

DANIEL DELBOURGO

Department of Mathematics, University Park, Nottingham NG7 2RD, England e-mail: dd@maths.nott.ac.uk

(Received 23 March, 2000; accepted 3 August 2000)

Abstract. We construct three *p*-adic *L*-functions attached to the symmetric square of a modular elliptic curve. Following a calculation of Perrin-Riou for one of these functions, we compute the derivative of the *p*-adic *L*-function associated to the square of the non-unit root of Frobenius at *p*. This generalises Greenberg's notion of \mathcal{L} -invariant to these three-dimensional Galois representions.

2000 Mathematics Subject Classification. 11R23, 11E95, 11G40.

0. Introduction. The study of adjoint modular forms has proven to be a fruitful area of number theory. Let $\text{Sym}^2 E$ denote the symmetric square of a modular elliptic curve E defined over the rationals. Central to our understanding of the Iwasawa theory of $\text{Sym}^2 E$ is a predicted link between certain arithmetic Iwasawa modules (in the *p*-ordinary case Selmer groups over the \mathbb{Z}_p -extension of \mathbb{Q}) and the *p*-adic *L*-functions attached to the motive.

Assume that *E* has good ordinary reduction at a prime $p \neq 2$. Then the local Euler factor at *p* is of the form

$$(1 - \alpha_p^2 X)(1 - pX)(1 - \overline{\alpha_p}^2 X),$$

where α_p is a *p*-adic unit. A conjecture of Perrin-Riou [12] predicts the existence of a map $\mathbf{L}^p(\operatorname{Sym}^2 E(2))$ interpolating Dirichlet twists of the complex *L*-function $L(\operatorname{Sym}^2 E, s)$ at s = 2; the map is parametrized by removing exactly one of the linear factors above and so should really be thought of as three *p*-adic *L*-functions rather than just a single one.

In §1–§4 we construct three analytic *L*-series corresponding to the three components of \mathbf{L}^p (Existence Theorem, p. 54), except that for the factor (1 - pX) our *L*-series interpolates the square of the special values. For example, the element obtained by removing $(1 - \alpha_p^2 X)$ is essentially the Iwasawa *L*-function constructed by Coates and Schmidt [2]. Whilst we prove the existence of the components of \mathbf{L}^p we cannot prove uniqueness as our *p*-adic distributions are only 3-admissible.

Two out of the three *L*-functions vanish at zero even though $L(\text{Sym}^2 E, 2)$ is non-zero. Perrin-Riou [13] has calculated the derivative of the Coates-Schmidt *L*-function under the assumption that \mathbf{L}^p comes from a norm-compatible system. In §5–§7 we calculate the derivative for the component obtained by removing $(1 - \overline{\alpha_p}^2 X)$ (Derivative Theorem, p. 62); the corresponding formula thus generalizes Greenberg's notion of \mathcal{L} -invariant [8] to the conjugate *p*-adic measure.

1. Preliminaries. We begin by recalling some well-known properties of the symmetric square. Suppose that *E* denotes a modular elliptic curve defined over \mathbb{Q} . By the symmetric square Sym²*E* we mean the pure motive over \mathbb{Q} whose *l*-adic realisations are Sym² $H^1_{\text{ét}}(\overline{E}, \mathbb{Q}_l)$. As usual we define its *L*-series by

$$L(\operatorname{Sym}^{2} E, s) := \prod_{p} \mathfrak{D}_{p}(p^{-s})^{-1} \qquad (\operatorname{Re}(s) > 2),$$

with

$$\mathfrak{D}_p(X) := \det\left(1 - \operatorname{Frob}_p^{-1} X | \left(\operatorname{Sym}^2 H^1_{\operatorname{\acute{e}t}}(\overline{E}, \mathbb{Q}_l)\right)^{I_p}\right) \quad \text{for any prime } l \neq p,$$

and where we have fixed a decomposition group $G_{\mathbb{Q}_p}$ with inertial subgroup I_p (note that this definition is independent of the choice of I). If χ denotes a Dirichlet character we write $L(\text{Sym}^2 E, \chi, s)$ for the twisted series $\prod_p \mathfrak{D}_p(\chi(p)p^{-s})^{-1}$.

As a consequence of the work of Gelbart and Jacquet [7], $\text{Sym}^2 E$ can be identified with a cuspidal automorphic representation of GL₃ via a base-change lift from GL₂. They prove that for all twists $\text{Sym}^2 E \otimes \chi$ the completed *L*-function

$$\Gamma_{\mathbb{C}}(s)\Gamma_{\mathbb{R}}(s-\nu)L(\operatorname{Sym}^{2} E\otimes\chi,s)$$

has analytic continuation to the whole *s*-plane and satisfies a functional equation relating the value at s to the value at 3 - s.

Central to our interpolation method is the following result of Sturm. Recall for an arbitrary Dirichlet character χ that its Gauss sum is given by

$$G(\chi) := \sum_{n=1}^{\operatorname{cond}(\chi)} \chi(n) \exp\left(\frac{2\pi i n}{\operatorname{cond}(\chi)}\right).$$

We shall write Ω_E^+ (resp. Ω_E^-) for the real (resp. imaginary) period of a Néron differential associated to a minimal Weierstrass equation for *E* over \mathbb{Z} . In [18,19] Sturm demonstrates that at the critical points the special values

$$\frac{G(\chi) L(\operatorname{Sym}^2 E, \overline{\chi}, 1)}{(2\pi i)^{-1} \Omega_E^+ \Omega_E^-} \quad \text{and} \quad \frac{G(\chi)^2 L(\operatorname{Sym}^2 E, \overline{\chi}, 2)}{(2\pi i) \Omega_E^+ \Omega_E^-}$$

are algebraic numbers lying in the field generated over \mathbb{Q} by the values of χ . Hence we can consider these values as *p*-adic numbers via some fixed embedding of $\overline{\mathbb{Q}}$ into $\overline{\mathbb{Q}_p}$.

Unfortunately the point of symmetry in the functional equation lies between s = 1 and s = 2, which prevents us from interpolating at both critical points simultaneously. However, the properties of the Kubota-Leopoldt *p*-adic *L*-functions enable us to extend our distributions outside of the critical strip and thus check the admissibility of the associated measures.

For the rest of this article we assume that $p \neq 2$. If $\mathbb{Q}(\mu_{p^{\infty}})$ denotes the field obtained by adjoining all *p*-power roots of unity to \mathbb{Q} , then $G_{\infty} := \operatorname{Gal}(\mathbb{Q}(\mu_{p^{\infty}})/\mathbb{Q}) = \Gamma \times \Delta$, where $\Gamma \cong \mathbb{Z}_p$ and $\Delta \cong (\mathbb{Z}/p\mathbb{Z})^{\times}$; we define $G_{\infty}^+ := \operatorname{Gal}(\mathbb{Q}(\mu_{p^{\infty}})^+/\mathbb{Q})$ to be the Galois group of its maximal real subfield.

Let γ_0 be a topological generator of Γ . We write $\mathbb{Z}_p[\![\Gamma]\!]$ for the Iwasawa algebra of Γ , which is isomorphic to the power series ring $\mathbb{Z}_p[\![T]\!]$ via the map $\gamma_0 \mapsto 1 + T$. In general this is too small to contain all *p*-adic *L*-functions that arise from interpolation problems. For $r \in \mathbb{N}$ let us define

$$\mathcal{H}_r(T) := \left\{ h(T) \in \mathbb{Q}_p[\![T]\!] \text{ such that } h(T) \text{ is } o\big(\log_p^r(1+T)\big) \right\}$$

Whilst this is not a ring we can easily form one by putting $\mathcal{H}(T) := \bigcup_r \mathcal{H}_r(T)$; we set

$$\mathcal{H}(G_{\infty}) := \mathcal{H}(T) \otimes_{\mathbb{Z}_p[\![\Gamma]\!]} \mathbb{Z}_p[\![G_{\infty}]\!]$$

Let \mathbb{C}_p denote the Tate field, i.e. the completion of the algebraic closure of \mathbb{Q}_p . The group of continuous characters $\mathfrak{X}_p := \operatorname{Hom}_{\operatorname{cont}}(G_{\infty}, \mathbb{C}_p^{\times})$ acts naturally on G_{∞} and this action extends by linearity and continuity to both $\mathbb{Z}_p[\![G_{\infty}]\!]$ and $\mathcal{H}(G_{\infty})$.

We fix once and for all an embedding of $\overline{\mathbb{Q}}$ into \mathbb{C}_p . Under this embedding we can identify Dirichlet characters of *p*-power conductor with elements of $\mathfrak{X}_p^{\text{tors}}$. We shall denote the *p*th-cyclotomic character by κ ; this gives the Galois action on the *p*-power roots of unity.

Finally, if X denotes any module with an action of complex conjugation, then we write X_+ (resp. X_-) for the part on which complex conjugation acts by +1 (resp. -1).

2. Properties of the map L^p . In the monograph [12] Perrin-Riou outlines a beautiful theory for the *p*-adic *L*-function $L^p(M)$ associated to a motive *M* with good reduction at *p*. She predicts that such functions originate as norm-compatible elements in the inverse limits of certain Galois cohomology groups, which can then be transformed into $L^p(M)$ via an interpolating homomorphism, LOG_{∞} , say.

In particular $L^p(M)$ is parametrized by a suitable exterior power of the Dieudonné module associated to the *p*-adic representation, and is defined by its special values on a certain set of Tate twists $J \subset \mathbb{Z}$. The motive is called "*J*-admissible" if this set of twists is large enough to uniquely determine the *p*-adic *L*-function. As an example consider the Tate motive $\mathbb{Q}(1)$; the norm-compatible elements are the cyclotomic units, $L^p(M)$ is (up to normalisation) the Kubota-Leopoldt *p*-adic zetafunction, and the map LOG_{∞} is none other than the power series construction of Coleman.

Before specialising to the case of the symmetric square, we recall from [6] the definition of the topological $G_{\mathbb{Q}_p}$ -modules B_{crys} and B_{dR} : B_{dR} is a discrete valuation field with residue field \mathbb{C}_p and decreasing filtration B_{dR}^i for $i \in \mathbb{Z}$. The subring B_{crys} has in addition a Frobenius operator and a filtration induced from that of B_{dR} . If V is a finite-dimensional p-adic representation of $G_{\mathbb{Q}_p}$, then we define vector spaces by

$$\mathbf{D}_{\rm cr}(V) := \left(V \otimes B_{\rm crys} \right)^{G_{\mathbb{Q}_p}} \quad \text{and} \quad \mathbf{D}_{\rm dR}(V) := (V \otimes B_{\rm dR})^{G_{\mathbb{Q}_p}}$$

The space V is said to be *crystalline* (resp. *de Rham*) if $\dim_{\mathbb{Q}_p} \mathbf{D}_{cr}(V) = \dim_{\mathbb{Q}_p} V$ (resp. $\dim_{\mathbb{Q}_p} \mathbf{D}_{dR}(V) = \dim_{\mathbb{Q}_p} V$). Both spaces have decreasing exhaustive filtrations induced from B_{dR} , and $\mathbf{D}_{cr}(V)$ has a Frobenius operator we shall denote by φ ; moreover, if V is crystalline, then $\mathbf{D}_{cr}(V) = \mathbf{D}_{dR}(V)$.

