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Relaxing Assumptions, Improving Inference: Integrating Machine
Learning and the Linear Regression
MARC RATKOVIC Princeton University, United States

Valid inference in an observational study requires a correct control specification, but a correct
specification is never known. I introduce a method that constructs a control vector from the
observed data that, when included in a linear regression, adjusts for several forms of bias. These

include nonlinearities and interactions in the background covariates, biases induced by heterogeneous
treatment effects, and specific forms of interference. The first is new to political science; the latter two are
original contributions. I incorporate random effects, a set of diagnostics, and robust standard errors. With
additional assumptions, the estimates allow for causal inference on both binary and continuous treatment
variables. In total, the model provides a flexible means to adjust for biases commonly encountered in our
data, makes minimal assumptions, returns efficient estimates, and can be implemented through publicly
available software.

INTRODUCTION

T he standard linear regression is the field’s most
commonly encountered quantitative tool, used
to estimate effect sizes, adjust for background

covariates, and conduct inference. At the same time,
the method requires a set of assumptions that have
long been acknowledged as problematic (e.g., Achen
2002; Leamer 1983; Lenz and Sahn 2021; Sami 2016).
The fear that quantitative inference will reflect these
assumptions rather than the design of the study and
the data has led our field to explore alternatives includ-
ing estimation via machine learning (e.g., Beck and
Jackman 1998; Beck, King, and Zheng 2000; Grimmer,
Messing, and Westwood 2017; Hill and Jones 2014) and
identification using the analytic tools of causal inference
(e.g., Acharya,Backwell, and Sen 2016; Imai et al. 2011).
I integrate these two literatures tightly, formally, and

practically, with a method and associated software that
can improve the reliability of quantitative inference in
political science and the broader social sciences. In
doing so, I make two contributions. First, I introduce
to political science the concepts and strategies neces-
sary to integrate machine learning with the standard
linear regression model (Athey, Tibshirani, andWager
2019; Chernozhukov et al. 2018). Second, I extend this
class of models to address two forms of bias of concern
to political scientists. Specifically, I adjust for a bias
induced by unmodeled treatment effect heterogeneity,
highlighted by Aronow and Samii (2016). In correcting
this bias, and under additional assumptions on the data,
the proposed method allows for causal effect estima-
tion whether the treatment variable is continuous or
binary. I also adjust for biases induced by exogenous

interference, which occurs when an observation’s out-
come or treatment is affected by the characteristics of
other observations (Manski 1993).

The goal is to allow for valid inference that does not
rely on a researcher-selected control specification. The
proposedmethod, as with several in this literature, uses
a machine learning method to adjust for background
variables while returning a linear regression coefficient
and standard error for the treatment variable of theo-
retical interest. Following the double machine learning
approach of Chernozhukov et al. (2018), my method
implements a split-sample strategy. This consists of,
first, using a machine learning method on one part of
the data to construct a control vector that can adjust for
nonlinearities and heterogeneities in the background
covariates as well as the two biases described above.
Then, on the remainder of the data, this control vector
is included in a linear regression of the outcome on the
treatment. The split-sample strategy serves as a crucial
guard against overfitting. By alternating which subsam-
ple is used for constructing control variables from the
background covariates and which subsample is used
for inference and then aggregating the separate esti-
mates, the efficiency lost by splitting the sample can be
regained. I illustrate this on experimental data, showing
that the proposed method generates point estimates
and standard errors no different than those from a full-
sample linear regression model.

My primary audience is the applied researcher cur-
rently using a linear regression for inference but who
may be unsettled by the underlying assumptions. I
develop the method first as a tool for descriptive infer-
ence, generating a slope coefficient and a standard error
on a variable of theoretical interest but relying on
machine learning to adjust for background covariates.
I then discuss the assumptions necessary to interpret the
coefficient as a causal estimate. In order to encourage
adoption of the proposed method, software for imple-
menting the proposed method and the diagnostics
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described in this manuscript are available on the Com-
prehensive R Archive Network in the package PLCE.

IMPLICATIONS AND APPLICATIONS OF THE
PROPOSED METHOD

Quantitative inference in an observational setting
requires a properly specified model, meaning the con-
trol variables must be observed and entered correctly
by the researcher in order to recover an unbiased
estimate of the effect of interest. A correct specifica-
tion, of course, is never known, raising concerns over
“model-dependent” inference (King and Zeng 2006).
Contrary advice on how to specify controls in a linear

regression remains unresolved. This advice ranges from
including all the relevant covariates but none of the
irrelevant ones (King, Keohane, and Verba 1994, secs.
5.2–5.3), which states rather than resolves the issue;
including at most three variables (Achen 2002); or at
least not all of them (Achen 2005); or maybe none of
them (Lenz and Sahn 2021). Others have advocated for
adopting machine learning methods including neural
nets (Beck, King, and Zeng 2000), smoothing splines
(Beck and Jackman 1998), nonparametric regression
(Hainmueller and Hazlett 2013), tree-based methods
(Hill and Jones 2014; Montgomery and Olivella 2018),
or an average of methods (Grimmer, Messing, and
Westwood 2017).
None of this advice has found wide use. The advice

on the linear regression is largely untenable, given that
researhers normally have a reasonable idea of which
background covariates to include but cannot guarantee
that an additive, linear control specification is correct.
Machine learning methods offer several important
uses, including prediction (Hill and Jones 2014) and
uncovering nonlinearities and heterogeneities (Beck,
King, and Zeng 2000; Imai and Ratkovic 2013). Esti-
mating these sorts of conditional effects and complex
models are useful in problems that involve prediction
or discovery. For problems of inference, where the
researcher desires a confidence interval or p-value on
a regression coefficient, these methods will generally
lead to invalid inference, a point I develop below and
illustrate through a simulation study.
Providing a reliable and flexible means of controlling

for background covariates and clarifying when and
whether the estimated effect admits a causal interpre-
tation is essential to the accumulation of knowledge in
our field. I provide such a strategy here.

Turning Toward Machine Learning

Conducting valid inference with a linear regression coef-
ficient without specifying how the control variables enter
the model has long been studied in the fields of econo-
metrics and statistics (see, e.g., Bickel et al. 1998; Newey
1994; Robinson 1988; van der Vaart 1998, esp. chap. 25).
Recent methods have brought these theoretical results
to widespread attention by combining machine learning
methods to adjust for background covariates with a
linear regression for the variable of interest, particularly

the doublemachine learning approach of Chernozhukov
et al. (2018) and the generalized random forest of Athey,
Tibshirani, and Wager (2019). I work in this same area,
introducing the main concepts to political science.

Although well-developed in cognate fields, political
methodologists have put forth several additional cri-
tiques of linear regression left unaddressed by these
aforementioned works. The first critique comes from
King (1990) in the then-nascent subfield of political
methodology. In a piece both historical and forward-
looking, he argued that unmodeled geographic interfer-
ence was a first-order concern of the field. More gener-
ally, political interactions are often such that interference
and interaction across observations is the norm. Most
quantitative analyses simply ignore interference.Existing
methods that do address it rely on strong modeling
assumptions requiring, for example, that interference is
being driven by known covariates, like ideology (Hall
and Thompson 2018), or that observations only affect
similar or nearby observations either geographically or
over a known network (Aronow and Samii 2017; Ripley
1988; Sobel 2006;Ward andO’Loughlin 2002), and these
models only allow formoderation by covariates specified
by the researcher. I extend on these approaches, offering
the first method that learns and adjusts for general
patterns of exogenous interference.

