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ON CLASSICAL KRULL DIMENSION
OF GROUP-GRADED RINGS

A.V. KELAREV

For any ring R graded by a finite group, we give a bound on the classical Krull
dimension of R in terms of the dimension of the initial component R, . It follows
that if R. has finite classical Krull dimension, then the same is true of the whole
ring R, too.

Let G be a finite group with identity e. A ring R is said to be G-graded if

R = @ R, is a direct sum of additive subgroups R; and RgRy C Ry, forall g,h € G.
9€G

There are many results relating properties of a group-graded ring R = @ R,
g€eG

and its initial component R., where e is the identity of the group (see (5, 7, 8] and
[9]). Ring-theoretic dimensions of group-graded rings have been considered by several
authors (see, for example, Bell [1], Chin and Quinn [2], Cohen and Montgomery (3],
Nistisescu [6]).

Rings with Krull dimension form an important class and have many nice properties
(see [5]). Suppose that the set S = Spec(R) of prime ideals of R satisfies a.c.c. Define
the sets S, inductively. Let Sy be the set of all maximal elements in S; and for each
ordinal a denote by S, the set of all s € § such that ¢t € S, ¢t > s implies t € Sg for
some 3 < a. Then there exists the least ordinal a such that S, = 5. This ordinal is
called the classical Krull dimension of R. If it is finite, then it is also equal to the right
Krull dimension of R defined on the lattice of right ideals of R (see [5, Chapter 6]).

Denote by cl-K-dim(R) the classical Krull dimension of R. For any ordinal
a and positive integer n, we introduce ordinals a,, setting a1 = a+ 1, apy1 =
(¢ +1)(an +1). We shall use the results on prime ideals due to Cohen and Mont-
gomery [3] and prove the following theorem.

THEOREM 1. Let G be a finite group with identity e and |G| = n, and let

R = @ R, be a G-graded ring. If R, has classical Krull dimension a, then R has
g€eG
classical Krull dimension, too, and cl-K-dim(R) < a,.

This theorem is related to an open question (4, Problem 5].
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It is interesting to note that the analogous assertion is not valid for Krull dimension
defined on the lattice of right ideals. Indeed, if we take any group G with identity e
and an element g # e in G, and take a ring R with zero multiplication which has no
Krull dimension, then we can view R as a group-graded ring with R, = 0, R; = R,
and R, =0 for all h € G\{e,g}. [2, Example 2.4] shows that our theorem does not
transfer to rings graded by infinite groups, even in the case of the infinite cyclic group.

We need the following lemma (see (3, Theorems 7.1 and 7.3], or [9, Theorem 17.9)).

LEMMA 2. [3]. Let G be a finite group with identity e, and let R be a G-graded
ring.
(i) If P is a primeideal of R, then there exist n < |G| primes Q1,Q2,...,@n

of R, minimal over PN R,, and we have PN R, =@ NQ2N...NQ,.
(ii) If P C Q are prime ideals of R and P # @, then PN R. # QN R,.

PRroOOF OF THEOREM 1: Suppose to the contrary that R contains a strictly in-
creasing chain of prime ideals P, C P, C ... C P,, . Lemma 2(i) tells us that, for each
7 € ag,, there exists a finite set S, of prime ideals of R, minimal over R, N P, and

such that
(1 P=R.NP,
Pcs,
and |S,| < |G| =n.
Put S= |J S,. If a prime ideal contains an intersection of a finite number of

Y<an
ideals, then it contains at least one of them. Therefore, for any § < ¢ £ a, and P € §.,

there exists @ € Sg, such that Q C P.
For § <e € a,, Q € S5, and P € S,, we shall write

RQKP

if and only if, for all g, § < p < €, we can fix It € S, so that I, C I, whenever
§<p<v<e,where ;=@ and I, = P.

We shall show by induction on v < a, that, for each P € S, there exists @ € S,
such that @ <« P. The case of ¥ =1 is trivial. Suppose that this has been proved for
all § < . Take any ideal P € §,.

