 
We must show that each loop inp~1 (C — Int Pi ) is null-homologous in /?~ *(C — Int P2). 

Let 7 be a loop in/?_1(C — Int Pi) and let l' — p{l). Put 7' in general position with 
respect to dB\. Then 7' H dPi will consist of a finite number of points. These points can 
be paired off so that each pair either bounds a subarc of 7' which lies outside #1 or a 
subarc which lies in Cb. Let yi, y2 be a pair which bounds a subarc in Cb. We claim that 
there is an arc from y\ to y2 which lies in Ca — B2. If the subarc of l' which joins y\ 
to y2 lies outside B2, we can use it. Otherwise the subarc must pass through V and so 
we can replace the portion from the first point of intersection with V to the last point of 
intersection with V with an arc in V — Z to obtain the arc we need to prove the claim. Use 
these arcs to write 7' = 7i + 72, where 7i C C — B2 and 72 C Ca. By adding a multiple 
of the generator of 7r\(Ca) to 7i and its inverse to 72, we can arrange that both 7i and 72 
are null-homotopic in C. This makes 72 null-homotopic in Ca, so we have 7r homotopic 
to l l i n C - I n t P 2 . 

Now 7i is null-homotopic in C Since dB2 is simply connected, this null-homotopy 
can be cut off on dB2. In other words, there exists a continuous function F: A2 —> (C — 
Int#2) U dB2 such that F(dA2) = 7i- There exist a finite number of pairwise disjoint 
disks Ai , . . . , An in A2 such that 

F"1(Z)C U I n t A / 
i=\ 

and F(dAt) C IntQ, for each /. Choose a basepoint zo G dA2 such that F(zo) G Cb and 
let A\,..., An be a collection of oriented arcs in A2 such that Ar is an arc from zo to 3A, 
and At C\ Aj = zo for / ^ j . Let <5; denote the loop F(3A,) and let at — F(Ai). Then 7i is 
homotopic in C — Int^2 to the loop a\8\a\] • • • anSna~l. Let fy be an arc in Cb which 
joins the ends of at. By adding a multiple of the generator of TT\ (Cb) to f3t, we can arrange 
that the loop az/3^1 is null-homotopic in C. Now 7i is homologous in C — MP2 to the 
loop 73 = (3\8\fl^x - - - /3n6n(3nl. Furthermore, the fact that (Xif5~lx is null-homotopic in C 
means that this homology can be lifted to C. So 7 is homologous in/?-1(C — Intfy to a 
lift 73 of 73. This completes the proof because 73 is contained in the simply connected 
spacep~\Cb) Cp~\C-Pi). m 

PROOF OF THEOREM 4.1. Since I is locally 1 -alg at each of its points, it is globally 
1-alg [9]. Thus we may apply the two lemmas above. Fix x G Z. We wish to show that 
C is locally /-connected at x for every / > 2. 

Let Pi and P2 be as in Lemma 4.7. Consider the diagram 

H2(C,C~ IntPr, A) —> H\(C - IntPf, A) 

//2(C;A) - ^ / / 2 (C,C-IntP 2 ;A) —> H{(C - IntP2; A) 

Since a is trivial and /? is trivial (by Lemma 4.7), we have that the inclusion induced 
homomorphism H2(C, C — Int Pi ; A) —» H2(C, C — IntP2; A) is trivial. Moreover, since 
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the pairs (C, C — Int Pi ) and (C, C — Int P2) are 1-connected, it follows from Lemma 4.5 
that the restriction homomorphism/f2(C, C-Int P2\ A) —> #2(C, C-Int P\ ; A) is trivial. 
Therefore its dual, the inclusion induced homomorphism //2OP2, A) —> H2(P\',A), is 
trivial as well. 

Now let P\ D Pi D P3 D • • • be a sequence of submanifolds of C, constructed as in 
Lemma 4.7. Then Lemmas 4.6 and 4.7 show that the inclusion induced homomorphisms 
Hi(Pk;A) —» Hi(Pk^i;A) are trivial for / > 2. It follows from the Eventual Hurewicz 
Theorem [4, Lemma 3.1] that there is an n such that 7T/(7\) —* iTi{Pk_n) is trivial for 
i > 2 . 

Given a neighborhood t/ of x, we can find a 4-ball Z?o such that x G Int B$ and #0 C £/. 
Let Bo D B\ D • • O fi„ be 4-balls as in Lemma 4.7. Consider a map/: Sl -^ Bn — Z, 
/ > 2. Choose « so that/(S') C Bn — Ca and construct Po,...,Pn from Bo,...,Bn as 
in Lemma 4.7 with all the subcollars involved being subcollars of Ca. Then/ is null-
homotopic in Po by the previous paragraph. Hence/ is null-homotopic in U — S and the 
proof is complete. • 

PROOF OF COROLLARY 4.3. Pick a point x in N. There exists a disk D such that 
x E IntD C D C N and TV is locally flat in a neighborhood of dD. Let A be an annulus 
such that dD C A C D and TV is locally flat at every point of A. Then there exists an 
embedding H: A x B2 —+ M such that H(x, 0) = x for every JC G A. Choose a compact 
neighborhood W of D such that //(A x B2) C W,#(3D x B2) cdWmdWHN = D. 
Form M; by attaching a 2-handle to W along 3D x B2 and let I c M ' consist of D together 
with the core of the 2-handle. By changing the framing of the 2-handle, if necessary, we 
can arrange that the self-intersection number of X is 0. By Theorem 4.1, Z is locally flat 
and thus iV is locally flat at each point of Int D. m 

PROOF OF COROLLARY 4.4. Remove a flat ball pair from a neighborhood of the 
locally flat point and then attach a 2-handle with appropriate framing so that the new 
2-sphere has self-interesection number 0. Apply Theorem 4.1 to the new 2-sphere. • 
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