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Abstract. We show that PQε-projectivity of two Riemannian metrics introduced
in [15] (P. J. Topalov, Geodesic compatibility and integrability of geodesic flows, J.
Math. Phys. 44(2) (2003), 913–929.) implies affine equivalence of the metrics unless
ε ∈ {0,−1,−3,−5,−7, ...}. Moreover, we show that for ε = 0, PQε-projectivity implies
projective equivalence.
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1. Introduction.

1.1. PQε-projectivity of Riemannian metrics. Let g, ḡ be two Riemannian metrics
on an m-dimensional manifold M. Consider (1, 1)-tensors P, Q that satisfy

g(P., .) = −g(., P.), g(Q., .) = −g(., Q.)

ḡ(P., .) = −ḡ(., P.), ḡ(Q., .) = −ḡ(., Q.)

PQ = εId,

(1)

where Id is the identity on TM and ε is a real number, ε �= 1, m + 1. The following
definition was introduced in [15].

DEFINITION 1. The metrics g, ḡ are called PQε-projective if for a certain 1-form �

the Levi-Civita connections ∇ and ∇̄ of g and ḡ satisfy

∇̄X Y − ∇X Y = �(X)Y + �(Y )X − �(PX)QY − �(PY )QX (2)

for all vector fields X, Y .

EXAMPLE 1. If the two metrics g and ḡ are affinely equivalent, i.e. ∇ = ∇̄, then these
are PQε-projective with P, Q, ε arbitrary and � ≡ 0.

EXAMPLE 2. Suppose that �(P.) = 0 or Q = 0 and ε = 0. It follows that equation
(2) becomes

∇̄X Y − ∇X Y = �(X)Y + �(Y )X. (3)
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By Levi-Civita [4], equation (3) is equivalent to the condition that g and ḡ have the same
geodesics considered as unparametrised curves, i.e. g and ḡ are projectively equivalent.
The theory of projectively equivalent metrics has a very long tradition in differential
geometry, see for example [5, 6, 8, 10, 13] and the references therein.

EXAMPLE 3. Suppose that P = Q = J and ε = −1. It follows that J is an almost
complex structure, i.e. J2 = −Id, and by equation (1) the metrics g and ḡ are required
to be Hermitian with respect to J. Equation (2) now reads

∇̄X Y − ∇X Y = �(X)Y + �(Y )X − �(JX)JY − �(JY )JX. (4)

This equation defines the h-projective equivalence of the Hermitian metrics g and ḡ, and
was introduced for the first time by Otsuki and Tashiro in [12, 14] for the Kaehlerian
metrics. The theory of h-projectively equivalent metrics was introduced as an analog
of projective geometry in the Kèhlerian situation and has been studied actively over
the years, see for example [1–3, 7, 11] and the references therein.

REMARK 1. PQε-projectivity of the Riemannian metrics is a special case of the so-
called F-planar mappings introduced and investigated in [9], whose defining equation,
i.e. equation (1) in [9] clearly generalises equation (2) above.

1.2. Results. The aim of our paper is to give a proof of the following two
theorems.

THEOREM 1. Let Riemannian metrics g and ḡ be PQε-projective. If g and ḡ are
not affinely equivalent, the number ε is either zero or an odd negative integer, i.e. ε ∈
{0,−1,−3,−5,−7, ...}.

THEOREM 2. Let Riemannian metrics g and ḡ be PQε-projective. If ε = 0 then g and
ḡ are projectively equivalent.

1.3. Motivation and open questions. As was shown in [15], PQε-projectivity of
the metrics g, ḡ allows us to construct a family of commuting integrals for the geodesic
flow of g (see Fact 2 and equation (9)). The existence of these integrals is an interesting
phenomenon on its own. Besides, it appeared to be a powerful tool in the study
of projectively equivalent and h-projectively equivalent metrics (Examples 2 and 3),
see [3, 5–8]. Moreover, it was shown in [15] that given one pair of PQε-projective
metrics, one can construct an infinite family of PQε-projective metrics. Under some
non-degeneracy condition, this gives rise to an infinite family of integrable flows.

