
Canad. Math. Bull. Vol. 57 (4), 2014 pp. 765–779
http://dx.doi.org/10.4153/CMB-2013-047-7
c©Canadian Mathematical Society 2014

Helicoidal Minimal Surfaces in a
Finsler Space of Randers Type

Rosângela Maria da Silva and Keti Tenenblat

Abstract. We consider the Finsler space (M
3
, F) obtained by perturbing the Euclidean metric of R3

by a rotation. It is the open region of R3 bounded by a cylinder with a Randers metric. Using the
Busemann–Hausdorff volume form, we obtain the differential equation that characterizes the heli-

coidal minimal surfaces in M
3
. We prove that the helicoid is a minimal surface in M

3
only if the axis

of the helicoid is the axis of the cylinder. Moreover, we prove that, in the Randers space (M
3
, F), the

only minimal surfaces in the Bonnet family with fixed axis Ox3 are the catenoids and the helicoids.

1 Introduction

The development of the theory of minimal surfaces in Finsler spaces started about
ten years ago, in contrast with the theory of minimal surfaces in Riemannian spaces,
which has been studied for many years with contributions from many authors. In
1998, Z. Shen [6] studied submanifolds of a Finsler space and he introduced the
notion of a mean curvature form Hϕ for an immersion ϕ of a manifold into a Finsler
space using the Busemann–Hausdorff volume form. An immersion ϕ is said to be
minimal if Hϕ ≡ 0. In 2003, M. Souza and the second author [11] presented the first
nontrivial examples of minimal surfaces in the Randers space obtained by perturbing
the Euclidean metric in R3 by a translation. In 2004, they obtained a Bernstein type
theorem for this space in collaboration with J. Spruck [10]. They showed that the
partial differential equation that describes a minimal graph is elliptic when the norm
of the translation b is such that 0 ≤ b <

√
3/3. However, in contrast with the

Riemannian case, the equation is not elliptic for
√

3/3 ≤ b < 1. Moreover, minimal
surfaces in Finsler spaces may have isolated singularities.

Considering the same Randers space, He and Shen [5] proved a Bernstein type
theorem for minimal graphs using the Holmes–Thompson volume form and Wu
[12] studied surfaces that are minimal with respect to both the Busemann–Hausdorff
and the Holmes–Thompson volume forms. One should mention that He and Shen
also proved that the Holmes–Thompson volume form for a Randers metric F = α+β
is just the volume form of the Riemannian metric α. Other interesting results on
minimal surfaces in Finsler spaces were also obtained by Cui and Shen [3, 4].
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In [9], we studied minimal surfaces in the Finsler space, (M
3
, F), generated by

the Euclidean metric of R3 perturbed by a rotation. It is the open region of R3

bounded by a cylinder of radius 1 with a Randers metric [2] (see also [9]). One
should point out that the ambient space (M

3
, F) is a Randers manifold with zero flag

curvature. This fact was proved by Shen in [8]. Using the Busemann–Hausdorff vol-
ume form, in [9] we proved that the only minimal surfaces of rotation in this space
are the catenoids contained in M

3
, generated by the rotation of a catenary around

the axis of the cylinder. There are no minimal surfaces of rotation whose rotational
axis is different from the axis of the cylinder. We also obtained the partial differen-
tial equations that characterizes the minimal surfaces in M

3
that are the graph of a

function. We proved that the only planar regions that are minimal in (M
3
, F) are the

open disks bounded by the parallels of the cylinder and the strips of planes generated
by the intersection of M

3
with the planes of R3 that contain the cylinder axis.

In this paper, we study minimal helicoidal surfaces in (M
3
, F). In Section 3, we

obtain the differential equation that charaterizes the helicoidal minimal surfaces in
(M

3
, F), with respect to the Busemann-Hausdorff volume form (Theorem 3.3). We

show that the helicoid is a minimal surface in M
3

(Corollary 3.4), and that a helicoid
is a minimal surface in M

3
, only if the axis of the helicoid is the axis of the cylinder

(Theorem 3.5). In Section 4, (Theorem 4.3) we show that the only minimal surfaces
in the one-parameter family of surfaces called the Bonnet family, with the fixed axis
of the cylindrical region (M

3
F), are the catenoids and the helicoids.

2 Preliminaries

Let M be a C∞ n-dimensional manifold. A point of the tangent bundle TM will be
denoted by (x, y), where x ∈ M, y ∈ TxM. If we consider local coordinates x1, . . . , xn

on M, then ∂/∂xi and dxi will be bases for TxM and T∗x M respectively.
A Finsler metric on M is a function F : TM→[0,∞) that satisfies the following

conditions: (Regularity) F ∈ C∞ in TM \ {0}; (Positive homogeneity) F(x, t y) =
tF(x, y), ∀t > 0, (x, y) ∈ TM; (Strong convexity) g = (gi j(x, y)) = ( 1

2 [F2(x, y)]yi y j )
is positive definite at each point of TM \ {0}, where y =

∑
yi∂/∂xi . One can show

that this property is independent of the local coordinates. Then (M, F) is said to be a
Finsler manifold.

