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OSCILLATION CRITERIA FOR CERTAIN SECOND ORDER
NONLINEAR DIFFERENCE EQUATIONS

S.R. GRACE AND H.A. EL-MORSHEDY

This paper is concerned with nonlinear difference equations of the form

A2zn_i + anf{xn) = 0, n = l ,2, . . .

where A is the forward difference operator defined by Aun_i = un — un- i , A2un_[ =
A(Aun_i) and {on} is a real sequence which is not assumed to be nonnegative. The
function / is such that uf(u) > 0 for all u ^ 0 and f(u) — f(v) = g(u,v)(u — v), for
all u , « / 0 , and for some nonnegative function g. Our results are not only new but
also improve and generalise some recent oscillation criteria. Examples illustrating the
importance of our main results are also given.

1. INTRODUCTION

In this paper we consider the second order difference equation

(£) A2xn_! + aj{xn) = 0, n = l , 2 , . . .

where A denotes the forward difference operator, that is, Aun_i = un — un_i, A2un_i =
A(Aun_i) and {an} is a sequence of not necessarily nonnegative real numbers. The
function / : R -> R is continuous such that uf(u) > 0 for u ^ 0. Throughout this work we
consider f(u) - f(v) = g(u, v)(u - v), for all u, v ^ 0, and for some nonnegative function
g if nothing else is assumed. The nonnegativity of g means that / is nondecreasing on
(0, oo) and (—oo, 0). The function g will be assumed to satisfy either one of the following
conditions:
(1.1) 9(u,v)^ A > 0, for all u,v^0

or
(1.2) inf g(u,v)>0, for some A > 0.
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By the Mean Value Theorem, it is easy to see that if the function / is differentiate on
R then (1.1) and (1.2) will be equivalent to

/ ' ( u ) ^ A > 0 for all u ± 0, ( ' = d/du)

and

inf f'(u) > 0 for some A > 0

respectively. We observe, also, that the class of all functions satisfying (1.2) contains not
only those functions which satisfy (1.1) but also all superlinear functions; / is called a
superlinear function if

r°° 1 A"00 1
(1.3) / -r—r < oo and / ——- < oo for every e > 0.

Je f(x) J-e f(X)

By a solution of equation (E), we mean a real sequence {xn} which satisfies the
equation (E) for n = 0 , 1 , . . . . A nontrivial solution {xn} of equation (E) is said to be
nonoscillatory if there exists N ^ 0 such that a;n+ixn > 0 for all n ^ N, otherwise it is
called oscillatory. Equation (E) is oscillatory if all of its solutions are oscillatory. Before
proceeding further, we remark that the letters i, J, k, n, Nly N2 and N below always
denote positive integer variables.

A prototype of equation (E) is the equation

(£i) A 2 x n _ 1 +o n |x n | ' / sgna ; n =0 , v > 0, n = l , 2 , . . .

which is a discrete version of the well-known Emden-Fowler equation

(E2) x"(t) + a(t)\x(t)\"sgnx{t) = Q, v > 0, t > 0.

Hooker and Patula [5] obtained many results regarding the oscillatory properties of
equation (Ei) which correspond to certain discrete analogues of (E2). For v > 1, that is,
in the superlinear case, they have proved the following discrete version of the well-known
Atkinson's criterion [1]:

THEOREM A. [5, Theorem 4.1] Suppose that v > 1 and an ^ 0 eventually. Then

equation (Ei) is oscillatory if and only if

(1.4)
i=N

For equations of type (E) when (1.1) is satisfied and {an} is not assumed to be

nonnegative, Thandapani et aliter [13] proved the following result:

THEOREM B. [13, Theorem 3] In addition to (1.1), suppose that

oo

(1.5) Yl a> ex i s t s>
i=N
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and
1 °°

(1.6) liirnnf A(n) > - - where A(n) = 52 a i -

i=n

°° A2 (i)
117) S I ^where A+(n) = m a x | A ( n ) , O | , then equation (E) is oscillatory.

The previous result completes, partially, an earlier result by Szmanda [11] (see

also [13, 15]) given by the following:

THEOREM C. [11] Assume that f is a nondecreasing function on R. Then equation

(E) is oscillatory if

(1.8) f > = oo.
i=N

The following result for equation (E) in the superlinear case has been established

recently in [15]:

THEOREM D . [15, Theorem 3.1] Assume that (1.3) and (1.5) are satisfied. If

n oo

(1.9) lim V V a; = oo,
k=Ni=k+l

then equation (E) is oscillatory.