From the other side, the theories of projectively equivalent and h-projectively
equivalent metrics appeared to be very useful mathematical theories of deep interest.

The results in our paper suggest to look for other examples in the case when
ε = −1,−3,−5, .... If ε = −1 but P2 �= −Id, a lot of examples can be constructed
using the ‘hierarchy construction’ from [15]. It is interesting to ask whether every pair
of PQ−1-projective metrics is in the hierarchy of some h-projectively equivalent metrics?

Another attractive problem is to find interesting examples for ε = −3,−5, ....
Besides the relation to integrable systems provided by [15], one could find other
branches of differential geometry of similar interest as projective or h-projective
geometry.
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1.4. PDE for PQε-projectivity. Given a pair of Riemannian metrics g, ḡ and
tensors P, Q satisfying equation (1), we introduce the (1, 1)-tensor A = A(g, ḡ)
defined by

A =
(

det ḡ
det g

) 1
m+1−ε

ḡ−1g. (5)

Here we view the metrics as vector bundle isomorphisms g : TM → T∗M and ḡ−1 :
T∗M → TM. We see that A is non-degenerate and self-adjoint with respect to g and
ḡ. Moreover, A commutes with P and Q.

FACT 1. (Lemma 2 in [15], see also Theorems 5 and 6 in [9]). Two metrics g and ḡ
are PQε-projective if for a certain vector field �, the (1, 1)-tensor A defined in (5) is a
solution of

(∇X A)Y = g(Y, X)� + g(Y,�)X + g(Y, QX)P�

+ g(Y, P�)QX for all X, Y ∈ TM. (6)

Conversely, if A is a g-self-adjoint positive solution of (6), which commutes with P and
Q, the Riemannian metric

ḡ = (det A)−
1

1−ε gA−1

is PQε-projective to g.

REMARK 2. Taking the trace of the (1, 1)-tensors in equation (6) acting on the
vector field Y , we obtain

� = 1
2(1 − ε)

grad trace A. (7)

Hence, (6) is a linear first-order PDE on the (1, 1)-tensor A.

REMARK 3. From Fact 1 it follows that the metrics g, ḡ are affinely equivalent if
and only if � ≡ 0 on the whole M.

REMARK 4. Relation between the 1-form � in equation (2) and the vector field �

in equation (6) is given by � = −Ag−1� (again g−1 : T∗M → TM is considered as a
bundle isomorphism), see [15]. Recall from Example 2 that projective equivalence is a
special case of PQε-projectivity with �(P.) = 0 or Q = 0 and ε = 0. In view of Fact 1,
we now have that g and ḡ are projectively equivalent if and only if A = A(g, ḡ) given
by equation (5) (with ε = 0), satisfies equation (6) with P� = 0 or Q = 0, i.e.

(∇X A)Y = g(Y, X)� + g(Y,�)X for all X, Y ∈ TM. (8)

2. Proof of the results.

2.1. Topalov’s integrals. We first recall the following.

FACT 2. (Proposition 3 in [15]). Let g and ḡ be PQε-projective metrics and let A be
defined by (5). We identify TM with T∗M by g, and consider the canonical symplectic
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structure on TM ∼= T∗M. Then the functions Ft : TM → �,

Ft(X) = |det (A − tId)| 1
1−ε g((A − tId)−1X, X), X ∈ TM (9)

are commuting quadratic integrals for the geodesic flow of g.

REMARK 5. Note that the function Ft in equation (9) is not defined in the
points x ∈ M such that t ∈ spec A|x. It will be clear from the proof of Theorem
1 that in the nontrivial case one can extend the functions Ft to these points as
well.