The second critique emphasizes the limits on using a
regression for causal inference in observational studies
(see, e.g., Angrist and Pischke, 2010, sec 3.3.1). From
this approach, I adopt three concerns. The first is a
careful attention to modeling the treatment variable.
The second is precision in defining the parameter of
interest as an aggregate of observation-level effects.
Aronow and Samii (2016) show that a correlation
between treatment effect heterogeneity and variance
in the treatment assignment will cause the linear regres-
sion coefficient to be biased in estimating the causal
effect—even if the background covariates are included
properly. I offer the first method that explicitly adjusts
for this bias. Third, I provide below a set of assumptions
that will allow for a causal interpretation of the estimate
returned by the proposed method.

Practical Considerations of the Proposed
Method

The major critique of the linear regression, that its
assumptions are untenable, is hardly new. Despite this
critique, the linear regression has several positive attri-
butes worthy of preservation. First is its transparency
and ease of use. The method, its diagnostics, assump-
tions, and theoretical properties are well-understood
and implemented in commonly available software, and
they allow for easy inference. Coefficients and standard
errors can be used to generate confidence intervals and
p-values, and a statistically significant result provides a
necessary piece of evidence that a hypothesized asso-
ciation is present in the data. Importantly, the proposed
method maintains these advantages.

I illustrate these points in a simulation study designed
to highlight blind spots of existing methods. I then
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reanalyze experimental data from Mattes and Weeks
(2019), showing that if the linear regression model is in
fact correct, my method neither uncovers spurious rela-
tionships in the data nor comes at the cost of inflated
standard errors. In the second application, I illustrate
how to use the method with a continuous treatment.
Enos (2016) was forced to dichotomize a continuous
treatment, distance frompublic housing projects, in order
to estimate the causal effect of racial threat. To show his
results were not model-dependent, he presented results
from dichotomizing the variable at 10 different distances.
The proposed method handles this situation more natu-
rally, allowing a single estimate of the effect of distance
from housing projects on voter turnout.

ANATOMY OF A LINEAR REGRESSION

My central focus is in improving estimation and infer-
ence on the marginal effect, which is the average effect
of a one unit move in a variable of theoretical interest ti
on the predicted value of an outcome yi, after adjusting
for background covariates xi .1 I will denote the mar-
ginal effect as θ.
Estimation of the marginal effect is generally done

with a linear regression,

yi = θti þ xΤ
i γ þ ei; E eijxi, tið Þ = 0, (1)

where the marginal effect θ is the target parameter,
meaning the parameter on which the researcher wishes
to conduct inference.
I will refer to terms constructed from the background

covariates xi and entered into the linear regression as
control variables.For example, when including a square
term of the third variable x3i in the linear regression,
the background covariate vector is xi but the control
vector is now xΤ

i , x
2
3i

� �Τ
. I will reserve γ for slope

parameters on control vectors.
Inference on a parameter is valid if its point estimate

and standard error can be used to construct confidence
intervals and p -values with the expected theoretical
properties. Formally, θ̂ and its estimated standard
deviation σ̂θ̂ allow for valid inference if, for any θ,

ffiffiffi
n

p θ̂−θ
σ̂θ̂

 !
⇝ℕ 0, 1ð Þ: (2)

The limiting distribution of a statistic is the distribution
to which its sampling distribution converges (seeWool-
dridge 2013, app. C12), so in the previous display the
limiting distribution of the z-statistic on the left is a
standard normal distribution.
The remaining elements of the model, the control

specification (xΤ
i γ ) and the distribution of the error

term, are the nuisance components, meaning they are
not of direct interest but need to be properly adjusted
for in order to allow valid inference on θ . The

component with the control variables is specified in that
its precise functional form is assumed by the researcher.

Heteroskedasticity-consistent (colloquially, “robust”)
standard errors allow valid inference on θ without
requiring the error distribution to be normal, or even
equivariant.2 In this sense, the error distribution is
unspecified. This insight proves critical to the proposed
method: valid inference in a statistical model is possible
even when components of the model are unspecified.3

In statistical parlance, the linear regression model fit
with heteroskedasticity-consistent standard errors is an
example of a semiparametric model, as it combines both
a specified component (θti þ xΤi γ) and an unspecified
component, the error distribution.

This chain of reasoning then begs the question, can
even less be specified? And, does the estimated coeffi-
cient admit a causal interpretation? I turn to the first
question next and then address the second in the
subsequent section.

MOVING BEYOND LINEAR REGRESSION

In moving beyond linear regression, I use a machine
learning method to construct a control vector that can
be included in a linear regression of the outcome on the
treatment. This vector will allow for valid inference on
θ even in the presence of unspecified nonlinearities and
interactions in the background covariates. This
section relies on the development of double machine
learning in Chernozhukov et al. (2018) and the text-
book treatment of van der Vaart (1998). The presen-
tation remains largely informal, with technical details
available in Appendix A of the Supplementary Mate-
rials. I then extend this approach in the next section.

The Partially Linear Model

Rather than entering the background covariates in an
additive, linear fashion, they could enter through
unspecified functions, f ,g:4

yi = θti þ f xið Þ þ ei; E eijti, xið Þ = 0: (3)

ti = g xið Þ þ vi; E vijti, xið Þ = E eivijxið Þ = 0: (4)

1 The marginal effect is sometimes referred to as the average partial
effect.

2 For more on the use and misuse of heteroskedasticity-consistent
standard errors, Freedman (2006) notes that they are not useful if the
model is misspecified; King and Roberts (2015) propose using dis-
agreement between analytic and heteroskedasticity-consistent as a
model diagnostic but note Aronow’s (2016) critique of this approach
as overreliant on modeling assumptions. My view aligns most closely
with Aronow (2016) and derives from the general approach in van
der Vaart (1998).
3 Unspecified does notmean arbitrary. Heteroskedasticity-consistent
standard errors require that the residuals be mean zero given the
covariates and treatment and that the estimated residuals follow the
central limit theorem; see White (1980, Assumptions 2 and 3). This
includes distributions commonly encountered in observational data
while excluding fat-tailed distributions like the Cauchy.
4 Although the covariates can enter the model nonlinearly, the
estimate will still be linear in the sense of being additive in the
outcome variable (Wooldridge 2013, sec. 2.4.).
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The resulting model is termed the partially linear
model, as it is still linear in the treatment variable
but the researcher need not assume a particular
control specification. This model subsumes the
additive, linear specification, but the functions f , g
also allow for nonlinearities and interactions in the
covariates.

Semiparametric Efficiency

With linear regression, where the researcher assumes a
control specification, the least squares estimates are the
uniformly minimum variance unbiased estimate (e.g.,
Wooldridge 2013, sec. 2.3). This efficiency result does
not immediately apply to the partially linearmodel, as a
particular form for f ,g is not assumed in advance but
instead learned from the data. We must instead rely on
a different conceptualization of efficiency: semipara-
metric efficiency.
An estimate of θ in the partially linear model is

semiparametrically efficient if, first, it allows for valid
inference on θ and, second, its variance is asymptot-
ically indistinguishable from an estimator con-
structed from the true, but unknown, nuisance
functions f , g. Establishing this property proceeds in
two broad steps.5 The first step involves constructing
an estimate of θ assuming the true functions f ,gwere
known. This estimate is infeasible, as it is constructed
from unknown functions. The second step then
involves providing assumptions and an estimation
strategy such that the feasible estimate constructed
from the estimated functions f̂ , ĝ shares the same
limiting distribution as the infeasible estimate con-
structed from f ,g.
For the first step, consider the reduced form model

that combines the two models in Equations 3 and 4,

yi = θti þ f xið Þ, g xið Þ½ �γ þ ei: (5)

If f , g were known, θ could be estimated efficiently
using least squares.6 The estimate, θ̂ will be efficient
and allow for valid inference on θ.
Following Stein (1956), we would not expect

any feasible estimator to outperform this infeasible
estimator, so its limiting distribution is termed the
semiparametric efficiency bound. With this bound
established, I now turn to generating a feasible esti-
mate that shares a limiting distribution with this
infeasible estimate.