An interesting class of Finsler metrics on M are the Randers metrics. Such a metric
is given by

F(x, y) = α(x, y) + β(x, y),(2.1)

where

α(x, y) :=
√

ai j(x)yi y j , β(x, y) := bk(x)yk,(2.2)

and ai j are the components of a Riemannian metric, ai j denotes its inverse and bk are
the components of a 1-form β, whose norm

(2.3) b =
√

ai jbib j ,

satisfies 0 ≤ b < 1. Then (M, F) is said to be a Randers space.
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Let (Mn, F) be an oriented Finsler manifold. For a fixed point x ∈ M, let {ei |x}n
i=1

be an arbitrary oriented basis of TxM and {θi}n
i=1, its dual basis. Let

(2.4) Dn
x :=

{
(yi) ∈ Rn : F(x, yiei) ≤ 1

}
.

The Busemann–Hausdorff volume form of a Finsler metric F is defined as

dVF := σF(x)θ1 ∧ · · · ∧ θn, where σF(x) =
vol(Bn)

vol(Dn
x)
,

Bn is the unit ball of Rn and vol is the Euclidean volume.

Proposition 2.1 ([7]) Let (Mn, F) be a Randers space, where the metric F = α + β
is given by (2.1)–(2.2) and the norm of β, b = ‖β‖ < 1, is defined by (2.3). Then the
volume form is given by

dVF =
(

1− ‖β‖2
) n+1

2

√
det
(

ai j(x)
)

dx1 · · · dxn.

In what follows we will use the following convention for indices: greek letters γ,
τ , η, ξ, . . . for indices from 1 to n + 1, latin letters i, j, k, l, . . . for indices from 1 to
n. We will also use the Einstein convention for repeated indices.

We now consider an immersion ϕ : Mn → (M̃n+1, F̃), where F̃ is a Finsler metric.
Then the induced metric on M, given by F := ϕ∗F̃, is also a Finsler metric (see [6])
and the volume element induced on (M, F) by the immersion is defined by dVF =

=(x, z)dx, where =(x, z) := vol(Bn)
vol(Dn

x ) , x ∈ M, z = (zηi ), with

(2.5) zηi :=
∂ϕη

∂xi
,

Bn is the unit ball in Rn, vol is the Euclidean volume,

Dn
x = {(y1, . . . , yn) ∈ Rn|F(x, yizηi ẽη) ≤ 1}

and ẽη is a local frame for M̃n+1. We introduce the following notation

(2.6) x̃η := ϕη(x).

The concept of mean curvature form Hϕ of the immersionϕwas introduced by Z.
Shen [6] as follows. Consider a variation of an immersion ϕt : M → M̃, t ∈ (−ε, ε),
such that ϕt = ϕ0 away from a compact set Ω. By considering the variational vector
field X̃ = ∂ϕt/∂t|t=0 one defines

ψx(X̃) =
d

dt

[
ln =(ϕt (x),∇ϕt (x))

]
t=0
.

Let ϕ = ϕ0, F = ϕ∗F̃ and V (t) = vol(Ω, ϕ∗t F̃), then one can show that

V ′(0) =

∫
M

[
ψx(X̃)− div (P(X̃)|x)

]
dVF,

where P(X̃) = 1
=(z)

∂=
∂zηi

(z)X̃ηei .
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Now let ϕ : M → (M̃m, F̃) be an immersion. Given any vector field X̃ of M̃ along
M, there exists a variation ϕt of ϕ, whose variational vector filed is X̃. The mean
curvature form of ϕ, Hϕ, is a 1-form on M̃ restricted to ϕ(M) defined by

Hϕ(X̃x) = ψx(X̃)− div (P(X̃))|x.