From now on $M = \text{Sym}^2 E(2)$ and $V = \text{Sym}^2 T_p E \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$, where $T_p E$ is the *p*-adic Tate module of *E*. If M_{dR} is the de Rham realisation of *M*, let **e** denote a base over \mathbb{Q} of the space det M_{dR} and fix a generator γ_B of det $(\text{Sym}^2 H_1(E, \mathbb{Z})_+)$ over \mathbb{Z} . Then the complex period $\Omega_{\infty,\omega_{\mathbb{Q}}}$ is defined by $\Omega_{\infty,\omega_{\mathbb{Q}}} \mathbf{e} = \omega_{\mathbb{Q}} \wedge \gamma_B$, where $\omega_{\mathbb{Q}}$ is a chosen base of Fil⁰ M_{dR} . Multiplying $\omega_{\mathbb{Q}}$ by an element of \mathbb{Q}^{\times} if necessary, we shall assume that

$$\Omega_{\infty,\omega_{\mathbb{Q}}} = (2\pi i)\Omega_E^+\Omega_E^-$$

Analogously there is a *p*-adic period map

$$\Omega_{p,\omega_{\mathbb{Q}}} : \wedge^{2} \mathbf{D}_{\mathrm{dR}}(V) \to \mathbb{Q}_{p} \otimes \mathrm{det} M_{\mathrm{dR}}$$
$$n \mapsto \omega_{\mathbb{Q}} \wedge n.$$

Whilst $\Omega_{p,\omega_{\mathbb{Q}}}(n)$ clearly depends on the choice of parameter $n \in \wedge^2 \mathbf{D}_{dR}(V)$, the complex period $\Omega_{\infty,\omega_{\mathbb{Q}}}$ is fixed.

FORMULA VAL.SP (M, χ) —[12]. Assume that E has good reduction at $p \neq 2$. There should exist a map $L^p = L^p(M)$ in $\operatorname{Hom}(\wedge^2 \mathbf{D}_{cr}(V), \mathcal{H}(G^+_{\infty}))$ satisfying

$$\wedge^{2}(\varphi)^{-m_{\chi}}\chi^{-1}(\mathbf{L}^{p})\mathbf{e} = \frac{G(\chi)^{2} L(\operatorname{Sym}^{2}E, \overline{\chi}, 2)}{\Omega_{\infty,\omega_{\mathbb{Q}}}}\Omega_{p,\omega_{\mathbb{Q}}}$$

for all non-trivial even characters $\chi \in \mathfrak{X}_p^{\text{tors}}$ of conductor $p^{m_{\chi}}$, with constant term

$$(1-p^{-1}\varphi^{-1})\mathbf{1}(\mathbf{L}^p)\mathbf{e} = \frac{L_{\{p\}}(\mathrm{Sym}^2 E, 2)}{\Omega_{\infty,\omega_{\mathbb{Q}}}}(1-\varphi)\Omega_{p,\omega_{\mathbb{Q}}}.$$

In down-to-earth terms, the above formulae predict how the Euler factor at p should be modified in order to yield admissible p-adic functions. Thus the dimension of $\wedge^2 \mathbf{D}_{cr}(V)$ reflects the number of (linearly-independent) *L*-functions that can be interpolated by hand.

REMARK. The Frobenius $\wedge^2(\varphi)$ acts on $\wedge^2 \mathbf{D}_{cr}(V)$ while χ^{-1} should be viewed as a specialisation from $\mathcal{H}(G_{\infty}^+)$ to $\overline{\mathbb{Q}}_p$. In fact the formula at the trivial character **1** was omitted from [**12**] because p^{-1} is an eigenvalue of φ on $\mathbf{D}_{cr}(V)$, so that the operator $(1 - \varphi)$ is not invertible. (Note that the action of φ on $f \in \operatorname{Hom}_{\mathbb{Q}_p}(\mathbf{D}_{cr}(V), \mathbb{Q}_p)$ is given by $\varphi(f)(x) = p^{-1}f(\varphi^{-1}x)$.)

It should be pointed out that by itself VAL.SP(M, χ) does not determine these functions uniquely; in fact we need to establish analogous formulae VAL.SP($M, \chi \kappa^{j}$) for a *J*-admissible subset of \mathbb{Z} . At present we are unable to do this due to the lack of an algebraicity result at non-critical Tate twists. In order to construct a function satisfying VAL.SP(M, χ) it is sufficient to find *p*-adic *L*-functions corresponding to a suitably chosen eigenbasis for $\wedge^{2}(\varphi)$ on $\wedge^{2}\mathbf{D}_{cr}(V)$.

From now on we assume that E has good ordinary reduction at $p \neq 2$. Factorizing the characteristic polynomial of Frobenius at p by

$$X^2 - a_p X + p = (X - \alpha_p)(X - \beta_p)$$

we suppose that $\alpha_p \in \mathbb{Z}_p^{\times}$ as in the introduction. If $U = T_p E \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ then pick generators $u_0 \in \mathbf{D}_{cr}(U)^{\varphi = \alpha_p^{-1}}$, $u_{-1} \in \mathbf{D}_{cr}(U)^{\varphi = \beta_p^{-1}}$ and assume $\operatorname{Fil}^0 \mathbf{D}_{cr}(U) = \mathbb{Q}_p(u_0 + \lambda u_{-1})$ with $\lambda \neq 0$ (so that U does not split). We can then define bases $e_0 = u_0^2$ for $\mathbf{D}_{cr}(V)^{\varphi = \alpha_p^{-2}}$, $e_{-1} = u_0 u_{-1}$ for $\mathbf{D}_{cr}(V)^{\varphi = p^{-1}}$ and $e_{-2} = u_{-1}^2$ for $\mathbf{D}_{cr}(V)^{\varphi = \beta_p^{-2}}$, respectively; moreover e_{-1} is uniquely determined if we specify that $u_0 \wedge u_{-1}$ equals 1 in $\mathbf{D}_{cr}(\mathbb{Q}_p(1)) = \mathbb{Q}_p$. For the same reasons

$$\mathbf{e} = e_0 \wedge e_{-1} \wedge e_{-2}$$

is independent of the choice of $\{u_0, u_{-1}\}$ and generates det $\mathbf{D}_{cr}(V)$.

Finally, we have a φ -eigenbasis $n_{\alpha^2} = e_{-1} \wedge e_{-2}$, $n_p = e_0 \wedge e_{-2}$ and $n_{\beta^2} = e_0 \wedge e_{-1}$ for the space $\wedge^2 \mathbf{D}_{cr}(V)$ that we shall use to parametrize the map \mathbf{L}^p . Each basis element corresponds to choosing a root of $\mathfrak{D}_p(X)$ when *p*-adically interpolating $L(\operatorname{Sym}^2 E, \overline{\chi}, 2)$.

3. *p*-adic distributions on the cyclotomic extension. We begin by fixing some notations; let \mathfrak{H} denote the upper half plane. For any $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{R})$ the action $\gamma z := \frac{az+b}{cz+d}$ defines an automorphism of $\mathfrak{H} \cup \mathbb{R} \cup \{\infty\}$. If $g : \mathfrak{H} \to \mathbb{C}$ is any function we write the (weight 2) action of γ on g as

$$(g|\gamma)(z) := (\det \gamma)^{\frac{1}{2}}(cz+d)^{-2}g(\gamma z).$$

If g, f are continuous functions on \mathfrak{H} with transform like modular forms of weight 2 and character ρ under the action of the congruence modular group $\Gamma_0(C)$, then we normalise the Petersson inner product via

$$\langle g, f \rangle_C := \int_{\Gamma_0(C) \setminus \mathfrak{H}} \overline{g(z)} f(z) \ d \operatorname{Im}(z) \ d \operatorname{Re}(z).$$

Now suppose that g is an eigenform of weight 2, exact level pC and nebentypus character ρ such that 4|C, (p, C) = 1 and $(\operatorname{cond}(\rho), C) = 1$. If g has the q-expansion $\sum_{n\geq 1} \alpha_n q^n$ with $q = e^{2\pi i z}$, then we define the Hecke operator U_p and the involution # via

$$g|U_p := \sum_{n\geq 1} \alpha_{np} q^n$$
 and $g^{\#} := \sum_{n\geq 1} \overline{\alpha_n} q^n$, respectively.

In particular $g|U_p = \alpha_p g$ and $g^{\#}|U_p = \overline{\alpha_p}g^{\#}$ with $\alpha_p \neq 0$.

It is perhaps easier to phrase everything in terms of *p*-adic measures. By a *p*-adic distribution $d\mu$ on \mathbb{Z}_p^{\times} with values in a ring *R* we mean a finitely additive function from the compact open subsets of \mathbb{Z}_p^{\times} whose image lies in *R*. Recall that $G_{\infty} \cong \mathbb{Z}_p^{\times}$ via the cyclotomic character κ , and so we may interchange these two groups as we please.

Now assume $d\mu$ takes values in \mathbb{C}_p . We say that $d\mu$ is a *bounded measure* if

$$\left| \int_{a+p^n \mathbb{Z}_p} d\mu \right|_p$$
 is bounded independently of *a* and *n*,

for all $n \in \mathbb{N}$ and (a, p) = 1. Let *h* be a positive integer and let x_p denote the inclusion $\mathbb{Z}_p \hookrightarrow \mathbb{C}_p$. We recall from [20] that the *p*-adic distributions $x_p^r d\mu$ extend to an *h*-admissible measure if

$$\left| \int_{a+p^n \mathbb{Z}_p} (x-a)_p^r d\mu \right|_p = \left| \sum_{j=0}^r \binom{r}{j} (-a)^{r-j} \int_{a+p^n \mathbb{Z}_p} x_p^j d\mu \right|_p \quad \text{is of } o(p^{n(h-r)})$$

for all $n \in \mathbb{N}$, (a, p) = 1 and r = 0, ..., h - 1. Equivalently the Mellin transform

$$\operatorname{Mel}_{\mu} := \int_{x \in \mathbb{Z}_p^{\times}} (1+T)^x \, d\mu$$

is a function of type $o(\log_p^h(1+T))$ on the unit disc. In particular, Mel_{μ} is uniquely determined by its special values at χx_p^r for all Dirichlet characters χ of *p*-power conductor and all integers r = 0, ..., h - 1.