Double Machine Learning for
Semiparametrically Efficient Estimation

Estimated functions f̂ , ĝ, presumably estimated using a
machine learning method, can be used to construct and
enter control variables into a linear regression as

yi = θti þ f̂ xið Þ, ĝ xið Þ
h i

γ þ ei: (6)

Semiparametric efficiency can be established by charac-
terizing and eliminating the gap between the infeasible
model inEquation5 and the feasiblemodel inEquation 6.
I do so by introducing approximation error terms,

Δf̂ ,i = f̂ xið Þ−f xið Þ; Δĝ,i = ĝ xið Þ−g xið Þ, (7)

that capture the distance between the true functions f ,g
and their estimates f̂ , ĝ at each xi.

Given these approximation errors, Equation 6 can be
rewritten in the familiar form of a measurement
error problem (Wooldridge 2013, chap. 9.4), where
the estimated functions f̂ , ĝ can be thought of as
“mismeasuring” the true functions f ,g:

yi = θti þ f xið Þ, g xið Þ½ �γ1 þ f̂ xið Þ−f xið Þ, ĝ xið Þ−g xið Þ
h i

γ2 þ ei:

(8)

yi = θti þ f xið Þ, g xið Þ½ �γ1 þ Δf̂ ,i, Δĝ,i

h i
γ2 þ ei: (9)

Establishing semiparametric efficiency of a feasible
estimator, then, consists of establishing a set of assump-
tions and an estimation strategy that leaves the approx-
imation error terms asymptotically negligible.

There are two pathways by which the approximation
error terms may bias an estimate. The first is if the
approximation errors do not tend toward zero. Elimi-
nating this bias requires that the approximation errors
vanish asymptotically, specifically at an n1=4 rate.7
Though seemingly technical, this assumption is actually
liberating. Many modern machine learning methods
that are used in political science provably achieve this
rate (Chernozhukov et al. 2018), including random
forests (Hill and Jones 2014; Montgomery and Olivella
2018), neural networks (Beck, King, and Zeng 2000),
and sparse regression models (Ratkovic and Tingley
2017). This assumption allows the researcher to con-
dense all the background covariates into a control
vector constructed from f̂ ,ĝ, where these functions are
estimated via a flexible machine learning method. Any
nonlinearities and interactions in the background

5 Appendix A in the Supplementary Materials contains a complete,
self-contained technical discussion.
6 There are often multiple and asymptotically equivalent ways to
estimate θ (see, e.g., Robins et al. 2007). In their double machine
learning algorithm, Chernozhukov et al. (2018) propose regressing
yi−f xið Þ on ti−g xið Þ, whereas I instead estimate θ from the reduced
form model. The two are asymptotically equivalent, but I favor the
reduced form approach because it more easily incorporates intuitions
and diagnostics from linear regression.

7 Formally, this requires

n1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i = 1
Δ2

f̂ ,i

r
!u 0; n1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i = 1
Δ2
ĝ,i

r
!u 0, (10)

where !u denotes converges uniformly, which is the notion of
convergence needed for complex, nonparametric functions. I provide
full details in Appendix A of the Supplementary Materials.
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covariates are then learned from the data rather than
specified by the researcher.
Eliminating the second pathway requires that any

correlation between the approximation errors Δf̂ ,i, Δĝ,i
and the error terms ei,vi tend toward zero.8 Doing so
requires addressing a subtle aspect of the approxima-
tion error: the estimates f̂ ,ĝ are themselves functions of
ei,vi , as they are estimates constructed from a single
observed sample. Even under the previous assumption
on the convergence rate of f̂ ,ĝ , this bias term may
persist.
The most elegant, and direct, way to eliminate this

bias is to employ a split-sample strategy, as shown in
Table 1.9 First, the data are split in half into subsamples
denoted S1 and S2 of size n1 and n2 such that n1 þ
n2 = n: Data from S1 are used to learn f̂ ,ĝ and data
fromS2 to conduct inference on θ. Because the nuisance
functions are learned on data wholly separate from that
on which inference is conducted, this bias term tends
toward zero. The resultant estimate is semiparametri-
cally efficient, under the conditions given in in 4.3.
Sample-splitting raises real efficiency concerns, as it

uses only half the data for inference and thereby
inflates standard errors by

ffiffiffi
2

p
≈1:4. In order to restore

efficiency, double machine learning implements a
cross-fitting strategy, whereby the roles of the subsam-
ples S1,S2 are swapped and the estimates combined.
Repeated cross-fitting consists of aggregating estimates
over multiple cross-fits, allowing all the data to be used
in estimation and returning results that are not sensitive

to how the data is split. A description of the algorithm
appears in Table 1.

Constructing Covariates and Second-Order
Semiparametric Efficiency

My first advance over the double machine learning
strategy of Chernozhukov et al. (2018) is constructing
a set of covariates that will further refine the estimates
of the nuisance functions. Doing so gives more assur-
ance that the method will, in fact, adjust for the true
nuisance functions f ,g.

In order to do so, consider the approximation

f̂ xið Þ≈f xið Þ þUΤ
f ,iγf ; ĝ xið Þ≈g xið Þ þUΤ

g,iγg (12)

or, equivalently,

Δf̂ ,i≈U
Τ
f ,iγf ; Δĝ,i≈UΤ

g,iγg (13)

for some vector of parameters γf ,γg.
These new vectors of control variables Uf ,i,Ug,i

capture the fluctuations of the estimated functions f̂ ,ĝ
around the true values, f ,g. The expected fluctuation of
an estimate around its true value is measured by its
standard error (Wooldridge 2013, sec. 2.5), so I construct
these control variables from the variance matrix of the
estimates themselves. Denoting as f̂ Xð Þ, ĝ Xð Þ the vec-
tors of estimated nuisance component f̂ , ĝ , I first con-

struct the variance matrices dVar f̂ Xð Þ
� �

and dVar ĝ Xð Þð Þ.
In order to summarize these matrices, I construct the
control vectors Ûf̂ ,i,Ûĝ,i from principal components of
the square root of the variance matrices.10

TABLE 1. The Double Machine Learning Algorithm of Chernozhukov et al. (2018)

Algorithm 1: The Double Machine Learning Algorithm

Outcome, treatment, and covariates yi, ti, xif gni=1
Result: for r in 1 to R do

Split the sample in half, generating S1, S2.
for j in 1 to 2 do

Estimate f, g in subsample Sj using a machine learning method.
Regress yi − ̂f(xi) on ti − ĝ(xi) using data from the other subsample.

end
Aggregate the point estimate, θ and standard error, σθ, over splits.

end

Note:The doublemachine learning algorithm combinesmachine learning, to learn how the covariates enter themodel, with a regression for
the coefficient of interest. Each step is done on a separate subsample of the data (sample-splitting), the roles of the two subsamples are
swapped (cross-fitting), and the estimate results from aggregating over multiple cross-fit estimates (repeated cross-fitting). The proposed
method builds on these strategies while adjusting for several forms of bias ignored by the double machine learning strategy.