In local coordinates, considering the basis ∂/∂xi and ∂/∂x̃η one has

ψx(X̃) =
1

=

( ∂=
∂x̃η

X̃η +
∂=
∂zηi

∂X̃η

∂xi

)
, P(X̃) =

1

=
∂=
∂zηi

X̃η ∂

∂xi
.

Hence, Hϕ(X̃) is independent of the variation and it is given by

(2.7) Hϕ(X̃) =
1

=

{ ∂=
∂x̃η
− ∂2=
∂x̃ε∂zηi

∂ϕε

∂xi
− ∂2=
∂zηi ∂zεj

∂2ϕε

∂xi∂x j

}
X̃η.

One can show that the mean curvature form has the following properties: a) Hϕ(X̃x)
depends linearly on X̃x at each point x ∈ M; b) Hϕ(ṽ) = 0, ∀ṽ = ϕ∗(v), v ∈
TxM, x ∈ M.

An immersion ϕ is said to be minimal if Hϕ(X̃) = 0,∀X̃ ∈ Tϕ(x)M̃. It follows
from the properties a) and b) that, in order to verify that an immersion is minimal,
it is sufficient to show that Hϕ(X̃) = 0, for a vector field X̃ such that ∀x ∈ M, X̃x ∈
Tϕ(x)M̃ \ Tϕ(x)ϕ(M).

The Zermelo navigation problem consists in choosing the paths that go from one
point to another, in the least possible time, on a Riemannian manifold (M, h) un-
der the influence of a wind or current that is represented by a vector field W on M
whose length satisfies |W | :=

√
h(W,W ) < 1. The solutions of such a problem are

geodesics of a Finsler metric of Randers type that is non-Riemannian except when
W = 0. Conversely, one shows that any Randers metric appears as a solution of
Zermelo’s navigation problem on an appropriate Riemannian manifold, under the
influence of a wind W on M, with |W | < 1. Therefore, a Randers space can be con-
sidered to be a perturbation of a Riemannian space, and the Randers metric is given
by (see [2])

F(y) =
1

λ

(√
[h(W, y)]2 + |y|2λ− h(W, y)

)
, λ = 1− |W |2.

Let h be the Euclidean metric of R3 with coordinates (x1, x2, x3). We consider the
Randers space obtained by perturbing h with by the rotation

(2.8) W := (x2,−x1, 0), where (x1)2 + (x2)2 < 1.

We then get a Finsler metric of Randers type F = α + β, defined on an open region
of R3 bounded by a cylinder of radius 1 around the axis Ox3, i.e.,

(2.9) M
3

=
{

x ∈ R3;
2∑

i=1

(xi)2 < 1
}
,
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where

α(x, y) =
1

1−
∑2

i=1(xi)2

√
(−x2 y1 + x1 y2)2 +

[ 3∑
µ=1

(yµ)2
][

1−
2∑

i=1
(xi)2

]
,(2.10)

β(x, y) =
−x2 y1 + x1 y2

1−
∑2

i=1(xi)2
.(2.11)

This Randers manifold has zero flag curvature (see [2]) and

(2.12) (aµη) =



1− (x1)2

[1−
2∑

i=1
(xi)2]2

−x1x2

[1−
2∑

i=1
(xi)2]2

0

−x1x2

[1−
2∑

i=1
(xi)2]2

1− (x2)2

[1−
2∑

i=1
(xi)2]2

0

0 0
1

1−
2∑

i=1
(xi)2


.

We consider an immersion ϕ : M2 → (M
3
, F). The Finsler metric F induced on

M2 by ϕ is also of Randers type (see [1]) and is given by F = α + β, where for
(x, y) ∈ TM2,

α(x, y) =
1

λ

√
[−x̃2z1

i yi + x̃1z2
i yi]2 +

[ 3∑
µ=1

zµi zµj yi y j
]
λ,(2.13)

β(x, y) =
−x̃2z1

i yi + x̃1z2
i yi

λ
,(2.14)

where we have introduced the notation

(2.15) λ := 1− |W |2 = 1−
2∑

k=1

(x̃k)2.

Since β(x, y) = bi(x)yi , it follows from (2.14) that

(2.16) bi(x) = − 1

λ
(z1

i x̃2 − z2
i x̃1).