DEFINITION. Let $d\mu(g)$ denote the *p*-adic distribution satisfying

$$\int_{\mathbb{Z}_p^{\times}} \chi \ d\mu(g) = \frac{G(\chi)}{(\alpha_p^2)^{m_{\chi}}} \frac{\operatorname{cond}(\rho_{\chi})\operatorname{cond}(\chi)}{G(\rho_{\chi})} \\ \times \frac{(1 - \chi(p)\alpha_p^{-2}p)(1 - \overline{\rho_{\chi}}(p))}{(1 - \rho_{\chi}(p)p^{-1})} \frac{L(\operatorname{Sym}^2(g), \overline{\chi}, 2)}{\pi^3 \langle g, g \rangle_{pC}}$$

for all Dirichlet characters χ of conductor $p^{m_{\chi}}$, with $\rho_{\chi} := (\overline{\chi}\rho)_{\text{prim}}$.

KEY LEMMA. The distribution $d\mu(g)$ extends to an even $([2ord_p\alpha_p] + 1)$ -admissible measure. Furthermore, if α_p is a p-adic unit, then $d\mu(g)$ is an even bounded measure.

Proof. A similar type of result was proven in [3] and so we briefly sketch the argument—the major difference here is that p now divides the level of g and may also divide the conductor of ρ . We stick to our previous notation (which was originally developed by Panchishkin in [11]).

Choose integers $M, M' \in p^{\mathbb{N}}$ such that $p \operatorname{cond}(\chi) | M, p^2 \operatorname{cond}(\chi)^2 | M'$ and pM' is a square. Then, for all $s \in \mathbb{C}$ and Dirichlet characters χ such that $\chi(-1) = (-1)^{\nu}$ with $\nu \in \{0, 1\}$ we define the complex-valued distribution $D_{s,M}(\chi)$ by

$$D_{s,M}(\chi) := \frac{G(\chi) \operatorname{cond}(\chi)^{s-1}}{\alpha_p^{2m_{\chi}}} \left(1 - \chi(p)\alpha_p^{-2}p^{s-1}\right) L^{\bullet}(\operatorname{Sym}^2(g), \overline{\chi}, s) .$$

Here the superscript • indicates that the Euler factors at bad primes *l* such that l|C, $\alpha_l = 0$ have been removed. Of course at the end we shall have to remember to put them back in!

Now $D_{s,M}(\chi)$ can be written as a Rankin convolution of g with a theta-series, and this convolution has a useful representation as a scalar product. Skipping some tedious algebra which can be found in $[3, \S2.2]$ we deduce the identity

$$(4\pi)^{-\binom{(s+\nu)}{2}} \Gamma\left(\frac{s+\nu}{2}\right) D_{s,M}(\chi) = \frac{i^{\nu} (pCM')^{\frac{2s-1}{4}}}{\alpha_p^{1+\operatorname{ord}_p M'}} \zeta_{pC}(2s-2, \overline{\chi}^2 \rho^2) \\ \times \left\{ g^{\#} | V_C, \theta^{(\nu)}(\chi_M) | W_{4pCM'} E(z, s+\nu-2) \right\}_{4C^2 pM'}$$

Here $g^{\#}|_{V_C} = \sum_{n\geq 1} \overline{\alpha_n} q^{nC}$, the operator W_{\cdot} denotes the Atkin-Lehner involution acting on modular forms of level 4pCM' and half-integral weight, and χ_M is the Dirichlet character modulo M induced from χ . The theta-series defined by

$$\theta^{(\nu)}(\chi_M) := \sum_{n \ge 1} \chi_M(n) n^{\nu} q^{n^2}$$

has weight $\nu + \frac{1}{2}$ and character $\chi(\frac{-1}{2})^{\nu}$, where $(\frac{-1}{2})^{\nu}$ denotes the Jacobi symbol. As in [16], define the automorphic factor of half-integral weight by

$$j_{\theta}(\gamma, z) := \left(\frac{c}{d}\right) \sigma_d^{-1} (cz+d)^{\frac{1}{2}},$$

where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4)$ and $\sigma_d = \begin{cases} 1 & \text{if } d \equiv 1(4), \\ i & \text{if } d \equiv 3(4). \end{cases}$

On putting $\xi := \overline{\chi}\rho(\frac{-1}{2})^{\nu}(\frac{C}{2})$, the Eisenstein series $E(z, s; \frac{3-2\nu}{2}, \xi, 4C^2pM')$ is given bv

$$E(z,s) := \operatorname{Im}(z)^{\frac{s}{2}} \sum_{\gamma \in \operatorname{Stab}_{\infty} \setminus \Gamma_{0}(4C^{2}pM')} \xi(d_{\gamma}) j_{\theta}(\gamma, z)^{-(3-2\nu)} \big| j_{\theta}(\gamma, z) \big|_{\infty}^{-2s},$$

which is of weight $\frac{3-2\nu}{2}$, character $\overline{\xi}$, level $4C^2pM'$ and is absolutely convergent for $\operatorname{Re}(s) > \nu + \frac{1}{2}$. Let us define gamma factors $\Gamma^{\pm}(s, \chi)$ by

$$\Gamma^{+}(s,\chi) := \frac{2i^{1-\nu}\Gamma(s-1)\Gamma(s)}{(2\pi)^{2s-1}} \cos\left(\frac{\pi(s+\nu-2)}{2}\right) \text{ and } \Gamma^{-}(s,\chi) := \frac{\Gamma(s)}{(2\pi)^{s}}.$$

If we normalise distributions via $D_{s,M}^{\pm}(\chi) := \Gamma^{\pm}(s,\chi) \frac{D_{s,M}(\chi)}{\langle g,g \rangle_{pC}}$, then applying the trace map from $X_0(4C^2pM')$ to $X_0(4C^2p)$ we find that

$$D_{s,M}^{\pm}(\chi) = C^{-(\frac{2s-1}{4})} \frac{\gamma(M')}{\langle g, g \rangle_{pC}} \\ \times \left\langle g^{\#} | V_{C}, \left(\theta^{(\nu)}(\chi_{M}) | V_{C} \cdot G^{\pm}(z, s+\nu-2) | U_{p}^{\mathrm{ord}_{p}M'} W_{4C^{2}p} \right\rangle_{4C^{2}p} \right\rangle$$

with $\gamma(M') := \frac{2t^{\mu}C^{\frac{2\nu+1}{4}}}{\alpha^{1+\operatorname{ord}_{p}M'}}$. Here the Eisenstein series $G^{\pm}(z, s)$ are (up to a normalisation) the functions considered by Shimura in [17] who went on to calculate their Fourier expansions.

REMARK. The series $(\theta^{(\nu)}(\chi_M)|V_C \cdot G^{\pm}(z, s + \nu - 2))$ are only real analytic modular forms but we can compute their holomorphic projections. Firstly, if s = 1 then $G^-(z, s + \nu - 2)$ has bounded growth. If Hol denotes the operator of holomorphic projection, then one can prove that

$$\operatorname{Hol}(\theta^{(\nu)}(\chi_M) | V_C \cdot G^-(z, s + \nu - 2)) \quad (s = 1)$$

is a cusp form of weight 2 and character ρ . Similarly, if s = 2 and $\xi^2 \neq 1$, then $G^+(z, s + \nu - 2)$ also has bounded growth and hence

$$\operatorname{Hol}(\theta^{(\nu)}(\chi_M) | V_C \cdot G^+(z, s + \nu - 2)) \quad (s = 2, \ \xi^2 \neq 1)$$

is again a cusp form of weight 2 and character ρ . In the exceptional case $\xi^2 = 1$ we can only say that Hol(·) is a holomorphic modular form.

Putting $F^{\pm}(z, s, \chi) := C^{-\left(\frac{2s-1}{4}\right)} \operatorname{Hol}\left(\theta^{(\nu)}(\chi_M)\right| V_C \cdot G^{\pm}(z, s+\nu-2)$, at the two critical points we have

$$D_{1,M}^{-}(\chi) = \gamma(M') \, \ell_g \Big(F^{-}(z, 1, \chi) \Big| U_p^{\mathrm{ord}_p M'} W_{4C^2 p} \Big)$$

and

$$D_{2,M}^{+}(\chi) = \gamma(M') \, \ell_g \Big(F^{+}(z,2,\chi) \big| U_p^{\mathrm{ord}_p M'} W_{4C^2 p} \Big) \,,$$

where Hida's linear functional ℓ_g sends a modular form *h* (of weight 2, level $4C^2p$ and character $\overline{\rho}$) to the algebraic number $\frac{\langle g^{\#} | V_C, h \rangle_{4C^2p}}{\langle g, g \rangle_{pC}}$. Note that the non-holomorphic part of $(\theta^{(v)}(\chi_M) | V_C \cdot G^{\pm}(z, s + v - 2))$ is killed off by the operator $\ell_g \circ W_{4C^2p} \circ U_p^{\text{ord}_pM'} \circ \text{Hol.}$

For the moment we focus on the value at s = 2; under our embedding $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}_p$ define the *p*-adic distribution dD^+ by

$$\int_{\mathbb{Z}_p^{\times}} \chi \ dD^+ := \frac{\operatorname{cond}(\rho_{\chi})}{G(\rho_{\chi})} \ \frac{1 - \overline{\rho_{\chi}}(p)}{1 - \rho_{\chi}(p)p^{-1}} \ \times \ D_{2,M}^+(\chi) \ .$$

By Atkin-Lehner theory the functional ℓ_g degenerates into a finite $\overline{\mathbb{Q}}$ -linear combination of the Fourier coefficients of $F^+(z, 2, \chi) | U_p^{\text{ord}_p M'}$, and so to prove that dD^+ extends to an *h*-admissible measure (with $h = [2 \text{ord}_p \alpha_p] + 1$) it is enough to establish the *h*admissibility of each Fourier coefficient separately (the notation $x_p^j dD^+$ will be used for the corresponding distributions). We now give a description of these coefficients.

DEFINITION. For s = 2, 3, 4, ... and $n \in \mathbb{N}_0$ define algebraic numbers

$$v^{+}(M'n, s, \chi) := \sum_{\substack{M'n = Cn_{1}^{2} + n_{2} \\ p \mid n_{1} \\ n_{2} \in \mathbb{N}}} \chi(n_{1}) n_{1}^{\nu} \left(M'n - Cn_{1}^{2}\right)^{\frac{s-\nu-1}{2}} \beta(n_{2}, s-1, \varepsilon_{n_{2}}\overline{\chi})$$
$$\times \frac{G(\varepsilon_{n_{2}})}{G(\rho)} \frac{C^{-\left(\frac{2s-1}{4}\right)}}{\chi\left(\frac{\operatorname{cond}(\varepsilon_{n_{2}})}{\operatorname{cond}(\rho)}\right) \cdot \left(\frac{\operatorname{cond}(\varepsilon_{n_{2}})}{\operatorname{cond}(\rho)}\right)^{s-1}}$$

$$\times \left\{ \frac{\operatorname{cond}(\varepsilon_{n_2}\overline{\chi})^{s-1}}{G(\varepsilon_{n_2}\overline{\chi})} \frac{1-\overline{\varepsilon_{n_2}}\chi(p)p^{s-2}}{1-\varepsilon_{n_2}\overline{\chi}(p)p^{-(s-1)}} \\ \times \frac{2i^{1-\nu}\Gamma(s-1)}{(2\pi)^{s-1}}\cos\left(\frac{\pi(s+\nu-2)}{2}\right)\zeta_{pC}(s-1,\varepsilon_{n_2}\overline{\chi}) \right\},$$

where $\varepsilon_{n_2}(\cdot) := \left(\left(\frac{-Cn_2}{\cdot}\right)\rho(\cdot)\right)_{\text{prim}}$ and

$$\beta(n_2, s-1, \varepsilon_{n_2} \overline{\chi}) := \sum_{\substack{a, b \in \mathbb{N} \\ (a, p \subset) = (b, p \subset) = 1 \\ abin}} \mu(a) \varepsilon_{n_2} \overline{\chi}(a) \left(\varepsilon_{n_2} \overline{\chi}\right)^2(b) a^{1-s} b^{3-2s}$$

with *m* denoting the largest integer such that $n_2/m^2 \in \mathbb{N}$.