8 Again, details appear in Appendix A, but valid inference will
require that the terms

ffiffiffi
n

p 1
n

Xn

i = 1
Δf̂ ,iei

� �
!u 0;

ffiffiffi
n

p 1
n

Xn

i = 1
Δf̂ ,ivi

� �
!u 0 (11)

as well as corresponding terms with Δĝ,i.
9 See Fong and Tyler (2021) and Ratkovic (2021) for contemporary
works in political science exploring a split-sample strategy.

10 For technical and implementation details, including how this
approach integrates with the split-sample strategy, see Appendices
A and D–E in the Supplementary Materials.
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Including these constructed covariates as control
variables offers advantages both practical and theoret-
ical. As a practical matter, augmenting the control set
f̂ , ĝ with the constructed control vectors Ûf̂ ,i,Ûĝ,i helps
guard against misspecification or chance error in the
estimates f̂ ,ĝ, adding an extra layer of accuracy to the
estimate and making it more likely that the method will
properly adjust for f .
As a theoretical matter, the method is an example of

a second-order semiparametrically efficient estimator.
Double machine learning is first-order semiparametri-
cally efficient because it only adjusts for the conditional
means f̂ , ĝ. By including the estimated controls f̂ , ĝbut
also principal components Uf̂ ,i,Uĝ,i constructed from
the variance (the second moment, see Wooldridge
2013, app. D.7), the estimates gain an extra order of
efficiency and return a second-order semiparametrically
efficient estimate.11 The theoretical gain is that second-
order efficiency requires only an n1=8 order of conver-
gence on the nuisance terms rather than n1=4. Although
seemingly technical, this simply means that the method
allows valid inference on θ while demanding less accu-
racy from the machine learning method estimating the
nuisance terms. At the most intuitive level, including
these additional control vectors makes it more likely
that the nuisance terms will be captured, with the
sample-splitting guarding against overfitting.

IMPROVING ON THE PARTIALLY
LINEAR MODEL

Doublemachine learning addresses a particular issue—
namely learning how the background covariates enter
the model. Several issues of interest to political scien-
tists remain unaddressed. I turn to these next, which
comprise my central contributions.

Adjusting for Treatment Effect
Heterogeneity Bias

Aronow and Samii (2016) show that the linear regres-
sion estimate of a coefficient on the treatment variable
is biased for the marginal effect. The bias emerges
through insufficient care in modeling the treatment
variable and heterogeneity in the treatment effect,
and the authors highlight this bias as a critical differ-
ence between a linear regression estimate and a causal
estimate.
To see this bias, denote as θi the effect of the

treatment on the outcome for observation i such that
the marginal effect is defined as θ = E θið Þ. To simplify
matters, presume the true functions f g are known,
allowing a regression to isolate as-if random

fluctuations of ei,vi . Incorporating the heterogeneity
in θi into the partially linear model gives

yi = tiθi þ f xið Þ, g xið Þ½ �γ þ ei (14)

= tiθ þ ti θi−θð Þ þ f xið Þ, g xið Þ½ �γ þ ei: (15)

The unmodeled effect heterogeneity introduces an
omitted variable, ti θi−θð Þ, which gives a bias of12

E θ̂−θ
� �

=
E Cov tið , ti θi−θð ÞjxiÞf g

E Var tijxið Þf g (16)

=
E v2i θi−θð Þ	 


E v2i
	 
 , (17)

which I will refer to as treatment effect heterogeneity
bias.

Inspection reveals that either one of two conditions
are sufficient to guarantee that the treatment hetero-
geneity variance bias is zero. The first occurs when
there is no treatment effect heterogeneity (θi = θ for
all observations), and the second when there is no
treatment assignment heteroskedasticity—E v2i

	 

is con-

stant across observations. As observational studies
rarely justify either assumption (see Samii 2016, for a
more complete discussion), researchers are left with a
gap between the marginal effect θ and the parameter
estimated by the partially linear model.

I will address this form of bias through modeling the
random component in the treatment assignment. As
with modeling the conditional means through unspeci-
fied nuisance functions, I will introduce an additional
function that will capture heteroskedasticity in the
treatment variable.

Interference and Group-Level Effects

The proposed method also adjusts for group-level
effects and interference. For the first, researchers com-
monly encounter data with some known grouping, say
at the state, province, or country level. To accommo-
date these studies, I incorporate random effect estima-
tion into the model. The proposed method also adjusts
for interference, where observations may be affected
by observations that are similar in some respects
(“homophily”) or different in some respects
(“heterophily”). For example, observations that are
geographically proximal may behave similarly (Ripley
1988; Ward and O’Loughlin 2002), actors may be con-
nected via a social network (Aronow and Samii 2017;
Sobel 2006), or social actors may react to ideologues on
the other end of the political divide (Hall and Thomp-
son 2018). In each setting, some part of an observation’s
outcome may be attributable to the characteristics of
other observations.

Existing approaches require a priori knowledge over
what variables drive the interference as well as how the

11 Formore on second- and higher-order efficiency, see van derVaart
(2014), Li et al. (2011), Robins et al. (2008), and Dalalyan, Golubev,
and Tsybakov (2006, esp. eq. [4]). Although this theoretical literature
is developed, I am the first to incorporate these ideas into software
and allow their use in an applied setting. 12 See Wooldridge (2013, eq. [5.4]).
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interference affects both the treatment variable and the
outcome. Instead, I use a machine learning method to
learn the type of interference in the data: what variables
are driving interference and in what manner.
The problem involves two components: a measure of

proximity and an interferent. The proximity measure
addresses which variables are driving how close two
observations are.13 In the spatial setting, for example,
these may be latitude and longitude. Alternatively,
observations closer in agemay behave similarly (homo-
phily) or observations with different education levels
may behave similarly (heterophily). The strength of the
interference is governed by a bandwidth parameter,
which characterizes the radius of influence of proximal
observations on a given observation. For example, with
a larger bandwidth, interference may be measurable
between people within a ten-year age range, but for a
narrower bandwidth, it may only be discernible within a
three-year range. The interferent is the variable that
affects other observations. For example, the treatment
level of a given observationmay be driven in part by the
income level (the interferent) of other observations
with a similar age (the proximity measure).
The method learns and adjusts for two types of

interference: that driven entirely by covariates and
the effect of one observations’ treatment on other
observations’ outcomes. For example, if the interfer-
ence among observations is driven entirely by exoge-
nous covariates, such as age or geography, the method
allows for valid inference on θ . Similarly, if there are
spillovers such that one observation’s treatment affects
another’s outcome, as with, say, vaccination, the
method can adjust for this form of spillover (e.g., Hud-
gens and Halloran 2008).14
The proposed method does not adjust for what

Manski (1993) terms endogenous interference, which
occurs when an observation’s outcome is driven by
the behavior of some group that includes itself. This
form of interference places the outcome variable on
both the left-hand and right-hand sides of the model,
inducing a simultaneity bias (see Wooldridge 2013,
chap. 16). Similarly, the method cannot adjust for the
simultaneity bias in the treatment variable. The third
form of interference not accounted for is when an
observation’s treatment is affected by its own or others’
outcomes, a form of posttreatment bias (Acharya,
Blackwell, and Sen 2016).

RELATIONTOCAUSALEFFECTESTIMATION

I have developed the method so far as a tool for
descriptive inference, estimating a slope term on a
treatment variable of interest. If the data and design
allow, the researcher may be interested in a causal
interpretation of her estimate.