Theorem D does not assume any restriction on the sign of an. But this theorem fails

in a large class of equations because of condition (1.5).

It follows from the above introduction that the problem of finding oscillation criteria

that avoid condition (1.5), as well as the nonnegativity assumption of an, is of particular

interest. This problem was investigated in [3] for equation (E) when f(x) = x; the

aim of the present paper is to obtain some of those criteria, when either (1.1) or (1.2)

is satisfied. Our main result of section 2 (that is, Theorem 2.1) is motivated by an

open problem raised in [13] to impose a condition on A(n) (defined by (1.6)) which is

independent of A, while the main result of section 3 (that is, Theorem 3.3) is motivated by

Theorem A and Theorem B. The rest of our results improve and generalise some recent

oscillation criteria in [3, 13]. We also note that discrete analogues of some results for

differential equations in [2, 4, 6, 7, 9, 10] are presented.

2. M A I N R E S U L T S

THEOREM 2 . 1 . Assume that (1.1) holds and there exists a sequence {<j>n} satis-

fying
n

(2.1) liminf 52 a« ^ <Pwi for every large N
i=N
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and

where (/>+ = max{<?!>n,0}, A is given by (1.1). Then equation (E) is oscillatory.

PROOF: Suppose that {xn} is a nonoscillatory solution of equation (E); without
loss of generality we assume that xn is eventually positive. Then, xn > 0, n ̂  N for
some N ^ 0. Define Wn as follows:

/^n-i;

Using equation (E),

(2.3) f{xn-i)f(xn)

Consequently

lo A\ w w S- n V (Axi-1)
2g(xi.1,xi)(2.4) Wn+l - WN+1 = - 2 - * " 1 , f/T u f r ^ •

i=Af+l i=N+l J\xi-\)l\xi)

But
) ff

. —r—^ ̂  0, for all n ^ AT + 1,
/(xn_i)/(xn)

implies that we have either

or

(2-6 2 ^ 77 777—T <

Assume that (2.5) holds. Then (2.4) implies

(2.7) UmW^-oo.

On the other hand, since f(u) — f(v) = g(u, v)(u — v) for all u , « ^ 0 , }{xn) — f{xn-\)

g(xn,xn-x)&.xn-i for all n ^ N -f 1 which in view of (1.1) yields

f(xn)

/(In)

f{xn-i)g{xn,xn-i) A

(2.8) >-\, n^N + l.
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Clearly, (2.8) contradicts (2.7). Therefore (2.5) can not hold and we consider now (2.6)

which implies that
2

lim
"->0° f{xn-i)f(xn)

or equivalently

(2.9) lim ^ g ( * i f f . ) / ( »
f(xn)

We have two possible cases for W%; either limsup W% = M > 0 or lim W? = 0. Suppose
n-ioo n-«x>

the first case holds. Then there exists a subsequence {ft*} such that n^ —> oo as A; —> oo
and lim Wn

2
t = M. Since g(xn,xn-.i) > A > 0 for all n ^ TV + 1 (due to (1.1)); (2.9)

yields

lim ."* = 0.

Then an intger K can be chosen so large that

(2.10) f(xnk-i) < f{xnk) for all k>K.

From the nondecreasing nature of / on (0,oo); (2.10) implies that xnk > i n t _ i , k ^ K
(that is, Axnfc_i > 0, k ^ K) which in turn implies that wnic > 0 for all k ^ K. Let
Ki ^ K be an integer such that n* > TV + 1 for all k ̂  K\. Then replacing n with n t in
(2.4) we obtain

W -
nk ~ WN+l -~ i=N+l i=N+l J\xi-l)

or

+ "i=7M-l ' i=W+l / (^- l ) / (^ i )

Taking the limit inferior of the above inequality as k —> oo,

(2 11) 14^ ̂  (b ~\~ / ^> ^

^2On the other hand, if W% -> 0 as n -> oo, then Wn -> 0 as n -> oo. So, by taking the
limit superior of both sides of (2.4), we get that (2.11) holds in this case, too. Next, let
a subsequence {ik}^i be defined by

0} and ifc -> oo as A; —>• oo.

