Bull. Austral. Math. Soc. Vol. 55 (1997) [255-259]

ON CLASSICAL KRULL DIMENSION OF GROUP-GRADED RINGS

A.V. KELAREV

For any ring R graded by a finite group, we give a bound on the classical Krull dimension of R in terms of the dimension of the initial component R_e . It follows that if R_e has finite classical Krull dimension, then the same is true of the whole ring R, too.

Let G be a finite group with identity e. A ring R is said to be G-graded if $R = \bigoplus_{g \in G} R_g$ is a direct sum of additive subgroups R_g and $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$.

There are many results relating properties of a group-graded ring $R = \bigoplus_{a,c} R_g$

and its initial component R_e , where e is the identity of the group (see [5, 7, 8] and [9]). Ring-theoretic dimensions of group-graded rings have been considered by several authors (see, for example, Bell [1], Chin and Quinn [2], Cohen and Montgomery [3], Năstăsescu [6]).

Rings with Krull dimension form an important class and have many nice properties (see [5]). Suppose that the set $S = \operatorname{Spec}(R)$ of prime ideals of R satisfies a.c.c. Define the sets S_{α} inductively. Let S_0 be the set of all maximal elements in S; and for each ordinal α denote by S_{α} the set of all $s \in S$ such that $t \in S, t > s$ implies $t \in S_{\beta}$ for some $\beta < \alpha$. Then there exists the least ordinal α such that $S_{\alpha} = S$. This ordinal is called the *classical Krull dimension* of R. If it is finite, then it is also equal to the right Krull dimension of R defined on the lattice of right ideals of R (see [5, Chapter 6]).

Denote by cl-K-dim(R) the classical Krull dimension of R. For any ordinal α and positive integer n, we introduce ordinals α_n , setting $\alpha_1 = \alpha + 1$, $\alpha_{n+1} = (\alpha + 1)(\alpha_n + 1)$. We shall use the results on prime ideals due to Cohen and Montgomery [3] and prove the following theorem.

THEOREM 1. Let G be a finite group with identity e and |G| = n, and let $R = \bigoplus_{g \in G} R_g$ be a G-graded ring. If R_e has classical Krull dimension α , then R has classical Krull dimension, too, and cl-K-dim $(R) < \alpha_n$.

This theorem is related to an open question [4, Problem 5].

Received 4th April, 1996

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/97 \$A2.00+0.00.

A.V. Kelarev

It is interesting to note that the analogous assertion is not valid for Krull dimension defined on the lattice of right ideals. Indeed, if we take any group G with identity eand an element $g \neq e$ in G, and take a ring R with zero multiplication which has no Krull dimension, then we can view R as a group-graded ring with $R_e = 0$, $R_g = R$, and $R_h = 0$ for all $h \in G \setminus \{e, g\}$. [2, Example 2.4] shows that our theorem does not transfer to rings graded by infinite groups, even in the case of the infinite cyclic group.

We need the following lemma (see [3, Theorems 7.1 and 7.3], or [9, Theorem 17.9]).

LEMMA 2. [3]. Let G be a finite group with identity e, and let R be a G-graded ring.

- (i) If P is a prime ideal of R, then there exist n ≤ |G| primes Q₁, Q₂,..., Q_n of R_e minimal over P ∩ R_e, and we have P ∩ R_e = Q₁ ∩ Q₂ ∩ ... ∩ Q_n.
- (ii) If $P \subseteq Q$ are prime ideals of R and $P \neq Q$, then $P \cap R_e \neq Q \cap R_e$.

PROOF OF THEOREM 1: Suppose to the contrary that R contains a strictly increasing chain of prime ideals $P_1 \subset P_2 \subset \ldots \subset P_{\alpha_n}$. Lemma 2(i) tells us that, for each $\gamma \leq \alpha_n$, there exists a finite set S_{γ} of prime ideals of R_e minimal over $R_e \cap P_{\gamma}$ and such that

$$\bigcap_{P\in S_{\gamma}} P = R_{e} \cap P_{\gamma}$$

and $|S_{\gamma}| \leq |G| = n$.

Put $S = \bigcup_{\gamma \leq \alpha_n} S_{\gamma}$. If a prime ideal contains an intersection of a finite number of ideals, then it contains at least one of them. Therefore, for any $\delta < \varepsilon \leq \alpha_n$ and $P \in S_{\varepsilon}$, there exists $Q \in S_{\delta}$, such that $Q \subseteq P$.

For $\delta < \varepsilon \leq \alpha_n$, $Q \in S_{\delta}$, and $P \in S_{\varepsilon}$, we shall write

 $Q \ll P$

if and only if, for all μ , $\delta < \mu < \varepsilon$, we can fix $I_{\xi} \in S_{\mu}$ so that $I_{\mu} \subseteq I_{\nu}$ whenever $\delta \leq \mu \leq \nu \leq \varepsilon$, where $I_{\delta} = Q$ and $I_{\varepsilon} = P$.