Generating a valid causal effect estimate of the
marginal effect requires two steps beyond the descrip-
tive analysis. First, the estimate must be consistent for a
parameter constructed from an average of observation-
level causal effects. Correcting for the treatment effect
heterogeneity bias described in the previous
section accomplishes this. Doing so allows for estima-
tion of causal effects regardless of whether the treat-
ment variable is binary or continuous. Second, the data
must meet conditions that allow identification of the
causal estimate. I discuss the assumptions here, with a
formal presentation in Appendix B of the Supplemen-
tary Materials.

First, a stable value assumption requires a single
version of each level of the treatment.15 Most existing
studies include a noninterference assumption in this
assumption, which I am able to avoid due to the model-
ing of interference described in the previous section.
Second, a positivity assumption requires that the treat-
ment assignment be nondeterministic for every obser-
vation. These first two assumptions are standard. The
first is a matter of design and conceptual clarity,
whereas the accompanying software implements a
diagnostic for the second; see Appendix C of the
Supplementary Materials.

The third assumption, the ignorability assumption,
assumes that the observed observation-level covariates
are sufficient to break confounding (Sekhon 2009, 495)
such that treatment assignment can be considered as-if
random for observations with the same observation-
level covariate profile. Implicit in this assumption is the
absence of interference. The proposed method relaxes
this assumption, allowing for valid inference in the
presence of interference.

Even after adjusting for interference, simultaneity
bias can still invalidate the ignorability assumption, as
discussed in the previous section. This bias occurs when
an observation’s treatment is affected by other obser-
vations’ treatment level or when there is a direct effect
of any outcome on the treatment. Although the pro-
posedmethod’s associated software implements a diag-
nostic to assess the sensitivity of the estimates to these
assumptions (see Appendix C of the Supplementary
Materials), their plausibility must be established
through substantive knowledge by the researcher.

These assumptions clarify the nature of the estimand.
By assuming the covariates adjust for indirect effects
that may be coming from other observations, the pro-
posed method estimates an average direct effect of the
treatment on the outcome. Because the proposed
method adjusts for other observations’ treatments at
their observed level, it recovers an average controlled
direct effect. The estimated causal effect is then the
average effect of a one-unit move of a treatment on the

13 Manski (1993; 2013) refers to this as the reference group.
14 In this situation, the proposedmethod estimates what is termed the
“direct effect” of the treatment, as the method adjusts for indirect
effects that come from other observations.

15 The issue is one of conceptual clarity and must be handled by the
researcher. For example, taking as the treatment variable “attends
college” ignores both the quality of the schools and multiple versions
of the control condition, i.e., the many paths one may take in not
attending college. For more, see Imbens and Rubin (2015, secs. 1.2,
1.6.2).
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outcome, given all observations’ covariates and fixing
their treatments at the realized value.

THE PROPOSED MODEL

The proposedmodel expands the partially linearmodel
to include exogenous interference, heteroskedasticity
in the treatment assignment mechanism, and random
effects. I refer to it as the partially linear causal effect
(PLCE) model as, under the causal assumptions given
above, it returns a causal estimate of the treatment on
the outcome.
The treatment and outcomemodels for the proposed

method are

yi = θti þ f xið Þ þ ϕy xi, X−i, t−i, hy
	 
þ aj i½ � þ ei, (18)

and

ti = g1 xið Þ þ g2 xi, X−ið Þ~vi þ ϕt xi, X−i, t−i, htð Þ þ bj i½ � þ vi,

(19)

with the following conditions on the error terms:

aj �i:i:d: N 0, σ2a
	 


; bj �i:i:d: N 0, σ2b
	 


(20)

E eijxi, X−i, ti, t−ið Þ = E vijxi, X−ið Þ = E ~vijxi, X−ið Þ = 0,

(21)

E eivijxi, X−ið Þ = E ei~vijxi, X−ið Þ = E vi~vijxi, X−ið Þ = 0,

(22)

and

E e4i jxi, X−i, ti, t−i
	 


> 0; E v4i jxi, X−i
	 


> 0: (23)

Moving through the components of the model, θ is the
parameter of interest. The first set of nuisance functions
(f xið Þ, g1 xið Þ ) are inherited from the partially linear
model. The pure error terms ei, vi also follow directly
from the partially linear model.
The interference components are denoted

φy xi, X−i, t−i, hy
	 


, φt xi, X−i, htð Þ . The vector of band-
width parameters are denoted ht, hy, which will govern
the radius for which one observation affects others.
Note that either the treatment or the covariates from
one observation can affect another’s outcome, but the
only interference allowed in the treatment model
comes from the background covariates, as described
in the previous section.
The treatment variable has two error components.

The term vi is “pure noise” in that its variance is not a
function of covariates. The term ~vi is noise associated
with heteroskedasticity in the treatment variable. The
component g2 xi, X−ið Þ~vi will adjust for treatment effect
heterogeneity bias. The term ~vi is the error component in
the treatment associated with the function g2 xi, X−ið Þ ,

which drives any systematic heteroskedasticity in the
treatment variable.

The conditions on the error terms are also stan-
dard. The terms aj i½ �, bj i½ � are random effects with
observation i in group j i½ � (Gelman and Hill 2007),
and Condition 20 assumes the random effects are
realizations from a common normal distribution.
Equation 21 assumes no omitted variables that may
bias inference on θ . This conditional independence
assumption is standard in the semiparametric litera-
ture (see, e.g., Chernozhukov et al. 2018; Donald and
Newey 1994; Robinson 1988). Equation 22 ensures
that the error terms are all uncorrelated. Any corre-
lation between ei and either vi or ~vi would induce
simultaneity bias. The absence of correlation
between vi and ~vi fully isolates the heteroskedasticity
in the treatment variable in order to eliminate treat-
ment effect heterogeneity bias. The final assumptions
in Expression 23 require that there be a random
component in the outcome variable and the treat-
ment for each observation but that they not vary too
wildly as to preclude inference on θ . The right-side
element of the last display implies the positivity
assumption from the previous section.

Equation 18 and 19 can be combined into the infea-
sible reduced-form equation

yi ¼ θti þ f xið Þ,ϕy xi, X−i, t−i, hy
	 


, g1 xið Þ,
h

g2 xi, X−ið Þ~vi, ϕt xi, X−i, htð Þ
iΤ
γPLCE þ cj i½ � þ ei: (24)

where the random effect combines those from the
treatment and outcome model, cj i½ � = aj i½ � þ bj i½ � . The
next section adapts the repeated cross-fitting strategy
to the proposed model in order to construct a semipar-
ametrically efficient estimate of θ.

Formal Assumptions

The following assumption will allow a semiparametri-
cally efficient estimate of the marginal effect in the
PLCE model.

ASSUMPTION 1 (PLCE ASSUMPTIONS)

1. Population Model. The population model is given in
Equations 18 and 19, and all random components
satisfy the conditions in Equations 20–23.

2. Efficient Infeasible Estimate. Were all nuisance func-
tions known, the least squares estimate from the
reduced form model in Equation 24 would be effi-
cient and allow for valid inference on θ.

3. Representation. There exists a finite dimensional con-
trol vector Uu,i that allows for valid and efficient
inference on θ.

4. Approximation Error. All nuisance components are
estimated such that the approximation errors con-
verge uniformly at the rate n1=8.

