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ON CLASSICAL KRULL DIMENSION
OF GROUP-GRADED RINGS

A.V. KELAREV

For any ring R graded by a finite group, we give a bound on the classical Krull
dimension of R in terms of the dimension of the initial component Re . It follows
that if Re has finite classical Krull dimension, then the same is true of the whole
ring R, too.

Let G be a finite group with identity e. A ring R is said to be G-graded if
R — © Rg is a direct sum of additive subgroups Rg and RgRh Q Rgh for all g, h € G.

g€G

There are many results relating properties of a group-graded ring R = ® Rg

and its initial component Re, where e is the identity of the group (see [5, 7, 8] and
[9]). Ring-theoretic dimensions of group-graded rings have been considered by several
authors (see, for example, Bell [1], Chin and Quinn [2], Cohen and Montgomery [3],
Nastasescu [6]).

Rings with Krull dimension form an important class and have many nice properties
(see [5]). Suppose that the set S = Spec(i?) of prime ideals of R satisfies a.c.c. Define
the sets Sa inductively. Let SQ be the set of all maximal elements in 5; and for each
ordinal a denote by Sa the set of all s £ S such that t € 5, t > s implies t E Sp for
some /? < a. Then there exists the least ordinal a such that Sa = S. This ordinal is
called the classical Krull dimension of R. If it is finite, then it is also equal to the right
Krull dimension of R defined on the lattice of right ideals of R (see [5, Chapter 6]).

Denote by cl-K-dim(-R) the classical Krull dimension of R. For any ordinal
a and positive integer n, we introduce ordinals an, setting c*i = a + 1, an+i =
(a + l)(an + 1)- We shall use the results on prime ideals due to Cohen and Mont-
gomery [3] and prove the following theorem.

THEOREM 1. Let G be a finite group with identity e and \G\ — n, and let
R = © Rg be a G-graded ring. If Re has classical Krtdl dimension a, then R has

classical Krull dimension, too, and cl-K-dim(R) < ctn.

This theorem is related to an open question [4, Problem 5].
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It is interesting to note that the analogous assertion is not valid for Krull dimension
defined on the lattice of right ideals. Indeed, if we take any group G with identity e
and an element j / e in G, and take a ring R with zero multiplication which has no
Krull dimension, then we can view R as a group-graded ring with Re — 0, Rg = R,

and Rh = 0 for all h £ G\{e,g}. [2, Example 2.4] shows that our theorem does not
transfer to rings graded by infinite groups, even in the case of the infinite cyclic group.

We need the following lemma (see [3, Theorems 7.1 and 7.3], or [9, Theorem 17.9]).

LEMMA 2 . [3]. Let G be a Unite group with identity e, and let R be a G-graded

ring.

(i) If P is a prime ideal of R, then there exist n ^\G\ primes Qi, Qi,... , Qn

of Re minimal over P l~l Rc, and we have P D Re = Qi H Q2 D . . . fl Qn .

(ii) If P QQ are prime ideals of R and P ^Q, then PnRe^QC\Re.

PROOF OF THEOREM 1: Suppose to the contrary that R contains a strictly in-

creasing chain of prime ideals P\ C P2 C . . . C Pan • Lemma 2(i) tells us that, for each

7 ^ an, there exists a finite set 5 7 of prime ideals of Re minimal over Re (~l Py and

such that

f) P = RenP^

and | 5 7 | ^ \G\ =n.

Put S = U Sy. If a prime ideal contains an intersection of a finite number of

ideals, then it contains at least one of them. Therefore, for any 8 < e ^ an and P E Se,

there exists Q G Sg, such that Q C. P •

For 6 < e < an, Q G Sg, and P e Se, we shall write

if and only if, for a l l / j , 6 < fi < e, we can fix I( £ Sp so that /M C /„ whenever

6 ^ fi ^ v ^ e, where Ig — Q and Ie = P.

We shall show by induction on 7 ^ an that, for each P £ 5 7 , there exists Q £ Si

such that Q < P . The case of 7 = 1 is trivial. Suppose that this has been proved for

all 6 < 7 . Take any ideal P € Sy.