2.2. Proof of Theorem 1. Suppose that g and ḡ are PQε-projective Riemannian
metrics, and let A = A(g, ḡ) be the corresponding solution of equation (6) defined
by equation (5). Since A is self-adjoint with respect to the positively definite metric
g, the eigenvalues of A in every point x ∈ M are real numbers. We denote these by
μ1(x) ≤ · · · ≤ μm(x); depending on the multiplicity, some of the eigenvalues might
coincide. The functions μi are continuous on M. Denote by M0 ⊆ M the set of points
where the number of different eigenvalues of A is maximal on M. Since the functions μi

are continuous, M0 is open in M. Moreover, it was shown in [15] that M0 is dense in M
as well. The implicit function theorem now implies that μi are differentiable functions
on M0.

From Remark 3 and equation (7) we immediately obtain that g and ḡ are
affinely equivalent if and only if all eigenvalues of A are constant. Suppose that
g and ḡ are not affinely equivalent, that is there is a non-constant eigenvalue ρ

of A with multiplicity k ≥ 1. Let us choose a point x0 ∈ M0 such that dρ|x0 �=
0, define c := ρ(x0) and consider the hypersurface H = {x ∈ U : ρ(x) = c}, where
U ⊆ M0 is a geodesically convex neighbourhood of x0. We think that U is
sufficiently small such that μ(x) �= c for all eigenvalues μ of A different from ρ and
all x ∈ U .

LEMMA 1. There is a smooth nowhere vanishing (0, 2)-tensor T on U such that on
U \ H, T coincides with

sgn(ρ − c)|det (A − cId)| 1
k g((A − cId)−1., .). (10)

Proof. Let us denote by ρ = ρ1, ρ2, ..., ρr different eigenvalues of A on M0 with
multiplicities k = k1, k2, ..., kr, respectively. Since the eigenspace distributions of A are
differentiable on M0, we can choose a local frame {U1, ..., Um} on U such that g and
A are given by matrices

g = diag(1, ..., 1) and A = diag(ρ, ..., ρ︸ ︷︷ ︸
k times

, ..., ρr, ..., ρr︸ ︷︷ ︸
kr times

)
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H

y = γ(0)

γ(1)γ

U

Figure 1. Case 1
1−ε

− 1
k > 0: We connect the point y ∈ U \ H with the points in H by

geodesics. The value of the integral Fc is zero on each of these geodesics.

with respect to this frame. The tensor (10) can now be written as

sgn(ρ − c)|det (A − cId)| 1
k g(A − cId)−1 =

(ρ − c)
r∏

i=2

|ρi − c| ki
k diag

( 1
ρ − c

, ...,
1

ρ − c︸ ︷︷ ︸
k times

, ...,
1

ρr − c
, ...,

1
ρr − c︸ ︷︷ ︸

kr times

)

=
r∏

i=2

|ρi − c| ki
k diag

(
1, ..., 1︸ ︷︷ ︸

k times

, ...,
ρ − c
ρr − c

, ...,
ρ − c
ρr − c︸ ︷︷ ︸

kr times

)
. (11)

Since ρi �= c on U ⊆ M0 for i = 2, ..., r, we see that (11) is a smooth nowhere vanishing
(0, 2)-tensor on U . �

LEMMA 2. The multiplicity of the non-constant eigenvalues of A is equal to 1 − ε.

Proof. Let us consider the integral Fc : TM → � defined in equation (9). Using
the tensor T from Lemma 1, we can write Fc as

Fc(X) = sgn(ρ − c)|det (A − cId)| 1
1−ε

− 1
k︸ ︷︷ ︸

=:fc

T(X, X), X ∈ TM. (12)

Our goal is to show that 1
1−ε

− 1
k = 0.