5. Estimation Strategy. The split-sample strategy of
Figure 1 is employed.
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The first assumption requires that the structure of
the model and conditions on the error terms are
correct. The second assumption serves two purposes.
First, it requires that the standard least squares
assumptions (see, e.g.,Wooldridge 2013, Assumptions
MLR 1–5 in chap. 3) hold for the infeasible, reduced
formmodel. This requires no unobserved confounders
or unmodeled interference.16 Second, it establishes
the semiparametric efficiency bound, which is the
limiting distribution of the infeasible estimate θ̂ from
this model.
The third assumption structures the control vector,

Uu,i . This vector contains all estimates of each of the
nuisance functions in Equation 24, producing a first-
order semiparametrically efficient estimate. This
assumption guarantees that, by including the second-
order covariates discussed earlier, least squares can be
still be used to estimate θ.17
The fourth and fifth assumptions are analogous to

those implemented in the double machine learning
strategy (Chernozhukov et al. 2018). Including the
constructed covariates relaxes the accuracy required

of the approximation error from n1=4 to n1=8 , and the
importance of the repeated cross-fitting strategy in
eliminating biases between approximation errors and
the error terms ei, vi motivates a cross-fitting strategy.

Scope Conditions and Discussion of Assumptions

The assumption that Ui,u is finite dimensional is the
primary constraint on the model. Effectively, this
assumption allows all nuisance functions to condense
into a single control vector, allowing valid inference
with a linear regression in subsample S2. This assump-
tion compares favorably to many in the literature.
Belloni, Chernozhukov, and Hansen (2014) make a
“sparsity assumption,” that the conditional mean can
be well approximated by a subset of functions of the
covariates.18 I relax this assumption, as the estimated
principal components may be an average of a large
number of covariates and functions of covariates.

The use of principal components is a form of “suf-
ficient dimension reduction” (Hsing and Ren 2009; Li
2018), where I assume that the covariates and non-
linear functions of the covariates can be reduced to a
set that fully captures any systematic variance in the
outcome.19 I am able to sidestep the analytic issues in
characterizing the covariance function of the observa-
tions analytically (see, e.g., Wahba 1990) by instead

FIGURE 1. The Estimation Strategy

Full Data

Learn Nuisance FunctionsLearn Treatment
Error And Bandwidth Estimate Effect

Estimate error term
and bandwidth
parameters
û = {{̂ṽi}n

i=1,
̂hy, ̂ht}.

Estimate the control
vector ̂Ui,û by
combining point esti-
mates of the nuisance
functions with princi-
pal components of their
estimated variance.

Regress yi

on ti, ̂Ui,û.

Subsam
pleS

1

Su
bs

am
ple

S 0 Subsample S
2

Note: To estimate the components in the model, the data are split into thirds. Data in the first subsample, S0, are used to estimate the
interference bandwidths and treatment residuals. The second subsample, S1, given the estimates from the first, is used to construct the
covariates that will adjust for all the biases in the model. The third, S2, estimates a linear regression with the constructed covariates as
controls.

16 Crucial to the split-sample strategy is that the observations are
conditionally independent, meaning a valid marginal effect estimate
can be recovered on any randomly generated split. This requires that
this aspect is not broken by unmodeled interference. Intuitively, all of
the interference is condensed into the functions ϕy, ϕt such that, after
conditioning on these, observations are independent.
17 With added assumptions, the dimensionality of these covariates
could grow on the order of

ffiffiffi
n

p
, though I save this for further work

(see, e.g., Cattaneo, Jansson, and Newey 2018; Chernozhukov et al.
2018).

18 The authors rely on an “approximate sparsity” assumption where
the model is sparse up to an error tending toward zero in sample size.
19 See Appendix D of the Supplementary Materials for a discussion
of how the software implements nonlinearities and interactions.
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taking principal components of the variance matrix.
The sample-splitting strategy is also original.
Restricting Ui,u to be finite dimensional means that

the proposed method cannot accommodate data where
the dimensionality of the variance grows in sample size.
To give two examples, in the panel setting, the method
can handle random effects for each unit but not arbi-
trary nonparametric functions per unit. Second, the
proposed method can account for interference but only
if the dimensionality of the interference does not grow
in the sample size. This assumption is in line with those
made by other works on interference (Savje, Aronow,
and Hudgens 2021).
In not requiring distributional assumptions on the

treatment variable, the proposed method pushes past a
causal inference literature that is most developed with a
binary treatment. Many of the problems I address have
been resolved in the binary treatment setting (Robins,
Rotnitzky, andZhao 1994; van der Laan andRose 2011)
or where the treatment density is assumed (Fong,
Hazlett, and Imai 2018). Nonparametric estimates of
inverse density weights are inherently unstable, so I do
not pursue this approach but see Kennedy et al. (2017).
Rather, the proposed method mean-adjusts for con-
founding by constructing a set of control variables. I
showbelow, through simulation and empirical examples,
that the method generates reliable estimates.

Estimation Strategy: Three-Fold Split Sample

Heuristically, two sets of nuisance components enter
the model. The first are used to construct nuisance
functions: the treatment error ~vi that interacts with g2
and the bandwidth parametershy,ht that parameterize
the interference terms. I denote these parameters as
the set u = ~vif gni = 1, hy, ht

� �
. The second set are those

that, given the first set, enter additively into themodel.
These consist of the functions f , g1 but also the func-
tions g2,ϕy,ϕt. If u were known, estimating these terms
would collapse into the double machine learning of
Chernozhukov et al. (2018). Because u is not known, it
must also be estimated in a separate step, necessitating
a third split of the data.
I defer precise implementation details toAppendices

D and E in the Supplementary Materials, but more
important than particular implementation choices is the
general strategy for estimating the nuisance compo-
nents such that the approximation errors do not bias
inference on θ. I outline this strategy here.
The proposedmethod begins by splitting the data into

three subsamples, S0, S1, and S2, each containing a third
of the data. Then, in subsampleS0, all of the components
in the models in Equations 18 and 19 are estimated, but
only those marked below are retained:

yi = θti þ f xið Þ þ ϕyðxi,X−i,t−i, hy|{z}
S0

Þ þ aj i½ � þ ei, (25)

ti = g1 xið Þ þ g2 xi, X−ið Þ ~vi|{z}
S0

þ ϕtðxi,X−i,t−i, ht|{z}
S0

Þ þ bj i½ � þ vi:

(26)

These retained components, ĥy, ĥt and a model for

estimating the error terms b~vin on

i = 1
, are then carried

to subsample S1.
Data in subsample S1 are used to evaluate the

bandwidth parameters and error term using the values
from the previous subsample and, given these, to esti-
mate the terms marked below:

yi = θti þ f|{z}
S1

xið Þ þ ϕy|{z}
S1

xi, X−i, t−i, ĥy

� �
þ aj i½ �|{z}

S1

þ ei:

(27)

ti = g1|{z}
S1

xið Þ þ g2|{z}
S1

xi, X−ið Þb~vi þ ϕt xi, X−i, t−i, ĥt

� �
þ bj i½ �|{z}

S1

þ vi:

(28)

Having estimated all nuisance terms, including the
random effects, the feasible control variable Ûû,i is now
constructed. This variable consists of two sets of cov-
ariates. The first is the point estimates of all of the
nuisance components estimated from S0 and S1 but
evaluated on S2: It also includes the second-order
terms, also estimated on subsample S1 but evaluated
on subsample S2 . This control vector is then entered
into the reduced form model

yi = θti þ Û
Τ
û,iγ þ ei, (29)

which generates an estimate θ̂ and its standard error.
Estimation is done via a cross-fitting strategy,

where the roles of each subsample in generating the
estimate are swapped, this cross-fitting is repeated
multiple times, and the results aggregated. Complete
details appear in Appendix E of the Supplementary
Materials.

I now turn to illustrate the performance of the pro-
posed method in two simulation studies.