We now denote by A(x) the 2 × 2 matrix given by the restriction of (2.12) to the
immersion, i.e., Ai j := aµηzµi zηj . Then

(2.17) Ai j =
1

λ2

[ 2∑
k=1

zk
i zk

j + λz3
i z3

j −
2∑

k,l=1

zk
i zl

j x̃
kx̃l
]

=
1

λ

3∑
µ=1

zµi zµj + bib j ,

where bi = bi(x) is given by (2.16).
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We now introduce the notation

Dτν := det

(
zτ1 zν1
zτ2 zν2

)
, τ , ν = 1, 2, 3, τ 6= ν,(2.18)

B :=
∑
τ<ν

(Dτν)2,(2.19)

C :=
2∑

k=1

x̃kDk3.(2.20)

Observe that Dτν = −Dντ .
With this notation (see [9]), we have

det A =
B−C2

λ3
,(2.21)

‖β‖2 =
(1− λ)B−C2

B−C2
.(2.22)

As an immediate consequence of Proposition 2.1 for n = 2, and equations (2.21)
and (2.22), we obtain the volume element for the Randers space (M2, F).

Lemma 2.2 Let ϕ : M2 → (M
3
, F) be an immersion and let F be the induced Ran-

ders metric on M2 given by (2.13) and (2.14). Then the volume element on (M2, F) is
dVF = =(x, z)dx1dx2, where

(2.23) =(x, z) =
B

3
2

B−C2
,

with B and C given by equations (2.19) and (2.20), respectively.

We define a vector field on M2 by N := z1 × z2, where z1 = (zη1 ) and z2 = (zη2 ).
Then we can write

(2.24) N = (D23,D31,D12),

where the equality follows from the notation introduced in (2.18).
The following result provides a differential equation that characterizes the mini-

mal surfaces in the Randers space (M
3
, F).

Theorem 2.3 ([9]) Letϕ : M2 → (M
3
, F) be an immersion in a Randers space, where

F(x, y) = α(x, y) + β(x, y) is given by (2.10) and (2.11). Consider local coordinates
x = (x1, x2) on M2 and let x̃η = ϕη(x) be the coordinate functions of ϕ. Then ϕ is
minimal if and only if

(2.25)

{
2(B + 3C2)

[
2B
( ∂C

∂x̃ε
∂ϕε

∂xi
+
∂C

∂zεj

∂2ϕε

∂xi∂x j

)
−C

∂B

∂zεj

∂2ϕε

∂xi∂x j

] ∂C

∂zηi

+ (B2 − 4BC2 + 3C4)
∂2B

∂zηi ∂zεj

∂2ϕε

∂xi∂x j

}
Nη = 0,

where N = z1 × z2, zi = (zηi ) = ( ∂ϕ
η

∂xi ), and B and C are given by equations (2.19) and
(2.20), respectively.
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We conclude this section with a lemma that will simplify the computation of the
last term of equation (2.25).

Lemma 2.4 ([9]) Consider B given by (2.19). Then

(2.26)
∂2B

∂zηi ∂zεj

∂2ϕε

∂xi∂x j
Nη = 2

3∑
η=1

∑
µ 6=η

(
zµ1
∂Dµη

∂x2
− zµ2

∂Dµη

∂x1

)
Nη.

3 Helicoidal Minimal Surfaces in (M
3
, F)

In this section, we obtain the differential equation that characterizes a helicoidal mi-

nimal surface in the Randers space (M
3
, F).

Consider the immersion ϕ : M2 → (M
3
, F) defined by

(3.1) ϕ(t, θ) := (t cos θ, t sin θ, f (t) + aθ), a ∈ R \ {0}, 0 < t < 1.

This is a helicoidal surface around the axis Ox3. For this immersion, we denote x̃η =
ϕη(x) given in (2.6) and use the notation introduced in (2.5). Then we have

x̃η = δη1t cos θ + δη2t sin θ + δη3

[
f (t) + aθ

]
,(3.2)

zηi = δi1

[
δη1cosθ + δη2 sin θ + δη3 f ′(t)

]
(3.3)

+ δi2

[
−δη1t sin θ + δη2t cos θ + δη3a

]
.

Moreover, from equation (2.18) we get

Dτν =
[
δτ1δν2t + δτ1δν3

(
a cos θ + t f ′(t) sin θ

)
+ δτ2δν3

(
a sin θ − t f ′(t) cos θ

)]
,

τ , ν = 1, 2, 3, τ < ν.

(3.4)

It follows from (2.19) and (2.20) that B and C are given by

(3.5) B = Γ + t2 f ′2(t) and C = at,

where we introduced the notation

(3.6) Γ = a2 + t2.