The reason behind this (painful!) definition of the $v^+(M'n, s, \chi)$'s is that at s = 2 they turn up in the *q*-expansion of $F^+(z, 2, \chi)|U_p^{\text{ord}_pM'}$. Specifically we already calculated in [3, p. 593] that

$$\frac{\operatorname{cond}(\rho_{\chi})}{G(\rho_{\chi})} \frac{1 - \overline{\rho_{\chi}}(p)}{1 - \rho_{\chi}(p)p^{-1}} \times \left(F^{+}(z, 2, \chi) \middle| U_{p}^{\operatorname{ord}_{p}M'}\right) = \sum_{n} v^{+}(M'n, 2, \chi) q^{n} ,$$

unless ρ_{χ} is a real quadratic character, in which case we should modify $v^+(M'n, 2, \chi)$ by a term of type $O(|M'n|_n^{\frac{1}{2}})$ (which we ignore as it does not affect admissibility).

The observant reader will have spotted that the $\{\cdot\}$ -expression above is none other than the special value

$$\int_{\left(\mathbb{Z} / c_{n_2} \mathbb{Z}\right)^{\times} \times \mathbb{Z}_p^{\times}} \chi x_p^{s-1} \cdot d\nu(\zeta_p) \otimes \varepsilon_{n_2},$$

where c_{n_2} is the prime-to-*p*-part of cond(ε_{n_2}) and $dv(\zeta_p)$ denotes the bounded pseudomeasure associated to the Kubota-Leopoldt *p*-adic zeta-function interpolating $\zeta_C(s-1, \overline{\chi})$ for $s-1 \in \mathbb{N}$. (We actually avoid its pole because $\varepsilon_{n_2} \overline{\chi}$ is never trivial.)

Examining the precise form of the Fourier coefficients, we see that $v^+(M'n, s, \chi)$ is congruent (modulo M') to a linear combination of terms like

$$\chi(u)u^{s-1} \times \int_{\left(\mathbb{Z}/c_{n_2}\mathbb{Z}\right)^{\times} \times \mathbb{Z}_p^{\times}} \chi x_p^{s-1} \cdot d\nu(\zeta_p) \otimes \varepsilon_{n_2}, \quad \text{for various } u \in \mathbb{Z}_p^{\times} \cap \mathbb{Q}.$$

Combining this fact with the degeneracy of the functional ℓ_g , in order to bound the integral

$$\int_{a+M\mathbb{Z}_p} (x-a)_p^{s-2} dD^+ = \sum_{j=0}^{s-2} {\binom{s-2}{j}} \frac{(-a)^{s-2-j}}{\phi(M)} \sum_{\chi \mod M} \chi^{-1}(a) \int_{\mathbb{Z}_p^{\times}} \chi x_p^j dD^+,$$

for s = 2, 3, 4, ... and (a, p) = 1, it is enough to bound the expressions

$$\sum_{j=0}^{s-2} {s-2 \choose j} \frac{(-a)^{s-2-j}}{\phi(M)} \sum_{\chi \mod M} \chi^{-1}(a) \cdot \gamma(M') \int_{x \in \mathbb{Z}_p^{\times}} \chi(ux)(ux_p)^{j+1} \cdot d\nu(\zeta_p) \otimes \varepsilon_{n_2}$$
$$= \gamma(M') u^{s-1} \int_{x \equiv au^{-1} \pmod{M}} (x - au^{-1})_p^{s-2} \cdot x_p \ d\nu(\zeta_p) \otimes \varepsilon_{n_2} \quad .$$

This last term has $O(|\gamma(M')|_p |M|_p^{s-2})$, as $d\nu(\zeta_p)$ is bounded and so choosing $M' = pM^2$ yields a bound of type $O(|M|_p^{s-2-[2\text{ord}_p\alpha_p]})$ from the definition of $\gamma(M')$. Consequently dD^+ extends to an *h*-admissible measure (resp. a bounded measure if $\operatorname{ord}_p\alpha_p = 0$). Moreover it is an even measure since the $(x_p \, d\nu(\zeta_p) \otimes \varepsilon_{n_2})$'s are even.

One can play the same game at s = 1 using the *p*-adic distribution dD^- defined by $\int_{\mathbb{Z}_p^{\times}} \chi \, dD^- := D^-_{1,M}(\chi)$. An identical argument to the one above shows that $dD^$ extends to an even *h*-admissible (resp. bounded if $\operatorname{ord}_p \alpha_p = 0$) measure, except that the Fourier coefficients of $F^-(z, 1, \chi) | U_p^{\operatorname{ord}_p M'}$ are now combinations of *p*-adic zetafunctions interpolating " $\zeta_C(s - 1, \overline{\chi})$ " for $s = 1, 0, -1, \ldots$ instead.

Finally, we must replace the missing Euler factors in $L^{\bullet}(\text{Sym}^2(g), \overline{\chi}, s)$ whilst retaining our admissibility conditions. The (imprimitive) functional equation between $L^{\bullet}(\text{Sym}^2(g), \overline{\chi}, 2)$ and $L^{\bullet}(\text{Sym}^2(g), \chi, 1)$ means that the distributions dD^+ and dD^- are contragredient and so it is enough to prove that the Euler factors we are replacing are coprime to the corresponding dual Euler factors as elements of $\mathbb{Z}_p[T^*][\Delta]$. This can be accomplished by applying the Weiestrass Preparation Theorem and showing that as functions on the open disc

$$\left\{ T \in \mathbb{C}_p \mid |T|_p < 1 \right\}$$

their zeros are disjoint. (See [3, p. 603].)

The proof of our lemma is therefore complete.

4. Existence of the map L^p . We now give the main result of this article. We state the result only in terms of the motive $\text{Sym}^2 E(2)$ although one can easily formulate the corresponding version of this theorem for $\text{Sym}^2 E(1)$ via the functional equation.

EXISTENCE THEOREM. Assume that E has good ordinary reduction at $p \neq 2$. (a) There exists a unique element $\mathbf{L}^p(n_{\alpha^2}) \in \mathbb{Z}_p[\![G_{\infty}^+]\!] \otimes \mathbb{Q}$ satisfying

$$\chi^{-1}(\mathbf{L}^p(n_{\alpha^2})) = \frac{G(\chi)^2 \operatorname{cond}(\chi)}{(\alpha_p^2)^{m_{\chi}}} \frac{L(\operatorname{Sym}^2 E, \overline{\chi}, 2)}{(2\pi i)\Omega_E^+ \Omega_E^-}$$

for all non-trivial characters $\chi \in \mathfrak{X}_p^{\text{tors}}$, with a trivial zero at **1**. (b) There exists an element $L^p(n_{\beta^2}) \in \mathcal{H}(G_{\infty}^+)$ of type $O(\log_p^2)$ satisfying

$$\chi^{-1}\left(\mathbf{L}^{p}(n_{\beta^{2}})\right) = \frac{G(\chi)^{2} \operatorname{cond}(\chi)}{\left(\beta_{p}^{2}\right)^{m_{\chi}}} \frac{L(\operatorname{Sym}^{2}E, \overline{\chi}, 2)}{(2\pi i)\Omega_{E}^{+}\Omega_{E}^{-}}$$

for all non-trivial characters $\chi \in \mathfrak{X}_p^{\text{tors}}$, with a trivial zero at 1.

(c) There exists an element $L^{\widetilde{p}}(n_p) \in \mathcal{H}(G_{\infty}^+)$ of type $O(\log_p^2)$ satisfying

$$\chi^{-1}\left(\mathbf{L}^{\widetilde{p}}(\widetilde{n}_{p})\right) = \left(\frac{G(\chi)^{2} \operatorname{cond}(\chi)}{(p)^{m_{\chi}}} \frac{L(\operatorname{Sym}^{2}E, \overline{\chi}, 2)}{(2\pi i)\Omega_{E}^{+}\Omega_{E}^{-}}\right)^{2}$$

for all non-trivial characters $\boldsymbol{\chi} \in \mathfrak{X}_p^{tors}$, with leading term

$$\mathbf{1}\Big(\mathbf{L}^{\widetilde{p}}(\widetilde{n}_{p})\Big) = \left(\left(1-\frac{1}{p}\right)\left(1-\frac{\alpha_{p}}{\beta_{p}}\right)\left(1-\frac{\beta_{p}}{\alpha_{p}}\right)\frac{L(\operatorname{Sym}^{2}E,2)}{(2\pi i)\Omega_{E}^{+}\Omega_{E}^{-}}\right)^{2}.$$

REMARK. Unfortunately only $\mathbf{L}^{p}(n_{\alpha^{2}})$ is uniquely determined by this data, both $\mathbf{L}^{p}(n_{\beta^{2}})$ and $\mathbf{L}^{p}(n_{p})$ requiring further information at an extra two Tate twists. The notation $\mathbf{L}^{p}(n_{p})$ indicates that this should be related to the *square* of the true component $\mathbf{L}^{p}(n_{p})$ of type $O(\log_{p})(?)$ predicted by Formula VAL.SP (M, χ) .

Proof. Nothing changes if we twist $\text{Sym}^2 E$ by the quadratic character of conductor 4 and so without loss of generality we may assume that N_E is divisible by 4 (where N_E denotes the conductor of E).