ILLUSTRATIVE SIMULATIONS

The simulations assess performance across three
dimensions: treatment effect heterogeneity bias, ran-
dom effects, and interference, generating eight dif-
ferent simulation settings. In each, a standard normal
covariate xi1 is drawn along with error terms vi and εi,
each standard normal, with the covariate standard-
ized so that 1

n

Pn
i = 1xi = 0 and 1

n

Pn
i = 1x

2
i = 1 . Four

additional normal noise covariates are included, with
pairwise correlations among all covariates 0.5, but
only the first is used to generate the treatment and the
outcome.

The simulations were designed to highlight my
theoretical expectations in the simplest possible set-
ting. In each setting, the marginal effect is in-truth
1, the systematic component is driven entirely by the
first covariate, and all covariates, random effects, and
the error terms are normally distributed. Table 2
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provides details. The first model is additive, noninter-
active, and equivariant in all errors, serving as a
baseline. The second model induces treatment effect
heterogeneity bias by including an interaction
between the treatment and squared covariate along
with heteroskedasticity in the treatment residual. The
third adds a fifty-leveled, standard normally distrib-
uted random effect as a confounder, and the fourth
adds an interaction term. Note that summations are
over all other observations such that the outcome is a
function of other observations’ treatment level and
the treatment is a function of other observations’
squared covariate.
The covariates are then transformed as

x∗
i = xi1−

1
2
xi2, xi2−

1
2
xi1, xi3, xi4, xi5


 �
,

and each method is given the outcome, treatment,
transformed covariates, and indicator variables for
the random effects regardless of whether the
random effects are in the true data-generating pro-
cess. I report results for n = 1,000, with additional
sample sizes in Appendix F of the Supplementary
Materials.20
Along with the proposed method (PLCE), I imple-

ment four different machine learning methods. Kernel
regularized least squares (KRLS; Hainmueller and
Hazlett 2013) fits a single, nonparametric regression,
takes the partial derivative of the fitted model with

respect to the treatment variable, and returns the
average of these values as the marginal effect. The
covariate balancing propensity score for continuous
treatments (CBPS; Fong, Hazlett, and Imai 2018)21
generates a set of weights that eliminate the effect of
confounders under the assumption that the treatment
distribution is normal and equivariant. I also include
the double machine learning (DML) algorithm of
Chernozhukov et al. (2018) with random forests used
to learn f̂ , ĝ and the generalized random forest (GRF)
of Athey, Tibshirani, and Wager (2019), which is
similar to DML but uses a particular random forest
algorithm tuned for efficient inference on a marginal
effect. Ordinary least squares (OLS) is included for
comparison.

The KRLS approach is closest to the proposed
method in that both implement a nonparametric
regression model. Thus, KRLS should handle non-
linearities well, but because it does not engage in a
split-sample strategy, I expect undercoverage with its
confidence intervals. The DML and GRF methods do
engage in a split-sample strategy, but, like KRLS, they
were not designed to handle random effects. I expect
all three to perform poorly. Ordinary least squares
should handle the random effects well, as they are
simply entered as covariates in the model, but this
should be particularly susceptible to treatment effect
heterogeneity bias. None of the methods were con-
structed to adjust for interference. The proposed

TABLE 2. Simulation Specifications

Model Specifications

Baseline: yi = ti þ x2i1 þ ϵ i ti = xi1 þ vi; vi �i:i:d: N 0, 1ð Þ
Treatment Effect Heterogeneity: yi = ti � x2i1 þ ϵ i ti = xi1 þ vi; vi �i:i:d: N 0,

x2i1þ1
2

� �
Random Effects: yi = � þaj i½ � ti = � þaj i½ �; aj �i:i:d: N 0, 1ð Þ; #j = 50

Interference: yi = � þψt,i ti = � þψx,i

Constructing Interference Terms

Interference Covariates : ψt,i =
X

i0 6¼i
pi,i0 � ti0 ; ψx,i =

X
i0 6¼i

pi,i0 � x2i01,

where pi,i0 =
e− xi1−xi01ð Þ2P
i0 6¼ie

− xi1−xi01ð Þ2 :

Note: The first simulation begins with the baseline additivemodel, and the second adds treatment effect heterogeneity bias by introducing a
correlation between effect heterogeneity and treatment assignment heteroskedasticity. In the third, a fifty-leveled random effect is included
as a confounder. The final specification adds an interference term, with the precise construction of the term at the bottom. The residual term
εi follows a standard normal.

20 At smaller sample sizes, the method performs similarly in terms of
point estimation, and n = 250 the confidence intervals are valid but a
bit conservative, while for n = 500 and above, the results appear
similar to the results in the body.

21 In this simulation, I use parametric CBPS, so that I can recover
standard error estimates. So as not to handicap the method, I give it
both the covariates and their square terms, so the true generative
model is being balanced.
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method, PLCE, should do a reasonable job across all
settings, as it was designed to handle random effects
and adjust for both interference and treatment effect
heterogeneity bias.

Results for the Setting without Interference

The results for the simulations without interference are
in Figure 2. The first column shows the distribution of
point estimates, with the true value of 1 in gray. The

second column shows the coverage rates: expected
coverage is on the x-axis and actual coverage is on the
y-axis.22 For example, consider in the top right plot the
point marked “�” at 0:90,0:85ð Þ, which is on the CBPS
curve. Here, I constructed a 90% confidence interval of

FIGURE 2. Results for Simulations without Interference
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Note: The first column shows the distribution of point estimates, where the true value is 1, in gray. The second column shows the coverage
rates: expected coverage is on the x-axis and actual coverage is on the y-axis. If a curve falls below the 45° line, the confidence intervals are
too narrow and thus invalid. If the curve falls above the 45° line, the confidence intervals are valid but wide. The proposedmethod (PLCE) is
compared with GRF, DML, CBPS, KRLS, and OLS. The proposed method, PLCE, is the only one to perform well across all settings.

22 The “coverage rate” is the proportion of samples for which the
constructed confidence interval contains the true value of 1 (see, e.g.,
Wooldridge 2013, sec. 4.3.).
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the form θ̂−1:64σ̂θ̂, θ̂ þ 1:64σ̂θ̂
h i

and measured the

proportion of simulations where the confidence inter-
val contains the true value of 1. In this case, for CBPS,
this value is 0.85, so the 90% confidence interval is
invalid, albeit only slightly too narrow. More generally,
if a curve falls below the 45° line, the confidence
intervals are too narrow and thus invalid. If the curve
falls above the 45° line, the confidence intervals are
valid but wide.
The simulation settings increase in complexity going

down the rows. The first row of figures contains contains
the baseline model, the second, the model with group
indicators added, the third, the baseline model with
treatment effect heterogeneity, and the fourth, both treat-
ment effect heterogeneity model and random effects.
Starting in the first row, everymethod performs well

in the baseline model, though KRLS exhibits under-
coverage. In the second row, with random effects
added, only the proposed method and OLS provide
unbiased estimates and valid inference. In the third
row, the proposed method and KRLS are unbiased
with valid intervals. In the final row, with both random
effects and treatment effect heterogeneity, every
method shows discernible bias, but the proposed
method and KRLS have the lowest bias and the fewest
misleading confidence errors.
Several machine learning methods fail to provide

unbiased estimation in the presence of random effects
or a simple interaction between the treatment effect
and treatment residual. Across all settings, the pro-
posed method is the only one that that allows for valid
inference.

Results for the Setting with Interference

Figure 3 presents results from the simulations in the
presence of interference. All methods save least squares
return accurate point estimates in the simplest setting,
with the proposed method, DML, and CBPS providing
narrow but reasonable confidence intervals. Coverage
fromGRF, although valid in the setting without interfer-
ence, is now near zero. In the remaining rows, the point
estimates are reasonable, particularly for the proposed
method but also KRLS. The effect of interference shows
up in the coverage rates. In the bottom three settings,
coverage rates are near zero for all methods. Only the
proposed method provides both reliable point estimates
and confidence intervals across each of the settings.