Remark 3.1 Observe that (see [9])

∂C

∂x̃η
= δηkDk3,(3.7)

∂C

∂zεj
= x̃k

[
δ j1(δεkz3

2 − δε3zk
2) + δ j2(δε3zk

1 − δεkz3
1)
]
.(3.8)

Lemma 3.2 For the immersion ϕ(t, θ) given by (3.1), considering x1 = t, x2 = θ,
we have that

(i)

(3.9)
∂C

∂zηi

∂C

∂x̃ε
∂ϕε

∂xi
Nη = −t2 f ′(t)B,
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(ii)

(3.10)
∂C

∂zεj

∂C

∂zηi

∂2ϕε

∂xi∂x j
Nη = t4 f ′(t)

[
1 + f ′2(t)

]
,

(iii)

(3.11)
∂B

∂zεj

∂C

∂zηi

∂2ϕε

∂xi∂x j
Nη = −2at3 f ′(t)

[
1 + f ′2(t) + t f ′(t) f ′′(t)

]
,

(iv)

(3.12)
∂2B

∂zηi ∂zεj

∂2ϕε

∂xi∂x j
Nη =

[
a2 + Γ + t2 f ′2(t)

]
f ′(t) + Γt f ′′(t),

where Γ is given in (3.6).

Proof (i) Since ∂ϕε

∂xi = zεi , we have that

(3.13)
∂C

∂zηi

∂C

∂x̃ε
∂ϕε

∂xi
Nη =

( ∂C

∂x̃ε
zε1

)( ∂C

∂zη1
Nη
)

+
( ∂C

∂x̃ε
zε2

)( ∂C

∂zη2
Nη
)
.

We will now compute each term on the right-hand side of this equation. Replacing η
by ε in (3.7) and using (3.3) and (3.4), we have

∂C

∂x̃ε
zε1 = δεkDk3zε1 = Dk3zk

1 = a,

and
∂C

∂x̃ε
zε2 = −t2 f ′(t).

Now replacing ε by η and considering j = 1 in (3.8), it follows from (3.3) and (3.4)
that

(3.14)
∂C

∂zη1
Nη = x̃1(z3

2D23 − z1
2D12)− x̃2(z3

2D13 + z2
2D12) = −at2 f ′(t),

and considering j = 2, we get

(3.15)
∂C

∂zη2
Nη = t2[1 + f ′2(t)].

Substituting each term of the right-hand side of (3.13), we conclude the proof of
Lemma 3.2(i).

(ii) Observe that

∂2ϕε

∂xi∂x j
=
∂zεj
∂xi

, x1 = t, and x2 = θ.

Hence,

(3.16)
∂C

∂zεj

∂C

∂zηi

∂2ϕε

∂xi∂x j
Nη =

( ∂C

∂zεj

∂zεj
∂t

)( ∂C

∂zη1
Nη
)

+
( ∂C

∂zεj

∂zεj
∂θ

)( ∂C

∂zη2
Nη
)
.

From (2.20), and from equations (3.2) and (3.4), we have

∂C

∂zεj

∂zεj
∂t

= x̃k ∂Dk3

∂t
= 0.
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Analogously, we get

∂C

∂zεj

∂zεj
∂θ

= t2 f ′(t).

Substituting the last two equations into (3.16), it follows from (3.15) that (3.10)
holds.

(iii) Similarly since ∂2ϕε

∂xi∂x j =
∂zεj
∂xi , x1 = t , and x2 = θ, we have

(3.17)
∂B

∂zεj

∂C

∂zηi

∂2ϕε

∂xi∂x j
Nη =

( ∂B

∂zεj

∂zεj
∂t

)( ∂C

∂zη1
Nη
)

+
( ∂B

∂zεj

∂zεj
∂θ

)( ∂C

∂zη2
Nη
)
.

From (2.19) we get

∂B

∂zεj

∂zεj
∂t

=
∂B

∂t
= 2t

[
1 + f ′2(t) + t f ′(t) f ′′(t)

]
,

where the last equality follows from (3.5).
On the other hand, from (3.5) we can see that B does not depend on θ. Hence,

(3.18)
∂B

∂zεj

∂zεj
∂θ

=
∂B

∂θ
= 0.