We shall show by induction on $\gamma \leq \alpha_n$ that, for each $P \in S_{\gamma}$, there exists $Q \in S_1$ such that $Q \ll P$. The case of $\gamma = 1$ is trivial. Suppose that this has been proved for all $\delta < \gamma$. Take any ideal $P \in S_{\gamma}$.

If γ is not a limit ordinal, then there exists $\gamma - 1$ and we can take $P' \in S_{\gamma-1}$ such that $P' \subseteq P$. By the induction assumption $Q \ll P'$ for some $Q \in S_1$. It follows that $Q \ll P$.

Consider the case where γ is a limit ordinal. Denote by L the set of all $Q \in \bigcup_{\delta < \gamma} S_{\delta}$ such that $Q \subseteq P$. By induction on δ we shall define ideals $Q_{\delta} \in S_{\delta}$, for all $\delta < \gamma$. Group-graded rings

Given that S_1 is finite and every ideal Q, where $Q \in S_{\nu} \cap L \neq \emptyset$, $1 < \nu \leq \gamma$, contains at least one ideal of $S_1 \cap L$, it follows that there exists $Q_1 \in S_1 \cap L$ such that for any $\mu < \gamma$ we can find $\mu < \nu < \gamma$ and $Q \in S_{\nu}$ satisfying $Q_1 \ll Q$. By the definition of \ll , for any $\mu < \gamma$, we can find $Q \in S_{\mu}$ satisfying $Q_1 \ll Q$. Put

$$L_1 = L \cap \left\{ Q \in \bigcup_{1 < \nu < \gamma} S_{\nu} \mid Q_1 \ll Q \right\}.$$

We have ensured that L_1 intersects all S_{ν} , for $1 < \nu < \gamma$.

Suppose that for some $\delta < \gamma$ ideals Q_{ε} have been defined for all $\varepsilon < \delta$, and suppose that these ideals form an ascending chain. In addition, assume that the sets

$$L_{e} = L \cap \left\{ Q \in \bigcup_{e < \nu < \gamma} S_{\nu} \mid Q_{e} \ll Q
ight\}$$

intersect all S_{ν} for $\varepsilon < \nu < \gamma$. Obviously, $M \subseteq L$ and $M = \bigcap_{e < \delta} L_e \cap S_{\delta}$ is not empty, because all sets $L_1 \supseteq L_2 \supseteq \ldots \supseteq L_{\delta} \supseteq \ldots$ are nonempty. As in the paragraph above, given that M is finite, there exists $Q_{\delta} \in M$ such that for any $\delta < \mu < \gamma$ we can find $\mu < \nu < \gamma$ and $Q \in S_{\nu}$ satisfying $Q_{\delta} \subseteq Q$. Thus the ascending chain of ideals Q_{δ} , $\delta < \gamma$, has been defined.

Since $Q_{\delta} \subseteq P$ for all $\delta < \gamma$, we see that $Q_1 \ll P$, as required.

Next, we are going to reduce the set S. Take any $P^{(1)} \in S_{\alpha_n}$ and fix a chain of ideals $P^{(1)}_{\gamma} \in S_{\gamma}$ such that $P^{(1)}_{\mu} \subseteq P^{(1)}_{\nu}$ for all $\mu \leq \nu \leq \alpha_n$. Given that cl-K-dim $(R_e) = \alpha$ and $\alpha_n = (\alpha + 1)(\alpha_{n-1} + 1)$, there exists $0 \leq \delta < \alpha_n$ such that

$$P_{\delta+1}^{(1)} = P_{\delta+2}^{(1)} = \cdots = P_{\delta+\alpha_{n-1}+1}^{(1)} \subseteq R_e.$$

Put $S^{(1)}_{\mu} = S_{\mu} \setminus \{P^{(1)}_{\mu}\}$ for $\delta \leq \mu \leq \delta + \alpha_{n-1} + 1$, and

$$S^{(1)} = igcup_{\delta < \mu \leqslant \delta + lpha_{n-1}} S^{(1)}_{\mu}.$$

For any $\delta < \mu < \nu \leq \delta + \alpha_{n-1} + 1$, and any ideal $I \in S_{\nu}^{(1)}$ there exists $Q \in S_{\mu}$ such that $Q \subseteq I$. If $Q \notin S_{\mu}^{(1)}$, then $Q = P_{\mu}^{(1)} = P_{\nu}^{(1)}$; whence $I \supseteq P_{\nu}^{(1)}$, a contradiction. Therefore $Q \in S_{\mu}^{(1)}$.

Thus $S^{(1)}$ satisfies the same property we used for S, but now $\left|S_{\gamma}^{(1)}\right| \leq n-1$ for all γ .