If 7 is not a limit ordinal, then there exists 7 — 1 and we can take P' 6 57_i such

that P' C P. By the induction assumption Q <C P' for some Q £ Si. It follows that

Consider the case where 7 is a limit ordinal. Denote by L the set of all Q £ (J Sg

such that Q C P. By induction on 6 we shall define ideals Qg £ Sg, for all 6 < 7 .
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Given that S\ is finite and every ideal Q, where Q 6 5,, (1 L ^ U, 1 < i/ ^ 7 ,
contains at least one ideal of Si H L, it follows that there exists Q\ £ S\ (1 L such
that for any y. < 7 we can find \i < v < 7 and Q G Sv satisfying Qi <C Q. By the
definition of <C, for any /i < 7 , we can find Q £ 5M satisfying Qi <C Q. Put

£ |J 5 1 / | Q 1 « ^

We have ensured that L\ intersects all Sv, for 1 < u < 7.
Suppose that for some 6 < 7 ideals (Je have been defined for all e < 8, and

suppose that these ideals form an ascending chain. In addition, assume that the sets

intersect all Sv for e < v < 7. Obviously, M C I and M = |~) £e D S$ is not empty,

because all sets L\ 2 ^2 2 • • • 2 -t« 2 • • • are nonempty. As in the paragraph above,
given that M is finite, there exists Qs £ M such that for any S < fi < j we can find
/* < v < 7 and Q £ Su satisfying (Jj C (J. Thus the ascending chain of ideals Qs,
8 < 7, has been defined.

Since Qs C P for all 6 < 7, we see that Qi < P , a s required.
Next, we are going to reduce the set S. Take any P^ £ San and fix a chain of

ideals P^ G Sy such that P^ C P^ for all fi ^ 1/ < an. Given that cl-K- dim(i?e) =
a and an = (a + l)(an_j + 1), there exists 0 ^ 6 < an such that

p(i) _ p(i) _ _ pd) r p

Put 5 ^ = 5^\{P^1)} for « ^ n < * + «„-! + 1, and

For any 6<fi,<v^6 + an-i + 1, and any ideal / G S^ there exists Q 6 5M such
that Q QI. li Q <£ S^, then Q = P^ = Pj1 5; whence J D P™, a contradiction.
Therefore <? G S^5.

Thus S^ satisfies the same property we used for S, but now pV ^ n — 1 for
all 7.

Suppose that for some 7 such that 6 < 7 ^ 6 + a n - i the set S\^ is empty. Then,
for any 7 < fi ^ * + a n - i + 1 and Q G 5M, we have P£X) = P$a) = Py C Q. Hence
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Q = P£ J ) and so S^ = 0. Therefore P 7 = P 7 + 1 by Lemma 2(ii). This contradiction

shows tha t all sets S\ are nonempty for 6 < j ^ S + a n _ i .

Let us apply the same argument as above to S^ . Take an ideal P^ in

Find P£\ e Se+1 with Pf^ < P(2>. Take a chain

p(2) c p(2) c c p(2) _ p(2) r p

where PJ 6 5^ for all f < 7 < H a n - i • Find a new ordinal S2 such that
_ p(2) _ . . . _ p(2) p . 0(2) _ c(i)\ rp(2)i

|J

Then the set S^ satisfies the same property we used for 5 , but now \ n — 2

for all 7 . As above, all sets S^ will be nonempty for 62 < 7 < 62 + an-2 •

If we repeat this reduction n — 1 times, we get a set

5(n-l) = | J ^n-1)

satisfying the same conditions and such that S^ < 1 for all 8n-i < 7 < Sn-i

As earlier we can show that all sets 5^n ' are nonempty for £n_i < 7 ^ ^n-i +

Thus = 1 for all 7 .

Given tha t e*i = a + 1, we get 5 7 " J ) = S"^ 1 for some *2 < 7 < *2 + «i • It

follows from Lemma 2(ii) that Py = P-y+i. This contradiction completes the proof, u

REMARK. For a finite cl-K-dim(i?<.) our proof simplifies since several steps become

redundant .
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