Using (2.11),

(2.12) Wik2 4>ik,

Also, the second inequality in (2.8) yields

f{xik)
> „ „ , , , ik>N + l.
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From the above inequality, (2.12) and the fact that the function H(x) = x2/(Xx + 1) is
increasing on [0,oo), we have

(2-13)

In view of (2.6) and (2.13), we get

which contradicts (2.2). Thus equation (E) can not have a nonoscillatory solution under
our assumptions. This completes the prooof. D

We note that if either

is convergent, then lim </>+ = 0. Hence, there exists a real number M > 0 such that
0+ ^ M for all n ^ 1 and

which, by comparison, yields that the convergence of any one of the above two series
implies that of the other. The following result is a consequence of Theorem 2.1 and the
above analysis:

COROLLARY 2 . 1 . In addition to the conditions (1.1) and (2.1), assume that

(2.14)

Then equation (E) is oscillatory.

EXAMPLE 2.1. Consider the equation (E) in which

» 2n2 + 8n + 7
(n + l)(n + 2) ( n .

it is found that
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then ^ N

liminf E «i = -1 + (-1)^ + fc^T + —.rrr, N^l.
n>oo ^ \ ' N+l (N+l)1/2

Accordingly, there exists a sequence {</>«} defined by

and satisfying (2.1). Furthermore

1 1 . ,
H Tji " n 1S a n e v e n integer

= < n
0 otherwise.

Therefore

In view of Corollary 2.1, equation (£ ) with the above {an} is oscillatory. Moreover

one can see that none of the results in [5, 1 1 , 12, 13 , 14, 15] can be used to examine

the oscillation of (E) in this case.

It follows from the proof of Theorem 2.1 that we can derive the next result:

COROLLARY 2 . 2 . Suppose that (1.1) is satisfied and furthermore

00

(2.15) limsup E a > — °°-
n-»oo

Then equation (E) is oscillatory.

P R O O F : Proceeding as in the proof of Theorem 2.1, we obtain (2.4) and (2.8). But,

(2.4) and (2.15) imply that liminf Wn — - o o which contradicts (2.8). This completes
n—>oo

the proof. D

E X A M P L E 2.2. Consider the following difference equation

A 2 x n _! + [ l + ansin(7r(n-

where a is any real number. We shall apply Corollary 2.2 to show that the above equation

is oscillatory. Clearly, (1.1) is satisfied with A = 1. Furthermore

which leads to
n

limsup E

--j= cos(7r(2n - l)/4)) + | sin (™/2)

- | sin(7r(JV - l)/2) + N ( -1 + -2L cos(7r(27V - 3)/4) j ,
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Then (2.15) is satisfied and by Corollary 2.2 we conclude that all solutions of the above

equation are oscillatory. One such solution is {xn} where x2n = 0 and x2n+i ~ (—1)".

n = 0 , 1 , . . . .

REMARK 2.1 . Corollary 2.2 extends and improves [3, Corollary 2.1] to more general

equations. Also, Corollary 2.2 improves Theorem C when condition (1.1) is satisfied.

Furthermore, since

(2.16) limsup —
* n

•\ n k

implies (2.15) then Corollary 2.2 extends the discrete analogue of Wintner's criterion

(2.16) to more general equations (see [3]). Finally, it enables us to obtain certain improve-

ments of discrete analogues of known results for the differential equations, for example,

[7, Corollary 1],

The last result in this section is concerned with the oscillation of equation (E) when

(2.2) fails, that is,

~ * < oo.
^ 1 + X<j>f

In this case, one can define

M») = E >fctn WO +
and

u f^_Z [(M*) + Afc(*)) +

k=n X(ho{k) + Xhi{k)) + 1

where hi(n) will be assumed to obey the following condition:

There exists a positive integer J such that

(2.17) hi(n) exists for z = l ,2 , ...,J and hJ+i(n) = oc.

THEOREM 2 . 2 . Suppose that the conditions (1.1), (2.1) and (2.17) are satisfied.

Then equation (E) is oscillatory.

P R O O F : AS in the proof of Theorem 2.1, one can proceed to obtain (2.11) from

which we get (2.13), that is,

(2.18) T ,7_ ^ l l ^ > AMn).