Substituting the last two equations and (3.14) into (3.17), we obtain (3.11).
(iv) For this proof, we will use Lemma 2.4 with x1 = t and x2 = θ. It follows

from (3.3) and (3.4) that

∑
µ 6=1

(
zµ1
∂Dµ1

∂θ
− zµ2

∂Dµ1

∂t

)
D23 = t cos θ

[
1− f ′2(t)

]
+ a
[

2 f ′(t) + t f ′′(t)
]

sin θ,

∑
µ 6=2

(
zµ1
∂Dµ2

∂θ
− zµ2

∂Dµ2

∂t

)
D31 = t sin θ

[
1− f ′2(t)

]
− a
[

2 f ′(t) + t f ′′(t)
]

cos, θ

∑
µ 6=3

(
zµ1
∂Dµ3

∂θ
− zµ2

∂Dµ3

∂t

)
D12 = t

[
2 f ′(t) + t f ′′(t)

]
.

Adding the last three equalities, it follows from Lemma 2.4 and (3.5) that equation
(3.12) holds.

The following result provides a differential equation that characterizes the heli-

coidal minimal surfaces in the Randers space (M
3
, F).

Theorem 3.3 Let (M
3
, F = α + β) be the Randers space given by the open region of

R3 bounded by the cylinder of radius 1 around the axis Ox3, where α and β are defined
by (2.10) and (2.11). Then the helicoidal surface ϕ(t, θ) = (t cos θ, t sin θ, f (t) + aθ),
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where a ∈ R \ {0} and 0 < t < 1, is minimal if and only if

(3.19)
{

[Γ(Γ + a2)− 4a2t2(Γ + 2a2)]Γ− 3a4t4(2Γ− 3t2)
}

f ′(t)

+
[

(3Γ + 2a2 − 8a2t2)Γ + a4t2(3t2 − 8)
]

t2 f ′3(t)

+
[

(3Γ + a2(1− 4t2)
]

t4 f ′5(t) + t6 f ′7(t)

+ 2[Γ2 + 6a4t4]t3 f ′2(t) f ′′(t) + (Γ + 4a2t2)t5 f ′4(t) f ′′(t)

+ (a2t2 − Γ)(3a2t2 − Γ)t f ′′(t) = 0,

where Γ is given in (3.6).

Proof It follows from Theorem 2.3 that ϕ is minimal if and only if for any t and θ,{
2(B + 3C2)

[
2B
( ∂C

∂x̃ε
∂ϕε

∂xi
+
∂C

∂zεj

∂2ϕε

∂xi∂x j

)
−C

∂B

∂zεj

∂2ϕε

∂xi∂x j

] ∂C

∂zηi

+ (B2 − 4BC2 + 3C4)
∂2B

∂zηi ∂zεj

∂2ϕε

∂xi∂x j

}
Nη = 0.

From (3.5) we obtain

B + 3C2 = Γ +
[

3a2 + f ′2(t)
]

t2,(3.20)

B2 − 4BC2 + 3C4 = Γ2 +
[

(3a2t2 − 4Γ)a2(3.21)

+ 2(Γ− 2a2t2) f ′2(t) + t2 f ′4(t)
]

t2.

Therefore, substituting equations (3.5), (3.20), (3.21), and (3.9)–(3.12) given in
Lemma 3.2 in the above expression, we conclude that (3.19) holds.

As an immediate consequence of this result we obtain the following corollary.

Corollary 3.4 Let (M
3
, F = α + β) be the Randers space given by the open region of

R3 bounded by the cylinder of radius 1 around the axis Ox3, with α and β given, respec-
tively, by (2.10) and (2.11). Then the helicoids given by φ(t, θ) = (t cos θ, t sin θ, aθ),

where a ∈ R \ {0} and 0 < t < 1 are minimal surfaces in (M
3
, F).

Now, we want to show that if the axis of the helicoid is different from the axis of
the cylinder, i.e., axis Ox3, then the helicoid is not a minimal surface in (M

3
, F).

Theorem 3.5 Let (M
3
, F = α + β) be the Randers space given by the open region of

R3 bounded by the cylinder of radius 1 around the axis Ox3, where α and β are given

by (2.10) and (2.11). The helicoid is a minimal surface in (M
3
, F) only if the axis of the

helicoid is the axis of the cylinder.

Before we prove Theorem 3.5, we will obtain two lemmas. We start observing that
if M is an orthogonal matrix such that detM = 1, then the cofactor matrix is

(3.22) M̃ = M.
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A helicoid in (M
3
, F) with any axis can be locally decribed by

(3.23) ζ(t, θ) := (t cos θ, t sin θ, aθ)M, a ∈ R \ {0}, 0 < t < 1,

where M is a 3 × 3 orthogonal matrix. Without loss of generality, we may consider
detM = 1.