Let f_E denote the newform associated to a strong Weil parametrization of *E*. We put $g(z) = f_E(z) - \beta_p f_E(pz)$, which is an eigenform of weight 2, level pN_E and trivial character $\rho = 1$; in particular

$$L(\text{Sym}^{2}(g), s) = \left(1 - \beta_{p}^{2} p^{-s}\right) \left(1 - p^{1-s}\right) L(\text{Sym}^{2} E, s).$$

Consequently the distribution $\frac{\pi^3 \langle g, g \rangle_{pN_E}}{(2\pi i)\Omega_E^+ \Omega_E^-} d\mu(g)$ is bounded by our Key Lemma since $\operatorname{ord}_p \alpha_p = 0$. Taking Mellin transforms, this measure corresponds to a bounded power series $\mathbf{L}^p(n_{\alpha^2})$. Moreover Sturm's algebraicity result at s = 2 and the evenness of $d\mu(g)$ implies that the element $\mathbf{L}^p(n_{\alpha^2})$ lies in $\mathbb{Z}_p[\![G_\infty^+]\!] \otimes \mathbb{Q}$, so that part (a) is proved.

The proof of (b) is identical except that we use instead the conjugate newform $g^{\#}(z) = f_E(z) - \alpha_p f_E(pz)$ so that

$$L(\text{Sym}^{2}(g^{\#}), s) = \left(1 - \alpha_{p}^{2} p^{-s}\right) \left(1 - p^{1-s}\right) L(\text{Sym}^{2} E, s) .$$

This time our Key Lemma implies that the distribution $\frac{\pi^3 \langle g^{\#}, g^{\#} \rangle_{pN_E}}{(2\pi i)\Omega_E^+ \Omega_E^-} d\mu(g^{\#})$ extends to an $h^{\#}$ -admissible measure, where $h^{\#} = [2 \operatorname{ord}_p \beta_p] + 1 = 3$. Its Mellin transform $\mathbf{L}^p(n_{\beta^2})$ will thus be of type $o(\log_p^3)$ or more accurately $O(\log_p^2)$.

Finally, the product of $\mathbf{L}^{p}(n_{\alpha^{2}})$ and $\mathbf{L}^{p}(n_{\beta^{2}})$ yields a power series, \mathcal{G} say, of type $O(\log_{p}^{2})$, which has the same special values at non-trivial $\chi \in \mathfrak{X}_{p}^{\text{tors}}$ as the element predicted in part (c); (this follows from the identity $\alpha_{p}^{2}\beta_{p}^{2} = p^{2}$). However \mathcal{G} has at least a double zero at 1 because both $\mathbf{L}^{p}(n_{\alpha^{2}})$ and $\mathbf{L}^{p}(n_{\beta^{2}})$ have trivial zeros. Fortunately $\mathcal{H}(\Gamma)$ contains some very useful elements; for example the function $\frac{\log(\gamma_{0})}{\gamma_{0}-1}$, which is zero on the whole of $\mathfrak{X}_{p}^{\text{tors}}$ except at the trivial character where it equals 1. This allows us to modify the value of \mathcal{G} at 1 as we please whilst preserving the $O(\log_{p}^{2})$ condition. In particular this implies the existence of $\mathbf{L}^{p}(n_{p})$.

REMARK. The method even works at bad primes. If we assume that *E* has potential good ordinary reduction at p > 3 and *E* is not the quadratic twist of a curve with good reduction, then there exists a character ψ of Δ such that the newform $g = f_E \otimes \psi$ has level $\tilde{N} = p^{-1}N_E$. Consequently we can use our Key Lemma to produce measures $\frac{\pi^3(g,g)_{\tilde{N}}}{(2\pi i)\Omega_E^+\Omega_E^-} d\mu(g) \otimes \psi^2$ (resp. $\frac{\pi^3(g^\#,g^\#)_{\tilde{N}}}{(2\pi i)\Omega_E^+\Omega_E^-} d\mu(g^\#) \otimes \psi^{-2}$) which are the analogues of $\mathbf{L}^p(n_{\alpha^2})$ (resp. $\mathbf{L}^p(n_{\beta^2})$) in the bad reduction case.

Taking the Mellin transform of the convolution of these two measures and then computing its special values, we prove the following result.

THEOREM. Assume that *E* has potential good ordinary reduction at p > 3. Then there exists an element $\widetilde{\mathbf{L}^p(?)} \in \mathcal{H}(G_{\infty}^+)$ of type $O(\log_p^2)$ satisfying

$$\chi^{-1}\left(\mathbf{L}^{\widetilde{p}}(?)\right) = \left(\frac{G(\chi)^2 \operatorname{cond}(\chi)}{(p)^{m_{\chi}}} \frac{L(\operatorname{Sym}^2 E, \overline{\chi}, 2)}{(2\pi i)\Omega_E^+ \Omega_E^-}\right)^2$$

for all Dirichlet characters $\chi \neq 1, \psi^2, \psi^{-2}$ of conductor $p^{m_{\chi}}$.

5. Local Iwasawa theory. In the next three sections we use Perrin-Riou's local Iwasawa theory to obtain a formula for the derivative of $\mathbf{L}^{p}(n_{\beta^{2}})$. The calculation for the component $\mathbf{L}^{p}(n_{\alpha^{2}})$ has already been done in [13, §2.3] but we include it as it is very interesting to compare the two. All these formulae rely upon the hypothesis that there exists a norm-compatible family in the global Galois cohomology that yields the map \mathbf{L}^{p} .

For this section V will denote any crystalline representation of $G_{\mathbb{Q}_p}$. If K is a field and $i \in \mathbb{N}_0$, then we write $H^i(K, \cdot)$ for the Galois cohomology groups $H^i_{\text{cont}}(G_K, \cdot)$ defined using continuous cochains. Recall that Bloch and Kato [1] define subspaces of $H^1(\mathbb{Q}_p, V)$ by

$$H^{1}_{f}(\mathbb{Q}_{p}, V) := \operatorname{Ker}(H^{1}(\mathbb{Q}_{p}, V) \longrightarrow H^{1}(\mathbb{Q}_{p}, V \otimes B_{\operatorname{crys}})),$$
$$H^{1}_{g}(\mathbb{Q}_{p}, V) := \operatorname{Ker}(H^{1}(\mathbb{Q}_{p}, V) \longrightarrow H^{1}(\mathbb{Q}_{p}, V \otimes B_{\operatorname{dR}})),$$

and an exponential map

$$\exp_{f,V}: \mathbf{D}_{cr}(V)/\mathrm{Fil}^0 \longrightarrow H^1_f(\mathbb{Q}_p, V).$$

In particular, if $\mathbf{D}_{cr}(V)^{\varphi=1} = 0$, then $\exp_{f,V}$ is an isomorphism and we denote the inverse map by $\log_{f,V}$. Under the cup product pairing the quotient map $\exp_{f/e, V^*(1)} : \mathbf{D}_{cr}(V^*(1))/(1-\varphi) \to H^1_{f/e}(\mathbb{Q}_p, V^*(1))$ induces a dual exponential map

$$\exp_V^*: H^1_g(\mathbb{Q}_p, V) \longrightarrow \mathbf{D}_{\mathrm{cr}}(V)^{\varphi = p^{-1}}$$

with $H^1_f(\mathbb{Q}_p, V)$ as the kernel.

Let ϵ denote a generator of the Tate module $\mathbb{Z}_p(1)$, and fix a positive integer h such that $\operatorname{Fil}^{-h} \mathbf{D}_{cr}(V) = \mathbf{D}_{cr}(V)$. It is the main result of [14] that there exists a unique $\mathcal{H}(G_{\infty})$ -homomorphism

$$\Omega_{V,h}^{\epsilon}: \mathcal{H}(G_{\infty}) \otimes \mathbf{D}_{\mathrm{cr}}(V) \to \mathcal{H}(G_{\infty}) \otimes \lim_{\leftarrow} H^{1}(\mathbb{Q}_{p}(\mu_{p^{n}}), \mathbf{T})/\mathbf{T}^{G_{K}}$$

such that for all integers *j* satisfying $h + j \ge 1$ and $\mathbf{D}_{cr}(V)^{\varphi = p^{-j}} = 0$, we have

$$\exp_{f,V(j)} \left((1 - p^{-j-1}\varphi^{-1})(1 - p^{j}\varphi)^{-1}\kappa^{j}(g) \right) = (-1)^{j} \Gamma(h+j) \pi_{0} \left(\Omega_{V,h}^{\epsilon}(g) \otimes \epsilon^{\otimes j} \right)$$

for all $g \in \mathcal{H}(G_{\infty}) \otimes \mathbf{D}_{cr}(V)$. Here **T** is a Galois-stable lattice in V and π_0 is the natural projection from $\lim H^1(\mathbb{Q}_p(\mu_{p^n}), \mathbf{T}(j))$ to $H^1(\mathbb{Q}_p, V(j))$.

The map $\Omega_{V,h}^{\epsilon}$ depends on the choice of h and ϵ but, if h' > h are sufficiently large then

$$\Omega_{V,h}^{\epsilon} = \prod_{j=h}^{h'-1} \left(j - \frac{\log_p \gamma_0}{\log_p \kappa(\gamma_0)} \right)^{-1} \Omega_{V,h'}^{\epsilon}.$$

DEFINITION. For $h \ge 1$ define $\operatorname{LOG}_{\infty} : \lim_{\leftarrow} H^1(\mathbb{Q}_p(\mu_{p^n}), \mathbf{T}) \to \operatorname{Frac}(\mathcal{H}(G_{\infty})) \otimes \mathbf{D}_{\operatorname{cr}}(V)$ by

$$\operatorname{LOG}_{\infty}(x) := \prod_{j=0}^{h-1} \left(j - \frac{\log_p \gamma_0}{\log_p \kappa(\gamma_0)} \right) \left(\Omega_{V,h}^{\epsilon} \right)^{-1}(x) \ .$$

Let $\lim_{\leftarrow} H^1(\mathbb{Q}_p(\mu_{p^n}), \mathbf{T})_f$ (resp. $\lim_{\leftarrow} H^1(\mathbb{Q}_p(\mu_{p^n}), \mathbf{T})_g$) denote all the elements in $\lim_{\leftarrow} H^1(\mathbb{Q}_p(\mu_{p^n}), \mathbf{T})$ that lie in $H^1_f(\mathbb{Q}_p, V)$ (resp. $H^1_g(\mathbb{Q}_p, V)$) under the map π_0 .

PROPOSITION. [13] There exists a section S^{ϵ} from $\mathbf{D}_{cr}(V)^{\varphi=p^{-1}} \otimes \operatorname{Frac}(\mathcal{H}(G_{\infty}))$ onto $\lim_{\leftarrow} H^1(\mathbb{Q}_p(\mu_{p^n}), \mathbf{T})_g \otimes \operatorname{Frac}(\mathcal{H}(G_{\infty}))$ such that if either one of $\mathbf{D}_{cr}(V)^{\varphi=p^{-1}}$ or $\operatorname{Fil}^0\mathbf{D}_{cr}(V)$ is non-zero, then

$$(1 - p^{-1}\varphi^{-1})(1 - \varphi)^{-1}\partial \mathrm{LOG}_{\infty}(x) \equiv \log_{g,V} \pi_0(x) \mod \mathrm{Fil}^0 \mathbf{D}_{\mathrm{cr}}(V),$$

where

$$\log_{g,V}(y) := \log_{f,V}(y - \pi_0(S^{\epsilon}(\exp_V^*(y)))) \text{ for } y \in H^1_g(\mathbb{Q}_p, V)$$

and ∂ denotes the differential operator $\lim_{s\to 0} \frac{dk^s}{ds}(\cdot)$.