By using (2.18) in (2.11), we obtain

(2.19) Wn>h0(n)
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From (2.19) together with similar arguments to those implying (2.13), one derives

Repeating this process, we get

hence

£
which contradicts (2.6). This completes the proof. D

REMARK 2.2. Corollary 2.1 and Theorem 2.2 do not require that (1.5) or (1.6) is satisfied.
Therefore, these results improve [13, Theorem 3 and 4], respectively, and answer the open
problem of [13, p.206].

3. FURTHER RESULTS

Suppose that

n

(3.1) liminf Y* at ^ <j)N ^ 0, for every large N.

We show that (3.1) enables us to know more information about the monotonicity of the
nonoscillatory solutions of equation (E). Strictly speaking, we have the following result
which improves the discrete analogue of the well-known result of [2] for the differential
equation

y"(t)+a(t)f(y(t))=0, t>0.

LEMMA 3 . 1 . Assume that f is a nondecreasing function and (3.1) is satisfied. If
{xn} is a nonoscillatory solution of equation (E), then xnAxn > 0 eventually.

PROOF: Suppose that xn is eventually positive. Then there exists an integer N ̂  0,
such that xn > 0 for n ̂  N. Define Wn as in the proof of Theorem 2.1, we obtain (2.3)
from which we get

(3.2) Wn+1 - WN+1 = - | a, - Z f{

If the lemma is not true, then either Axn < 0 eventually or Axn oscillates. Assume that
n

Axn < 0 eventually; then in view of (3.1) one can choose N\~£ N such that Z) a; ^ 0

and Axn < 0 for all n ̂  A'] - 1. But by Abel's transformation [8, p.36] we have

f(k) T. a«' fOT

i=Ni i=Ni
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n

hence £ Q-ifixi) ^ 0 for all n> Nt. Then equation (E) implies that
z=/V,

Axn ^ A x ^ - i < 0 for all n> Ni\

summing this inequality twice from TVt + 1 to n, then taking the limit as n -» oo, we

obtain that xn -> -oo as n —• oo which contradicts the positivity assumption of xn.

Suppose that Axn oscillates. Then it is possible to choose N2 ^ N such that

WN2+l ^ 0. Hence, (3.2) implies that

W , < _ y o._ f A*J

Taking the limit superior as n —> oo of the above inequality, we get lim sup Wn+i < 0
n—>oo

and since Wn — Ax n _ i / / ( i n _ i ) , Axn must be eventually negative which contradicts the

oscillatory assumption of Axn. If xn is eventually negative, similar arguments imply a

contradiction, too. This completes the proof. D
EXAMPLE 3.1. Consider equation (E\) with

Since an > 0 for all n = 1,2,..., (3.1) is satisfied. According to Lemma 3.1, any
nonoscillatory solution of (Ey), say {xn}, with the above {an} will satisfy xnAxn > 0
eventually. The reader can see easily that xn = n/(n + 1) is one such solution.

THEOREM 3 . 1 . Suppose that f is a nondecreasing function on R and (2.15),

(3.1) are satisfied. Then equation (E) is oscillatory.

PROOF: Assume the contrary. Then there exists a nonoscillatory solution {xn} of

equation {E) which can be assumed to be eventually positive. By Lemma 3.1, Axn is

eventually positive. Now, proceeding as in the proof of Theorem 2.1, we obtain (2.4)

which implies, in view of (2.15), that liminf Wn = —oo and hence Axn can not be

eventually positive. This contradiction completes the proof. D

REMARK 3.1. Theorem 3.1 is a discrete analogue of [10, Theorem 2].

Now, if (3.1) holds and {xn} is a nonoscillatory solution of equation (E), Lemma
3.1 leads to the existence of a positive real number A and an integer N > 0 such that
| i n | ^ A for all n ^ TV. So if (1.2) holds, one can find a real number y, > 0 such that

(3.3) 9{xn-uxn) > n for all n> N.

Since in the proofs of all the rsults in Section 2 the left hand side of (1.1) is calculated
along the nonoscillatory solutions of (E), one can use (3.3) rather than (1.1) in these
proofs provided that (1.2) and (3.1) are satisfied. In this case, new oscillation criteria
can be obtained, from those of Section 2, that require / to satisfy (1.2), which is weaker
than (1.1). In particular, from Corollary 2.1 we get the following result:
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THEOREM 3 . 2 . Suppose that the conditions (1.2) and (3.1) are satisfied. If

(3.4) E ( 0 i ) 2 = oo,

then equation (E) is oscillatory.