EMPIRICAL APPLICATIONS

I illustrate the proposed method using data from two
recent studies. First, I reanalyze experimental data to
illustrate that the proposed method returns estimates
and standard errors similar to those from a linear
regression when the linear regression is the correct
thing to do. Second, I show how the method can
estimate a treatment effect with a continuous treatment
variable. I use data from a study where the researcher

was forced to dichotomize a continuous treatment in
order to estimate a causal effect.

Maintaining Efficiency

Mattes andWeeks (2019) conduct a survey experiment
in the United States, asking respondents about a hypo-
thetical foreign affairs crisis involving China and mili-
tary presence in the Arctic. Varied is whether the
hypothetical President is a hawk or dove, whether the
policy is conciliatory or maintains status quo military
levels, the party of the President, and whether the
policy is effective in reducing Chinesemilitary presence
in the Arctic. The outcome is whether the respondent
disapproves of the President’s behavior; controls con-
sist of measures of the respondent’s hawkishness, views
on internationalism, trust in other nations, previous
vote, age, gender, education, party ID, ideology, inter-
est in news, and importance of religion in their life.

I focus on how the estimated causal effect of concilia-
tion varies between hawks and doves, as reported in
Table 2 of the original work. The results appear in
Table 3. For the two estimated effects, the proposed
method returns results quite similar to those obtained
with least squares. Importantly, the standard errors are
comparable across the methods, suggesting no efficiency
loss when employing the proposed method in a situation
where least squares is known to beunbiased andefficient.

Estimating aCausal Effect in thePresence of a
Continuous Treatment

I next reanalyze data from a recent study that estimated
the causal effect of racial threat on voter turnout (Enos
2016). The author operationalizes racial threat by dis-
tance to a public housing project, a continuous mea-
sure, and measures its effect on voting behavior. The
demolishment of a subset of the projects in the early
2000s in Chicago provides a natural experiment used
for identifying the causal effect. The author implements
a difference-in-difference analysis that, unfortunately,
requires a binary treatment. To accommodate the
method, the author artificially dichotomizes the contin-
uous treatment variable, considering all observations
closer than some threshold distance to the projects as
exposed to racial threat and observations further away
as not. However, the threshold is not actually known, or
even estimable, given the data. There is no reason to
suspect that racial threat only extends, say, 0.3 kilome-
ters, and drops off precipitously after. The proposed
method allows estimation of the average causal effect
of distance on the outcome.

I conduct four separate analyses. For the first, I
estimate the causal effect of distance on change in
turnout for white residents within one kilometer of a
demolished housing project. The treatment variable is
distance to the housing project, and the control vari-
ables consist of turnout in the previous two elections
(1996, 1998), age, squared age, gender, median
income for the Census block, value of dwelling place,
and whether the deed for the residence is in the name
of the voter. I also include a random effect for
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identifying the housing project nearest to each indi-
vidual.23 I next generate three matched samples for
further analysis.24 The first contains Black voters
within one kilometer of a demolished housing project.

As argued in the original piece (11), this group will not
face racial threat, so it provides a measure of any trend
in turnout absent racial threat. The next two samples
consist of white and Black voters, but both are further
than one kilometer from any housing project, either
demolished or not. The latter two groups serve as

FIGURE 3. Results for Simulations with Interference

1

2

3

E
st

im
at

e

PLCE GRF DML CBPS KRLS OLS 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Expected Coverage

A
ct

u
al

 C
ov

er
ag

e PLCE
GRF
DML
CBPS
KRLS
OLS

1

2

3

E
st

im
at

e

PLCE GRF DML CBPS KRLS OLS 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Expected Coverage

A
ct

u
al

 C
ov

er
ag

e PLCE
GRF
DML
CBPS
KRLS
OLS

1

2

3

E
st

im
at

e

PLCE GRF DML CBPS KRLS OLS 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Expected Coverage

A
ct

u
al

 C
ov

er
ag

e PLCE
GRF
DML
CBPS
KRLS
OLS

1

2

3

E
st

im
at

e

PLCE GRF DML CBPS KRLS OLS 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Expected Coverage

A
ct

u
al

 C
ov

er
ag

e PLCE
GRF
DML
CBPS
KRLS
OLS

B
o

th
Tr

ea
tm

en
t 

E
ff

ec
t

 H
et

er
o

g
en

ei
ty

R
an

d
o

m
 E

ff
ec

ts
 

B
as

el
in

e

Note: The first column shows the distribution of point estimates, where the true value is 1, in gray. The second column shows the coverage
rates: expected coverage is on the x-axis and actual coverage is on the y-axis. If a curve falls below the 45°, the confidence intervals are too
narrow and thus invalid. If the curve falls above the 45° line, the confidence intervals are valid but wide. The proposed method (PLCE) is
compared with GRF, DML, CBPS, KRLS, and OLS. The proposed method, PLCE, is the only one to perform well across all settings.

23 See the supplementary materials of Enos (2016) for more details.
24 I estimate distance as a function of all covariates for white residents
within one kilometer of a demolished project using a random forest. I
then use this model to predict the treatment level, using Black
residents within one kilometer and then white and Black residents

greater than one kilometer away. Nearest neighbor matching is
implemented to construct the three additional datasets.
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placebo groups, as they are sufficiently far from a
demolished project that any threat should be muted.
Figure 4 presents the effect estimates. I estimate that

living adjacent to a public housing unit, rather than one
kilometer away, causes a decrease in turnout of about
8:06 percentage points for white residents
(SE = 0:0389, z = 2:07), an effect in line with the results
from the original analysis (see Figure 1 there). The
estimated effect for Black voters near housing projects
of 0:017 SE = 0:035, z = 0:48ð Þ is not significant. The
bottom two lines consider distal Blacks and whites,
providing a placebo test. I find no effect of distance on
turnout. Along with not relying on a user-specified
control set, the proposedmethod allows for causal effect
estimation with a continuous treatment variable. I find
results of a magnitude similar to those from the original
study butwithout needing to transform the data so that it
is amenable to a framework that generally relies on a
binary treatment.

CONCLUSION

Testing intuitions and hypotheses against the data in a
way that does not rely on strong assumptions is essen-
tial to a reliable accumulation of knowledge. Doing so
builds faith that the results and theory are driven by
actual trends in the data and not a particular set of
choices made by the researcher. To this end, I have
introduced to political science a framework, taken from
the field of semiparametric inference, for conducting
valid inference while allowing machine learning
methods to construct a control vector that can account
for a wide range of commonly encountered biases.
Essential to this approach is a sample-splitting strategy,
where the same data is never used to both construct the
control vector and conduct inference. I have extended
this literature, allowing for inference that is robust to
both heterogeneities in the treatment effect and partic-
ular patterns of interference among observations. The
method extends causal inference, as well, accommodat-
ing continuous treatment variables. The accompanying
software allows these analyses to be done in a line or
two of code and allows for several diagnostics.

Ultimately, my goal is to allow for more believable,
less assumption-driven inference. I move the field in
this direction, where machine learning can be incorpo-
rated into workaday research as a means of controlling
for background covariates, freeing the researcher to
develop and test theories with some confidence that the
results are not driven by her ability to specify every
element of a statistical model.

SUPPLEMENTARY MATERIALS

To view supplementary material for this article, please
visit http://doi.org/10.1017/S0003055422001022.
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