The section S^{ϵ} is designed to split the sequence

$$0 \to \lim_{\leftarrow} H^1(\mathbb{Q}_p(\mu_{p^n}), \mathbf{T})_f \to \lim_{\leftarrow} H^1(\mathbb{Q}_p(\mu_{p^n}), \mathbf{T})_g \to \mathbf{D}_{\mathrm{cr}}(V)^{\varphi = p^{-1}}$$

after tensoring with $\operatorname{Frac}(\mathcal{H}(G_{\infty}))$. The construction of S^{ϵ} depends upon an embedding of the field B_{st} into B_{dR} which in terms of Iwasawa theory, is equivalent to picking a branch of the logarithm satisfying $\log_p p = 0$. In fact $\log_{g,\mathbb{Q}_p(1)}$ equals \log_p upon identifying $H^1(\mathbb{Q}_p, \mathbb{Q}_p(1))$ with the completed tensor product $\mathbb{G}_m(\mathbb{Q}_p) \widehat{\otimes} \mathbb{Q}_p =$ $\lim_{\epsilon \to \infty} \left(\mathbb{Q}_p^{\times} / (\mathbb{Q}_p^{\times})^{p^n} \right) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ via Kummer theory.

We also mention that the proof of the above proposition requires the explicit reciprocity laws recently proved (independently) by Benois, Colmez and Kato-Tsuji-Kurihara. (See [13, §1.3] for details of the construction of S^{ϵ} .)

6. \mathcal{L} -invariants via Selmer groups. From now on $\mathbf{T} = \operatorname{Sym}^2 T_p E$ and $V = \mathbf{T} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$. We shall apply the proposition of the last section to calculate the value of $\partial \operatorname{LOG}_{\infty}(x)$ in terms of the dual exponential map $\exp_V^* : H^1(\mathbb{Q}_p, V) \longrightarrow \mathbf{D}_{\operatorname{cr}}(V)^{\varphi = p^{-1}}$. We want formulae of the type

$$\partial \text{LOG}_{\infty}(x) \wedge n = (\text{Euler factor}) \times (\mathcal{L}\text{-invariant}) \cdot e_0 \wedge \exp_V^*(\pi_0(x)) \wedge e_{-2},$$

where $x \in \lim H^1(\mathbb{Q}(\mu_{p^n}), \mathbf{T})_+ \otimes \mathbb{Q}_p$, and the " \mathcal{L} -invariant" is a *p*-adic number depending on the $G_{\mathbb{Q}}$ -representation *V* and the parameter $n \in \wedge^2 \mathbf{D}_{cr}(V)$. In order to define the \mathcal{L} -invariants we must choose coordinates (μ_0, μ_1, μ_2) on the cohomology group $H^1(\mathbb{Q}_p, V)$ (remember that $\dim_{\mathbb{Q}_p} H^1(\mathbb{Q}_p, V) = 3$). Since $H^1(\mathbb{Q}_p, V) =$ $H^1_g(\mathbb{Q}_p, V)$ we use the map $\log_{g,V}$ of the previous section to aid us.

We assumed *E* had good ordinary reduction at *p*, so that as a $G_{\mathbb{Q}_p}$ -representation *V* has the ordinary filtration

$$0 \subset F^2 V \subset F^1 V \subset V$$
, where I_p acts on $gr^i(V)$ via κ^i

with $\mathbf{D}_{cr}(\mathbf{F}^2 V) = \mathbb{Q}_p e_{-2}$ and $\mathbf{D}_{cr}(\mathbf{F}^1 V) = \mathbb{Q}_p e_{-2} \oplus \mathbb{Q}_p e_{-1}$. The short exact sequence $0 \to \mathbf{F}^2 V \xrightarrow{j} \mathbf{F}^1 V \xrightarrow{\delta} \mathbb{Q}_p(1) \to 0$ induces an exact sequence on cohomology

$$0 \to H^1(\mathbb{Q}_p, \mathrm{F}^2 V) \xrightarrow{j} H^1(\mathbb{Q}_p, V) \xrightarrow{\delta} H^1(\mathbb{Q}_p, \mathbb{Q}_p(1))$$

since $H^0(\mathbb{Q}_p, \mathbb{Q}_p(1)) = 0$ and $H^1(\mathbb{Q}_p, \mathbb{F}^1 V) = H^1(\mathbb{Q}_p, V)$. In fact this sequence must be right-exact because $\dim_{\mathbb{Q}_p} H^1(\mathbb{Q}_p, \mathbb{F}^2 V) = 1$ and $\dim_{\mathbb{Q}_p} H^1(\mathbb{Q}_p, \mathbb{Q}_p(1)) = 2$.

REMARK. If \Pr_{-2} denotes the natural projection $\mathbf{D}_{cr}(V) \twoheadrightarrow \mathbf{D}_{cr}(V)^{\varphi=\beta_p^{-2}}$ then we have a well-defined section

$$\Sigma^{\epsilon} := \exp_{f, V \circ} \operatorname{Pr}_{-2 \circ} \log_{g, V}$$

from $H^1(\mathbb{Q}_p, V)$ onto $H^1(\mathbb{Q}_p, F^2 V)$, because the space $\mathbf{D}_{cr}(V)^{\varphi=\beta_p^{-2}}$ is isomorphic to $H^1(\mathbb{Q}_p, F^2 V) = H^1_f(\mathbb{Q}_p, F^2 V)$ via $\exp_{f,V}$. Clearly Σ^{ϵ} depends on the choice of ϵ as $\log_{e,V}$ is constructed using the section S^{ϵ} .

We thus get our first coordinate $\mu_2 : H^1(\mathbb{Q}_p, V) \twoheadrightarrow \mathbb{Q}_p$ given by

$$\mu_2(\cdot)e_{-2} := \log_{f,V} \circ \Sigma^{\epsilon}(\cdot) = \Pr_{-2} \circ \log_{g,V}(\cdot).$$

To define the other two coordinates μ_0 , μ_1 we use a little Kummer theory. To begin with

$$H^{1}(\mathbb{Q}_{p}, \mathbb{Q}_{p}(1)) = \mathbb{G}_{m}(\mathbb{Q}_{p})\widehat{\otimes}\mathbb{Q}_{p} \xrightarrow{\sim} \mathbb{Q}_{p} \oplus \mathbb{Q}_{p}$$
$$\mathbf{q} \mapsto \log_{p} \mathbf{q} \oplus \operatorname{ord}_{p} \mathbf{q}.$$

Now $H_f^1(\mathbb{Q}_p, F^1V) = H_f^1(\mathbb{Q}_p, V)$ implies that $\operatorname{Im}(\log_{g,V}) = \operatorname{Im}(\log_{f,V}) = \mathbf{D}_{\operatorname{cr}}(F^1V)$; moreover, under the projection map $\operatorname{Pr}_{-1} : \mathbf{D}_{\operatorname{cr}}(V) \twoheadrightarrow \mathbf{D}_{\operatorname{cr}}(V)^{\varphi=p^{-1}}$ we have

$$\operatorname{Pr}_{-1 \circ} \log_{g, V} = \left(\log_{g, \mathbb{Q}_p(1) \circ} \delta \right) e_{-1} = \left(\log_{p \circ} \delta \right) e_{-1} .$$

Consequently $\operatorname{ord}_{p \circ} \delta$ maps the kernel of $\log_{g,V}$ bijectively onto \mathbb{Q}_p . The function $\operatorname{ord}_{p \circ} \delta$ is closely related to the dual exponential map. In fact

$$\exp_V^* = (\operatorname{ord}_{p \circ} \delta) e_{-1}$$
 as elements of $\mathbf{D}_{\operatorname{cr}}(V)^{\varphi = p^{-1}}$

because $\exp_{\mathbb{Q}_p(1)}^*$ is simply the valuation map on $\mathbb{G}_m(\mathbb{Q}_p)\widehat{\otimes}\mathbb{Q}_p$. In view of this we define $\mu_0, \mu_1 : H^1(\mathbb{Q}_p, V) \twoheadrightarrow \mathbb{Q}_p$ by

$$\mu_0 := \operatorname{ord}_{p \circ} \delta$$
 and $\mu_1 := \log_{p \circ} \delta$.

Summarizing, we have the commutative diagram

with exact rows and exact columns. We have proved the following result.

LEMMA. There is a (non-canonical) isomorphism of \mathbb{Q}_p -vector spaces given by

$$\mu_0 \oplus \mu_1 \oplus \mu_2 : H^1(\mathbb{Q}_p, V) \xrightarrow{\sim} \mathbb{Q}_p \oplus \mathbb{Q}_p \oplus \mathbb{Q}_p$$
.

The (weak) Selmer group attached to the representation V is defined by

$$\mathcal{S}'(V/\mathbb{Q}) := \operatorname{Ker}\left(H^1(\mathbb{Q}, V) \longrightarrow \bigoplus_{l \neq p} H^1(I_l, V)\right),$$

where I_l is the inertia subgroup in $G_{\mathbb{Q}_l}$ and the maps above denote restriction. Flach, Wiles and Diamond [5,21,4] have shown under various hypotheses that the Bloch-Kato Selmer group

$$H^{1}_{f,\operatorname{Spec}\mathbb{Z}}(\mathbb{Q}, V) := \operatorname{Ker}\left(\mathcal{S}'(V/\mathbb{Q}) \longrightarrow \frac{H^{1}(\mathbb{Q}_{p}, V)}{H^{1}_{f}(\mathbb{Q}_{p}, V)}\right)$$

is zero; (e.g. if E_p is an absolutely irreducible $G_{\mathbb{Q}}$ -module then $H^1_{f, \text{Spec}\mathbb{Z}}(\mathbb{Q}, V) = 0$ by [4]).

Assuming the triviality of $H^1_{f,\text{Spec}\mathbb{Z}}(\mathbb{Q}, V)$, the weak Leopoldt conjecture for Vand V(-1) holds, and so the space $S'(V/\mathbb{Q})$ is one-dimensional over \mathbb{Q}_p . Let \mathfrak{S}' denote the image of a generator of $S'(V/\mathbb{Q})$ in $H^1(\mathbb{Q}_p, V)$.

DEFINITION. Assume that $H^1_{f,\operatorname{Spec}\mathbb{Z}}(\mathbb{Q}, V)$ is zero and $\exp^*_V(\mathfrak{S}') \neq 0$. Define \mathcal{L} -invariants by

$$\mathcal{L}^{\mathrm{Gr}} := \frac{\mu_1(\hat{s}')}{\mu_0(\hat{s}')} \quad \text{and} \quad \mathcal{L}^{\mathrm{conj}} := \frac{\mu_1(\hat{s}')}{\mu_0(\hat{s}')} - \frac{2}{\lambda} \frac{\mu_2(\hat{s}')}{\mu_0(\hat{s}')},$$

with $\operatorname{Fil}^{0}\mathbf{D}_{\operatorname{cr}}(U) = \mathbb{Q}_{p}(u_{0} + \lambda u_{-1}), \lambda \neq 0$, as before.