THEOREM 3 . 3 . Suppose that f is a nonodecreasing function on R and (1.3),
(1.4) are satisfied. Then equation (E) is oscillatory.

PROOF: Let {xn} be a nonoscillatory solution of equation (E). As usual, assume

that xn is eventually positive, that is xn > 0, n ̂  N for some N ̂  0. Then Axn is either

eventually negative or eventually positive or oscillatory.

Suppose that Axn is eventually negative. In view of (1.4), one can find Ni > N such

that
n

^2 iai ̂  0) a n d Axn_! < 0, for all n ̂  N\.
i=Nt

By Abel's transformation, we obtain

n n n k

53 iaif(xi) = f(xn+l) Y^ ia< ~ Zl 52
i=Ni i=Ni i=Ni i=Ni

n

then equation (E) implies £ iA2x^i ^ 0. But in view of [5, Lemma 2.2(b)], we have

n

i=Ni

We let
n

un - xn - xNl and ipn = - 52 «A2Xi_i - NiAxNl-i, for all n ̂  N\,

and get

Un 1pn

Aun h2— = 0, n^ Ni, uN. — 0.
n n

Then [14, Lemma 3.1] implies that

where ^n > —NiAx^^i > 0 for n ̂  iVi. Hence

As n —> oo the above inequality implies that un —> —oo, which contradicts the positivity
assumption of xn. Thus, Axn can not be eventually negative. Therefore, there exists a
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subsequence {nk} such that nk -> oo as k —> oo , and Axnt > 0, nk ^ Ar
2 ^ N. Using

Abel's transformation again, we get

n i n -V- 1 A T l , n ,'

/•(•T.\ t - 1 ~ fCT , ̂  a'n v 2""" / / / T ~\ 2 ^ * 77XTT"

By equation (E),

or

n + 1 . . . . , , Aa;
-Axn - Â 2 + 1

Consider the above relation with n = njt; we get

n* + l , > &xNl ^
+ 2 ,

and this implies

(3.5)

Define u(i) = xn + (t - n)Axn, n < t < n + 1 and n ^ N2 + I- It is easy to see that
u'{t) = Axn (u'(t) = du{t)/dt). So if Axn ^ 0 then xn ^ u(t) ^ xn+i for n ^ t < n + 1
and the nondecreasing nature of the function / yields

/ ( i n X / ( u ( t ) ) < / ( a w O , n ^ i ^ n + 1 and n > W2 + 1,

which implies that

(3.6) xn " ^

On the other hand, if Axn < 0; xn + 1 ^ u(t) ^ xn and /(xn + 1) ^ /(w(i)) ^ / (xn)
for n < i ^ n + 1. Therefore, (3.6) holds also for this case. Thus (3.6) is true for all
n ^ ^ + l. Now, by (3.5) and (3.6), we have

*

s£ / -rrr < oo.
f(u) ^ Ju{N2+l) f(u)
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Taking the limit as k —> oo in the above inequality, we obtain

du

f(u)
< 00

which contradicts (1.4). Thus equation (E) can not have a nonoscillatory solution pro-
vided that (1.3) and (1.4) are satisfied, which is our desired conclusion. D

EXAMPLE 3.2. Consider the following equation

In this case, the function f(x) = |x|"sgna; satisfies (1.3). Furthermore, since an =
1 + 2(-l)n+1, we find that

a{ = n(n + l)/2 + (-l)B(2n + l)/2 - [N[N -
i=N

oo
Consequently, Y. ich — oo (that is, (1.4) is satisfied); by Theorem 3.3 we conclude that all

i=N

solutions of the above equation are oscillatory. One such solution is {xn} where %in — 0,
x2n+i = ( - l )"(2/3)1 / ("-1 ) for all n = 0 , 1 , . . . .
REMARK 3.2. Theorem 3.3 is sharp in the sense that when an ^ 0, eventually, (1.4)
will become necessary and sufficient condition for the oscillation of equation (E) as in
Theorem A (see also [12, Theorem 1]). Since the sequence {an} is not assumed to
be eventually nonnegative, Theorem 3.3 improves the discrete analogue of Onose [9].
Finally, the continuous analogue of Theorem 3.3 can be found in [4, 6].
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