Remark 3.6 For the immersion ζ(t, θ), the elements of the matrix M will be de-
noted by mµη. Then

x̃η = t
[

m1η cos θ + m2η sin θ
]

+ m3ηaθ,(3.24)

zηi = δi1

[
m1η cos θ + m2η sin θ

]
(3.25)

+ δi2

[
t(−m1η sin θ + m2η cos θ) + m3ηa

]
.

Moreover, from (2.18) and (3.25) we have that

(3.26)

D12 = a[m13 sin θ −m23 cos θ] + t m33,

D13 = a[−m12 sin θ + m22 cos θ]− t m32,

D23 = a[m11 sin θ −m21 cos θ] + t m31.

From equations (2.24) and (3.26), we have that the vector field N is given by

N = (a sin θ,−a cos θ, t)M.

Now using equations (2.19), (2.20), (3.22), (3.24), and (3.26), a straightforward
computation shows that B and C are given as follows.

Lemma 3.7 Considering the immersion ζ(t, θ) given by (3.23), the functions B and
C defined by (2.19) and (2.20) are given by

B = a2 + t2,(3.27)

C = at m33 + t2(m23 cos θ −m13 sin θ)− a2θ(m23 sin θ + m13 cos θ).(3.28)

By using computations entirely analogous to those in Lemma 3.2 and systemati-
cally using the relation (3.22) we can verify the following result.

Lemma 3.8 For the immersion ζ(t, θ) given by (3.23), we have that

(i)

(3.29)
∂C

∂zηi

∂C

∂x̃ε
∂ζε

∂xi
Nη = B

{
m33

[
a2θ(−m13 sin θ+m23 cos θ)−t2(m13 cos θ+m23 sin θ)

]
− at(m13 cos θ + m23 sin θ)(−m23 cos θ + m13 sin θ) + atθ(1−m2

33)
}
,

(ii)

∂C

∂zεj

∂C

∂zηi

∂2ζε

∂xi∂x j
Nη = aθt(−m13 sin θ + m23 cos θ)

[
(B + a2)(−m13 sin θ + m23 cos θ)

−atm33 + a2θ(m13 cos θ + m23 sin θ)
]
,

(3.30)
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(iii)

(3.31)
∂B

∂zεj

∂C

∂zηi

∂2ζε

∂xi∂x j
Nη = 2Baθt(−m13 sin θ + m23 cos θ),

(iv)

(3.32)
∂2B

∂zηi ∂zεj

∂2ζε

∂xi∂x j
Nη = 0,

where B and C are given by (3.27) and (3.28), respectively.

Proof of Theorem 3.5 We will prove that a helicoid is not a minimal surface in

(M
3
, F) if the axis of the helicoid is different from the axis of the cylinder. A heli-

coid around an axis different from Ox3 can be locally described by the immersion
ζ(t, θ) = φ(t, θ)M, where φ(t, θ) = (t cos θ, t sin θ, aθ) is a helicoid around Ox3 and
M = (mµη) is a 3× 3 matrix, such that detM = 1.

It follows from Theorem 2.3 that ζ is minimal if and only if for any t and θ,

(3.33) 2(B + 3C2)
{

2B
[
P1(t, θ) + P2(t, θ)

]
−CP3(t, θ)

}
+ (B2 − 4BC2 + 3C4)P4(t, θ) = 0,

where B and C are given by (3.27) and (3.28), and we are denoting byP1(t, θ)-P4(t, θ)
the following expressions contained in (2.25):

(3.34)

P1(t, θ) :=
( ∂C

∂zηi

∂C

∂x̃ε
∂ζε

∂xi
Nη
)

(t, θ),

P2(t, θ) :=
( ∂C

∂zεj

∂C

∂zηi

∂2ζε

∂xi∂x j
Nη
)

(t, θ),

P3(t, θ) :=
( ∂B

∂zεj

∂C

∂zηi

∂2ζε

∂xi∂x j
Nη
)

(t, θ),

P4(t, θ) :=
( ∂2B

∂zηi ∂zεj

∂2ζε

∂xi∂x j
Nη
)

(t, θ).

Observe that P1(t, θ)-P4(t, θ) were obtained in terms of the immersion ζ in the equa-
tions (3.29)–(3.32) of Lemma 3.8. Therefore, considering θ = 0, in these equations
we have, for all t ,

P1(t, 0) = −Btm13(tm33 − am23),

P2(t, 0) = 0, P3(t, 0) = 0, P4(t, 0) = 0.