Suppose that for some γ such that $\delta < \gamma \leq \delta + \alpha_{n-1}$ the set $S_{\gamma}^{(1)}$ is empty. Then, for any $\gamma < \mu \leq \delta + \alpha_{n-1} + 1$ and $Q \in S_{\mu}$, we have $P_{\mu}^{(1)} = P_{\gamma}^{(1)} = P_{\gamma} \subseteq Q$. Hence

 $Q = P_{\mu}^{(1)}$ and so $S_{\mu}^{(1)} = \emptyset$. Therefore $P_{\gamma} = P_{\gamma+1}$ by Lemma 2(ii). This contradiction shows that all sets $S_{\gamma}^{(1)}$ are nonempty for $\delta < \gamma \leq \delta + \alpha_{n-1}$.

Let us apply the same argument as above to $S^{(1)}$. Take an ideal $P^{(2)}$ in $S^{(1)}_{\delta+\alpha_{n-1}}$. Find $P^{(2)}_{\delta+1} \in S_{\delta+1}$ with $P^{(2)}_{\delta+1} \ll P^{(2)}$. Take a chain

$$P_{\delta+1}^{(2)} \subseteq P_{\delta+2}^{(2)} \subseteq \ldots \subseteq P_{\delta+\alpha_{n-1}}^{(2)} = P^{(2)} \subseteq R_{\epsilon}$$

where $P_{\gamma}^{(2)} \in S_{\gamma}^{(1)}$ for all $\delta < \gamma \leq \delta + \alpha_{n-1}$. Find a new ordinal δ_2 such that $P_{\delta_2+1}^{(2)} = P_{\delta_2+2}^{(2)} = \cdots = P_{\delta_2+\alpha_{n-2}+1}^{(2)}$. Put $S_{\gamma}^{(2)} = S_{\gamma}^{(1)} \setminus \{P_{\gamma}^{(2)}\}$,

$$S^{(2)} = \bigcup_{\delta_2 < \gamma \leqslant \delta_2 + \alpha_{n-2}} S^{(2)}_{\gamma}.$$

Then the set $S^{(2)}$ satisfies the same property we used for S, but now $\left|S_{\gamma}^{(2)}\right| \leq n-2$ for all γ . As above, all sets $S_{\gamma}^{(2)}$ will be nonempty for $\delta_2 < \gamma \leq \delta_2 + \alpha_{n-2}$.

If we repeat this reduction n-1 times, we get a set

$$S^{(n-1)} = \bigcup_{\delta_{n-1} < \gamma \leqslant \delta_{n-1} + \alpha_1} S_{\gamma}^{(n-1)}$$

satisfying the same conditions and such that $\left|S_{\gamma}^{(n-1)}\right| \leq 1$ for all $\delta_{n-1} < \gamma \leq \delta_{n-1} + \alpha_1$. As earlier we can show that all sets $S_{\gamma}^{(n-1)}$ are nonempty for $\delta_{n-1} < \gamma \leq \delta_{n-1} + \alpha_1$. Thus $\left|S_{\gamma}^{(n-1)}\right| = 1$ for all γ .

Given that $\alpha_1 = \alpha + 1$, we get $S_{\gamma}^{(n-1)} = S_{\gamma+1}^{n-1}$ for some $\delta_2 \leq \gamma < \delta_2 + \alpha_1$. It follows from Lemma 2(ii) that $P_{\gamma} = P_{\gamma+1}$. This contradiction completes the proof. REMARK. For a finite cl-K-dim (R_e) our proof simplifies since several steps become redundant.

References

- A.D. Bell, 'Localization and ideal theory in Noetherian strongly group-graded rings', J. Algebra 105 (1987), 76-115.
- W. Chin and D. Quinn, 'Rings graded by polycyclic-by-finite groups', Proc. Amer. Math. Soc. 102 (1988), 235-241.
- [3] M. Cohen and S. Montgomery, 'Group-graded rings, smash products, and group actions', Trans. Amer. Math. Soc. 282 (1984), 237-258.
- [4] A.V. Kelarev, 'Applications of epigroups to graded rin; theory', Semigroup Forum 50 (1995), 327-350.

Group-graded	rings
--------------	-------

- [5] J.C. McConnell and J.C. Robson, Noncommutative Noetherian rings (Wiley, New York, 1987).
- [6] C. Năstăsescu, 'Strongly graded rings of finite groups', Comm. Algebra 11 (1983), 1033-1071.
- [7] C. Năstăsescu and F. Van Oystaeyen, Graded ring theory, Math. Library 28 (North-Holland, Amsterdam, New York, 1982).
- [8] C. Năstăsescu and F. Van Oystaeyen, *Dimensions of ring theory* (Reidel, Dordrecht, 1987).
- [9] D.S. Passman, Infinite crossed products (Academic Press, New York, 1989).

Department of Mathematics The University of Tasmania GPO Box 252-37 Hobart Tas 7001 Australia e-mail: kelarev@hilbert.maths.utas.edu.au