If v is not a limit ordinal, then there exists ¥ —1 and we can take P' € Sy_; such
that P' C P. By the induction assumption Q@ < P' for some @ € S;. It follows that
QKPP

Consider the case where v is a limit ordinal. Denote by L the set of all Q € U Ss
6<y

such that @ C P. By induction on § we shall define ideals @5 € S5, for all § < v.
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Given that S; is finite and every ideal @, where Q € S, NL # 0, 1 <v £ 7,
contains at least one ideal of §; N L, it follows that there exists @1 € §; N L such
that for any g < v we can find p < v < v and @ € S, satisfying @; < Q. By the
definition of <, for any p < v, we can find @ € S, satisfying @1 < Q. Put

L=1n{Qe |J S l@: <@}

1<v<y

We have ensured that L, intersects all 5., for 1 < v < 7.
Suppose that for some 6§ < < ideals @, have been defined for all € < §, and
suppose that these ideals form an ascending chain. In addition, assume that the sets

L.=1n{Qe | 510.<0q}

elv<ly

intersect all §, for ¢ < v <. Obviously, M C L and M = [} L.N S;s is not empty,
e<s

because all sets Ly 2 Ly 2 ... D Lg O ... are nonempty. As in the paragraph above,
given that M is finite, there exists Qs € M such that for any § < p < ¥ we can find
it <v<qvand Q € S, satisfying Qs C Q. Thus the ascending chain of ideals Qj,
§ < v, has been defined.

Since Qs C P for all § < v, we see that @; <« P, as required.

Next, we are going to reduce the set §. Take any P(!) € S, and fix a chain of
ideals P(l) € Sy such that P,(.l) - P.Sl) forall p < v < an. Given that cl-K-dim(R,) =
a and a, = (@ + 1)(an—1 + 1), there exists 0 < § < ap such that

1 1 Q1
P6(+)1"'P¢§+)2 "-P6+)a,. 1+1CR'

Put Sf,l) = S,,\{P,(‘l)} for §< p<b+an—y+1,and

sW= |J s®.
§<pgbtan

Forany § < p<v < 6§+ an-y +1, and any ideal I € S there exists Q € S, such
that QCI. Q¢ S(l) then @ = P,(‘l) = P,Sl), whence I 2 P,S ), a contradiction.
Therefore Q € S(l)

Thus S(!) satisfies the same property we used for S, but now |S(1)| n —1 for
all v.

Suppose that for some v such that § <y < 6§+ ap—; the set S'( ) is empty. Then,
forany y< p £ §+an-y+1 and @ € S,,, we have PV = P-g,l) = Py C Q. Hence
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Q= P,(,l) and so S,(,l) = . Therefore Py = P,;; by Lemma 2(ii). This contradiction
shows that all sets SS,I) are nonempty for § <v < 8§+ an_1.
Let us apply the same argument as above to S(!). Take an ideal P(?) in s

btan_1 -
Find P € S541 with P2 <« P, Take a chain

PSP SR, =PPCR,

where Py) € S-(Yl) for all § < v+ € 6§+ a,-1. Find a new ordinal 6, such that

P =P == P - Put 8 = SO\(PP},
2
so= | so.

62<v<62tan_3

Then the set S() satisfies the same property we used for S, but now IS'-(YZ)I £n—-2
for all y. As above, all sets SS,” will be nonempty for §; < v < 82 + an—z.

If we repeat this reduction n — 1 times, we get a set

S("'l) — U S'(yn—l)

bn_1<v<bp1+a;

satisfying the same conditions and such that lS.(,"—l)‘ €1lforall b1 <9 € bp-1+a;.

<
As earlier we can show that all sets S.(y"_l) are nonempty for n—y < ¥ € p—1 + 3.
Thus S§"‘1)| =1 for all .

Given that ay = a + 1, we get S-(,"_l) = S’,’;_;ll for some 82 K Yy < 83+ a;. It

follows from Lemma 2(ii) that P, = Py.;. This contradiction completes the proof. [

REMARK. For a finite cl-K-dim(R,.) our proof simplifies since several steps become

redundant.
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