Substituting these values into (3.33) and using B 6= 0, we obtain

m13m33t2 − am13m23t = 0,∀t.

Hence, since a 6= 0, we have

(3.35) m13m33 = 0 and m13m23 = 0.
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Similarly, considering θ = π and (3.35), it follows that, for all t ,

P1(t, π) = Baπ
[

(1−m2
23)t − am23m33

]
,

P2(t, π) = a2πm23m33t2 + aπ(B + a2)m2
23t,

P3(t, π) = −2Batπm23,

P4(t, π) = 0.

On the other hand, C(t, π) = atm33 −m23t2 + a2πm13.
Substituting these values into (3.33), we have

(1−m2
33)t3 + am23m33t2 + a2(1−m2

33 + 2m2
23)t − a3m23m33 = 0, ∀t.

Therefore, 1−m2
33 = 0 and m23m33 = 0. Since m13m33 = 0, we conclude that

m13 = m23 = 0 and m33 = ±1.

4 Helicoidal Minimal Surfaces of the Bonnet Family in (M
3
, F)

Considering the immersion ϑ(u, v) given by

(4.1) ϑ(u, v) =
(

a cosλ cos u cosh v + a sinλ sin u sinh v,

a cosλ sin u cosh v − a sinλ cos u sinh v, av cosλ + au sinλ
)
.

This parametrization provides a one-parameter family of helicoidal minimal surfaces
in Euclidean space called the Bonnet family. We want to verify which of these surfaces

are minimal in (M
3
, F).

Remark 4.1 For the immersion ϑ(u, v), given by (4.1), we have

(4.2) x̃η = a
{
δ1η[cosλ cos u cosh v + sinλ sin u sinh v]

+ δ2η[cosλ sin u cosh v − sinλ cos u sinh v] + δ3η[v cosλ + u sinλ]
}
,

and

(4.3) zηi = a
{
δi1

[
δη1(− cosλ sin u cosh v + sinλ cos u sinh v)

+ δη2(cosλ cos u cosh v + sinλ sin u sinh v) + δη3 sinλ
]

+ δi2

[
δη1(cosλ cos u sinh v + sinλ sin u cosh v)

+ δη2(cosλ sin u sinh v − sinλ cos u cosh v) + δη3 cosλ
]}

.

Moreover, from (2.18) and (4.3) we have that

(4.4)

D12 = −a2 cosh v sinh v,

D13 = −a2 sin u cosh v,

D23 = a2 cos u cosh v.

It follows from (2.19) and (2.20) that B and C are given by

(4.5) B = a4 cosh4 v, C = −a3 sinλ sinh v cosh v.
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By using computations entirely analogous to those in Lemma 3.2 and Lemma 3.8,
we can verify the following result.

Lemma 4.2 For the immersion ϑ(u, v) given by (4.1), we have that

(i)

(4.6)
∂C

∂zηi

∂C

∂x̃ε
∂ϑε

∂xi
Nη = a7 cosλ cosh6 v,

(ii)

(4.7)
∂C

∂zεj

∂C

∂zηi

∂2ϑε

∂xi∂x j
Nη = −a7 cosλ cosh2 v

[
cosh4 v − sin2 λ(cosh2 v + sinh2 v)

]
,

(iii)

(4.8)
∂B

∂zεj

∂C

∂zηi

∂2ζε

∂xi∂x j
Nη = −4a8 cosλ sinλ cosh5 v sinh v,

(iv)

(4.9)
∂2B

∂zηi ∂zεj

∂2ζε

∂xi∂x j
Nη = 0.

The following result characterizes the surfaces of the Bonnet family that are mini-

mal in (M
3
, F).

Theorem 4.3 Let (M
3
, F) be the Randers space, F = α + β, where M

3
, α, and β are

given by (2.10) and (2.11). Then the only minimal surfaces in M
3

of the Bonnet family
given by (4.1) are the catenoids and the helicoids.

Proof The catenoids were shown to be minimal in [9] and in Theorem 3.5 we
proved that the helicoids around the x3 axis are minimal. Substituting equations
(4.5)–(4.9) in the expression (2.25), a straightforward computation shows that
cosλ sin2 λ = 0. It follows from (4.1) that if cosλ = 0, then the mininal surface
will be a helicoid. On the other hand, if sinλ = 0, then the minimal surface will be a
catenoid.
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