The quantity $\mathcal{L}^{\text{Gr}} = \frac{\log_p(\delta(\vec{s}'))}{\operatorname{ord}_p(\delta(\vec{s}'))}$ is none other than Greenberg's \mathcal{L} -invariant in [8]; the number $\mathcal{L}^{\text{conj}}$ can thus be viewed as a generalization of this to the conjugate measure.

A priori it is not clear that these really are invariant under the choices made. First of all $\exp_V^*(\hat{s}')$ is non-zero if and only if $\operatorname{ord}_p(\delta(\hat{s}'))$ is non-zero, so at least we are not dividing by zero! Now changing \hat{s}' by an element of \mathbb{Q}_p^{\times} will not affect the ratios $\frac{\mu_1}{\mu_0}$ and $\frac{\mu_2}{\mu_0}$ by the previous lemma and so it remains to show independence from our given basis of $\mathbf{D}_{cr}(V)$.

Recalling that $\mathbf{e} = e_0 \wedge e_{-1} \wedge e_{-2}$ set $\omega_{\mathbf{e}} := \frac{1}{2\lambda}e_0 + e_{-1} + \frac{\lambda}{2}e_{-2}$ (which generates Fil⁰ $\mathbf{D}_{cr}(V)$). Since $\frac{\mu_1(\vec{s}')}{\mu_0(\vec{s}')}$ does not depend on $\{e_0, e_{-1}, e_{-2}\}$ it suffices to demonstrate the same of $\frac{2}{\lambda}\frac{\mu_2(\vec{s}')}{\mu_0(\vec{s}')}$. Observing that $\Pr_{-2}(\omega)$ is proportional to $\Pr_{-1}(\omega)$ as we vary generators ω of Fil⁰ $\mathbf{D}_{cr}(V)$, clearly $\frac{2}{\lambda}\frac{\mu_2(\vec{s}')}{\mu_0(\vec{s}')}$ is well-defined if and only if the ratio $\frac{(2\mu_2(\vec{s}'))}{\lambda} \frac{\Pr_{-2}(\omega_e)}{\Pr_{-1}(\omega_e)}$ is too. However $\frac{2}{\lambda}\Pr_{-2}(\omega_e) = e_{-2}$ and $\Pr_{-1}(\omega_e) = e_{-1}$, so that

$$\frac{2}{\lambda} \frac{\mu_2(\hat{s}')}{\mu_0(\hat{s}')} \cdot \frac{\Pr_{-2}(\omega_{\mathbf{e}})}{\Pr_{-1}(\omega_{\mathbf{e}})} = \frac{\mu_2(\hat{s}')e_{-2}}{\mu_0(\hat{s}')e_{-1}} = \frac{\log_{f,V}(\Sigma^{\epsilon}(\hat{s}'))}{\exp_V^*(\hat{s}')}$$

which is independent of our original choice of $\{e_0, e_{-1}, e_{-2}\}$.

PROPOSITION. Assume that E has good ordinary reduction at $p \neq 2$, $H^1_{f, \text{Spec}\mathbb{Z}}(\mathbb{Q}, V)$ is zero and $\exp^*_V(\mathfrak{S}')$ is non-zero. If $x \in \lim_{\leftarrow} H^1(\mathbb{Q}(\mu_{p^n}), T)_+ \otimes \mathbb{Q}_p$ then

$$(1-p^{-1}\varphi^{-1})(1-\varphi)^{-1}\partial \mathrm{LOG}_{\infty}(x)\wedge n_{\alpha^{2}} = -\left(\frac{1}{2\lambda}\right)\mathcal{L}^{\mathrm{Gr}} \cdot e_{0}\wedge \exp^{*}_{V}(\pi_{0}(x))\wedge e_{-2}$$

and

$$(1-p^{-1}\varphi^{-1})(1-\varphi)^{-1}\partial \mathrm{LOG}_{\infty}(x)\wedge n_{\beta^{2}} = -\left(\frac{\lambda}{2}\right)\mathcal{L}^{\mathrm{conj}} \cdot e_{0}\wedge \exp^{*}_{V}(\pi_{0}(x))\wedge e_{-2} \cdot e_{0}$$

Proof. Let us assume that $\exp_V^*(\pi_0(x))$ is non-trivial; we begin by proving the second statement. Put $d = (1 - p^{-1}\varphi^{-1})(1 - \varphi)^{-1}\partial \text{LOG}_{\infty}(x)$ which lies in $\mathbb{Q}_p e_0 \oplus \mathbb{Q}_p e_{-2}$. Then

$$d \wedge e_{-1} \wedge e_0 = d \wedge \omega_{\mathbf{e}} \wedge e_0 = \log_{g,V}(\pi_0(x)) \wedge \omega_{\mathbf{e}} \wedge e_0$$

by the proposition of the previous section. However $\log_{g,V}(\pi_0(x))\mu_1(\pi_0(x))e_{-1}$ $\oplus \mu_2(\pi_0(x))e_{-2}$, which implies that

$$d \wedge e_{-1} \wedge e_0 = \mu_1(\pi_0(x))e_{-1} \wedge \omega_{\mathbf{e}} \wedge e_0 \oplus \mu_2(\pi_0(x))e_{-2} \wedge \omega_{\mathbf{e}} \wedge e_0$$

= $\left(\frac{\lambda}{2}\right)\mu_1(\pi_0(x))e_0 \wedge e_{-1} \wedge e_{-2} \oplus -\mu_2(\pi_0(x))e_0 \wedge e_{-1} \wedge e_{-2}$.

Moreover $n_{\beta^2} = -(e_{-1} \wedge e_0)$ and $\exp_V^*(\pi_0(x)) = \mu_0(\pi_0(x))e_{-1} \neq 0$. Hence

$$d \wedge n_{\beta^2} = -\left(\frac{\lambda}{2}\right) \frac{\mu_1(\pi_0(x)) - \frac{2}{\lambda}\mu_2(\pi_0(x))}{\mu_0(\pi_0(x))} \cdot e_0 \wedge \exp_V^*(\pi_0(x)) \wedge e_{-2} \cdot e_0$$

Thus the second assertion follows upon observing that

$$\mathbb{Q}_p \pi_0(x) = \pi_0 \left(\lim_{\leftarrow} H^1(\mathbb{Q}(\mu_{p^n}), \mathbf{T})_+ \otimes \mathbb{Q}_p \right) = \operatorname{res}_p(\mathcal{S}'(V/\mathbb{Q})) = \mathbb{Q}_p \mathfrak{S}',$$

where $\operatorname{res}_p : H^1(\mathbb{Q}, V) \to H^1(\mathbb{Q}_p, V)$, as we then have

$$\frac{\mu_1(\pi_0(x)) - \frac{2}{\lambda}\mu_2(\pi_0(x))}{\mu_0(\pi_0(x))} = \frac{\mu_1(\hat{s}')}{\mu_0(\hat{s}')} - \frac{2}{\lambda}\frac{\mu_2(\hat{s}')}{\mu_0(\hat{s}')} = \mathcal{L}^{\text{conj}}$$

The proof of the first assertion is very similar. We just remark that

$$d \wedge e_{-1} \wedge e_{-2} = \log_{g,V}(\pi_0(x)) \wedge \omega_{\mathbf{e}} \wedge e_{-2} = -\left(\frac{1}{2\lambda}\right) \mu_1(\pi_0(x)) e_0 \wedge e_{-1} \wedge e_{-2}$$

and then proceed as above.

7. Norm-compatible families. To make any further progress we must now assume that the function L^p is the image of a norm-compatible element under the map LOG_{∞} ; c.f. [12, Conjecture 4.4.3]. Implicit in this assumption is that there should be some trick for relating the non-Iwasawa components $L^p(n_p)$ and $L^p(n_{\beta^2})$ to the complex *L*-values at s = 3, 4.

Hypothesis (ES). There exists an element \mathbf{z}_{∞} *in* $\lim_{\leftarrow} H^1(\mathbb{Q}(\mu_{p^n}), \mathbf{T})_+ \otimes \mathbb{Q}_p$ *satisfying*

(A)
$$\mathbf{L}^{p}(n)\mathbf{e} = \mathrm{LOG}_{\infty}(\mathbf{z}_{\infty}) \wedge n$$
 for all $n \in \wedge^{2}\mathbf{D}_{\mathrm{cr}}(V)$;

(B)
$$\exp_{V}^{*}(\pi_{0}(\mathbf{z}_{\infty})) = -\left(1 - \frac{\alpha_{p}}{\beta_{p}}\right)\left(1 - \frac{\beta_{p}}{\alpha_{p}}\right) \frac{L(\operatorname{Sym}^{2}E, 2)}{\Omega_{\infty, \omega_{\mathbb{Q}}}} \operatorname{Pr}_{-1}(\omega_{\mathbb{Q}}).$$

The value $\exp_V^*(\pi_0(\mathbf{z}_\infty))$ is automatically non-zero since the complex function $L(\operatorname{Sym}^2 E, s)$ does not vanish at s = 2; in particular if (ES) holds then

$$\mathbf{1} \big(\mathbf{L}^{p}(n_{p}) \big) \mathbf{e} = \left(1 - \frac{1}{p} \right) \left(1 - \frac{\alpha_{p}}{\beta_{p}} \right) \left(1 - \frac{\beta_{p}}{\alpha_{p}} \right) \frac{L(\operatorname{Sym}^{2}E, 2)}{\Omega_{\infty, \omega_{\mathbb{Q}}}} \, \Omega_{p, \omega_{\mathbb{Q}}}(n_{p})$$

as predicted by Formula VAL.SP(M, χ). Theoretically the dual exponential map should contain the congruence *L*-values as, for example, with the Kato-Beilinson Euler system.

DERIVATIVE THEOREM. Assume that E has good ordinary reduction at $p \neq 2$, the Selmer group $H^1_{f,\text{Spec}\mathbb{Z}}(\mathbb{Q}, V)$ is zero and there exists an element \mathbf{z}_{∞} satisfying Hypothesis (ES). Then

(a)
$$\partial \mathbf{L}^{p}(n_{\alpha^{2}}) = \mathcal{L}^{\mathrm{Gr}} \Big(1 - \alpha_{p}^{-2} \Big) \Big(1 - p \alpha_{p}^{-2} \Big) \frac{L(\mathrm{Sym}^{2}E, 2)}{(2\pi i)\Omega_{E}^{+}\Omega_{E}^{-}},$$

(b) $\partial \mathbf{L}^{p}(n_{\beta^{2}}) = \mathcal{L}^{\mathrm{conj}} \Big(1 - \beta_{p}^{-2} \Big) \Big(1 - p \beta_{p}^{-2} \Big) \frac{L(\mathrm{Sym}^{2}E, 2)}{(2\pi i)\Omega_{E}^{+}\Omega_{E}^{-}}.$

Proof. We start with part (a). Clearly all the conditions of the proposition in §6 are satisfied, since $\exp_V^*(\pi_0(\mathbf{z}_{\infty})) \neq 0$; hence (ES) implies that

$$(1 - p^{-1} \alpha_p^2) (1 - \alpha_p^{-2})^{-1} \partial \mathbf{L}^p(n_{\alpha^2}) \mathbf{e}$$

= $\left(\frac{1}{2\lambda}\right) \mathcal{L}^{\mathrm{Gr}} \left(1 - \frac{\alpha_p}{\beta_p}\right) \left(1 - \frac{\beta_p}{\alpha_p}\right) \frac{L(\mathrm{Sym}^2 E, 2)}{\Omega_{\infty, \omega_{\mathbb{Q}}}} e_0 \wedge \mathrm{Pr}_{-1}(\omega_{\mathbb{Q}}) \wedge e_{-2} .$

Choosing $u \neq 0$, so that $\omega_{\mathbb{Q}} = u\omega_{\mathbf{e}}$ and $\Pr_{-1}(\omega_{\mathbb{Q}}) = ue_{-1}$, we obtain

$$\Omega_{p,\omega_{\mathbb{Q}}}(n_{\alpha^2}) = \omega_{\mathbb{Q}} \wedge e_{-1} \wedge e_{-2} = \left(\frac{u}{2\lambda}\right) \mathbf{e}$$

Combining these two equations we find that

$$\partial \mathbf{L}^{p}(n_{\alpha^{2}}) \mathbf{e} = \mathcal{L}^{\mathrm{Gr}} \left(1 - \alpha_{p}^{-2} \right) \left(1 - p \alpha_{p}^{-2} \right) \frac{L(\mathrm{Sym}^{2} E, 2)}{\Omega_{\infty, \omega_{\mathbb{Q}}}} \, \Omega_{p, \omega_{\mathbb{Q}}}(n_{\alpha^{2}}),$$

and so (a) is proved. The proof of (b) follows identical lines.

An obvious question to ask is whether \mathcal{L}^{Gr} and $\mathcal{L}^{\text{conj}}$ are non-zero. In unpublished work, Greenberg and Tilouine have shown that when $p || N_E$ the analogue of (a) above is true with $\mathcal{L}^{\text{Gr}} = \frac{\log_p q_E}{\text{ord}_p q_E}$ (\mathbf{q}_E being the Tate period of E). Furthermore, the fact that $\log_p \mathbf{q}_E \neq 0$ was recently proved by Barré-Sirieix, Diaz, Gramain and Philibert.

To establish a similar result in the good ordinary case we need three things.

- (i) An explicit construction of a generator \mathfrak{S}' of the space $\operatorname{res}_p(\mathcal{S}'(V/\mathbb{Q}))$.
- (ii) An analytic description of the map $\log_{f,V} : H^1_f(\mathbb{Q}_p, \mathbb{F}^2 V) \xrightarrow{\sim} \mathbf{D}_{cr}(\mathbb{F}^2 V)$.
- (iii) The calculation of the image of $\hat{\beta}'$ under $\log_{f,V} \circ \Sigma^{\epsilon}$ and $\log_{p} \circ \delta$.

Addressing (i) first, Flach [5] constructs via K-theory elements $c(l) \in H^1(\mathbb{Q}, \mathbb{T})$, $l \nmid pN_E$ which are unramified outside p and l, but unfortunately for us have trivial image in $H^1_{/f}(\mathbb{Q}_p, \mathbb{T})$. As Kato suggested, a better place to look for such a generator might be in $K_3^{\text{Mil}}(X_0(N_E) \times X_0(N_E) \otimes \mathbb{Z}[\frac{1}{N_E}])$, where this is Milnor K-theory of the rational functions on $X_0(N_E) \times X_0(N_E)$ (the tricky part is the right choice of divisors for the modular units occuring in the cup-product).

Turning our attention to (ii), the space $F^2 V$ is none other than the representation associated to the Tate module of the formal group of $E_{/\mathbb{Z}_p}$ tensored with itself. It is tempting to hope that $F^2 V$ has an associated *p*-divisible group, but Tate has shown that such a representation must have Hodge-Tate weights in $\{0, 1\}$ yet $F^2 V \otimes_{\mathbb{Q}_p} \mathbb{C}_p = \mathbb{C}_p(2)$.

All may not be lost—under our assumptions the Abelian surface $E \times E$ has good ordinary reduction over \mathbb{Q}_p . Consequently the formal group attached to the Néron model for $E \times E$ over \mathbb{Z}_p has height $2 = \dim(E \times E)$. We write $\text{Log}_{E \times E}$ for the extension to $E \times E$ of the formal group logarithm, so that

$$\operatorname{Log}_{E\times E}: (E\times E)(\mathbb{Q}_p)\widehat{\otimes}\mathbb{Q}_p \longrightarrow \text{tangent space of } E\times E/\mathbb{Q}_p.$$

Now $H^1_f(\mathbb{Q}_p, \mathbb{F}^2 V)$ is contained in $H^1_f(\mathbb{Q}_p, V)$ which is itself a direct summand of

$$H^1_f(\mathbb{Q}_p, H^2_{\acute{e}t}(\overline{E} \times \overline{E}, \mathbb{Q}_p(2))) \cong (E \times E)(\mathbb{Q}_p) \widehat{\otimes} \mathbb{Q}_p$$

this last isomorphism coming from Bloch-Kato [1]. Identifying $\mathbf{D}_{cr}(\mathbf{F}^2 V)$ within the tangent space of $E \times E$, the map $\log_{f,V}$ will then coincide with the restriction of $\log_{E\times E}$ to $H^1_f(\mathbb{Q}_p, \mathbf{F}^2 V)$. Interestingly this description of \mathcal{L}^{conj} mixes up the logarithm map on a formal group of height 1 (i.e. \mathbb{G}_m) with the logarithm map on a formal group of height 2.

Finally, we have no idea at all how to attack (iii). Essentially we need to know "the shape" of res_p($S'(V/\mathbb{Q})$) inside $H^1(\mathbb{Q}_p, V)$. In the bad multiplicative case it turns out that \mathbf{q}_p is a universal norm for the \mathbb{Z}_p -extension of \mathbb{Q}_p cut out by the image of the map

$$H^{1}(\mathbb{Q}_{p}, \operatorname{Sym}^{2}T_{p}E) \longrightarrow H^{1}(\mathbb{Q}_{p}, \mathbb{Z}_{p}) = \operatorname{Hom}_{\mathbb{Z}_{p}}(\operatorname{Gal}(\mathbf{F}_{\infty}/\mathbb{Q}_{p}), \mathbb{Z}_{p}) \cong \mathbb{Z}_{p}^{2}$$

induced by quotienting $\operatorname{Sym}^2 T_p E$ by its sublattice of strictly positive Hodge-Tate weight; (here \mathbf{F}_{∞} is the compositum of all the \mathbb{Z}_p -extensions of \mathbb{Q}_p). However in the good ordinary case there is no such easy local description for \tilde{s}' .

ACKNOWLEDGEMENTS. Most of this work was carried out during a stay at the Centre Emile Borel and the author thanks them for their hospitality. Throughout that period the author was supported by a postdoctoral grant from the Université de Paris-Sud, and is grateful to Orsay for their assistance. In particular the author thanks B. Perrin-Riou for her helpful comments and encourages the serious reader to consult her paper for the connection with the arithmetic theory.

REFERENCES

1. S. Bloch and K. Kato *L*-functions and Tamagawa numbers of motives, in *Grothendieck Festchrift I*, Progress in Mathematics (Birkhäuser, Boston, 1990), 333–400. **2.** J. Coates and C.-G. Schmidt, Iwasawa theory for the symmetric square of an elliptic curve, *J. Reine Angew. Math.* **375/376** (1987), 104–156.

3. A. Dąbrowski and D. Delbourgo, S-adic L-functions attached to the symmetric square of a newform, *Proc. London Math. Soc. (3)* **74** (1997), 559–611.

4. F. Diamond, On deformation rings and Hecke rings, *Ann. of Math.* **144** (1996), 137–166.

5. M. Flach, A finiteness theorem for the symmetric square of an elliptic curve, *Invent*. *Math.* **109** (1992), 307–327.

6. J.-M. Fontaine, Sur certains types de représentations *p*-adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti-Tate, *Ann. of Math.* **115** (1982), 529–577.

7. S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), *Ann. Scient. Éc. Norm. Sup.* **11** (1978), 471–542.

8. R. Greenberg, Trivial zeros of *p*-adic *L*-functions, in *p*-adic monodromy and the Birch and Swinnerton-Dyer conjecture, Contemp. Math. 165 (1994), 149–181.

9. H. Hida, *p*-adic *L*-functions for base change lifts of GL_2 to GL_3 , in Automorphic forms, Shimura varieties, and L-functions (Academic Press, San Diego, 1990), 93–142.

10. A. Panchishkin, Über nichtarchimedische symmetrische quadrate von spitzenformen, Preprint 52 (MPI, Bonn 1989).

11. A. Panchishkin, Non-archimedean L-functions of Siegel and Hilbert modular forms, Lecture Notes in Math. No. 1471 (1991).

12. B. Perrin-Riou, Fonctions L p-adiques des représentations p-adiques, Astérisque **229** (1995).

13. B. Perrin-Riou, Zéros triviaux des fonctions *L p*-adiques, un cas particulier, *Compositio Math.* **114** (1998), 37–76.

14. B. Perrin-Riou, Théorie d'Iwasawa des représentations *p*-adiques sur un corps local, *Invent. Math.* 115 (1994), 81–149.

15. C.-G. Schmidt, *p*-adic measures attached to automorphic representations of GL_3 , *Invent. Math.* **92** (1988), 597–631.

16. G. Shimura, On modular forms of half integral weight, *Ann. of Math.* 97 (1973), 440–481.

17. G. Shimura, On the holomorphy of certain Dirichlet series, *Proc. London Math. Soc.* (3) 31 (1975), 79–98.

18. J. Sturm, Special values of zeta functions and Eisenstein series of half-integral weight, *Amer. J. Math.* 102 (1980), 219–240.

19. J. Sturm, Evaluation of the symmetric square at the near central point, *Amer. J. Math.* **111** (1989), 585–598.

20. M.M. Vishik, Non-archimedean measures associated with Dirichlet series, *Mat. Sbornik* **99** (1976), 248–260.

21. A. Wiles, Modular elliptic curves and Fermat's last theorem, *Ann. of Math.* **141** (1995), 443–551.