First suppose that 1
1−ε

− 1
k > 0 and let y ∈ U \ H. We choose a geodesic γ :

[0, 1] → U such that y = γ (0) and γ (1) ∈ H, see Figure 1. Since ρ(γ (t))
t→1−→ c, we

see from equation (12) that fc(γ (t))
t→1−→ 0. It follows that Fc(γ̇ (t))

t→1−→ 0. On the other
hand, since Fc is an integral for the geodesic flow of g (see Fact 2), the value Fc(γ̇ (t))
is independent of t, and hence Fc(γ̇ (0)) = 0. We have shown that Fc(γ̇ (0)) = 0 for all
initial velocities γ̇ (0) ∈ TyM of geodesics connecting y with points of H. Since H is
a hypersurface, it follows that the quadric {X ∈ TyM : Fc(X) = 0} contains an open
subset that implies Fc ≡ 0 on TyM. This is a contradiction to Lemma 1, since T is
non-vanishing in y. We obtain that 1

1−ε
− 1

k ≤ 0.
Let us now treat the case when 1

1−ε
− 1

k < 0. We choose a vector X ∈ Tx0 M which
is not tangent to H and satisfies T(X, X) �= 0. Such a vector exists, since Tx0 M \ Tx0 H
is open in Tx0 M and T is not identically zero on Tx0 M by Lemma 1. Let us consider the
geodesic γ with γ (0) = x0 and γ̇ (0) = X , see Figure 2. Since X /∈ Tx0 H, the geodesic
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H

γ(t)
x0 = γ(0)

γ

U

Figure 2. Case 1
1−ε

− 1
k < 0: For any geodesic γ starting in x0 ∈ H and leaving H, the

value of integral Fc along this geodesic is infinite.

γ has to leave H for t > 0. In a point γ (t) ∈ U \ H the value Fc(γ̇ (t)) will be finite. On

the other hand, since fc(γ (t))
t→0−→ ∞ and T(γ̇ (0), γ̇ (0)) �= 0, we have Fc(γ̇ (t))

t→0−→ ∞.
Again this contradicts the fact that the value of Fc must remain constant along γ̇ by
Fact 2. We have shown that 1

1−ε
− 1

k = 0, and finally Lemma 2 is proven. �
As a consequence of Lemma 2, if the metrics g, ḡ are not affinely equivalent (i.e. at

least one eigenvalue of A is non-constant), ε is an integer less or equal to zero. If ε �= 0,
the condition PQ = εId in equation (1) implies that P is non-degenerate and by the
first condition in equation (1), g(P., .) is a non-degenerate 2-form on each eigenspace
of A (note that A and P commute). This implies that for ε �= 0 the eigenspaces of A
have even dimension, in particular, 1 − ε ∈ {2, 4, 6, 8, ...}. Theorem 1 is proven.

2.3. Proof of Theorem 2. Let g, ḡ be two PQε-projective metrics and let A be
the corresponding solution of equation (6) defined by equation (5). As it was already
stated in the proof of Theorem 1, the eigenspace distributions of A are differentiable
in a neighbourhood of almost every point of M. First let us prove the following.

LEMMA 3. Let X be an eigenvector of A corresponding to the eigenvalue ρ. If μ is
another eigenvalue of A and ρ �= μ, then X(μ) = 0. In particular, grad μ is an eigenvector
of A corresponding to the eigenvalue μ.

REMARK 6. Lemma 3 is known for projectively equivalent (Example 2) and h-
projectively equivalent (Example 3) metrics. For projectively equivalent metrics, it is a
classical result that was already known to Levi-Civita [4]. For h-projectively equivalent
metrics, it follows from [1, 7].

Proof. Let Y be an eigenvector field of A corresponding to the eigenvalue μ. For
arbitrary X ∈ TM, we obtain ∇X (AY ) = ∇X (μY ) = X(μ)Y + μ∇X Y and ∇X (AY ) =
(∇X A)Y + A∇X Y . Combining these equations and replacing the expression (∇X A)Y
by equation (6) we obtain

(A − μId)∇X Y = X(μ)Y − g(Y, X)� − g(Y,�)X − g(Y, QX)P� − g(Y, P�)QX.

(13)

Now let X be an eigenvector of A corresponding to the eigenvalue ρ and suppose
that ρ �= μ. Since A is g-self-adjoint, the eigenspaces of A corresponding to different
eigenvalues are orthogonal to each other. Moreover, since A and Q commute, Q leaves
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the eigenspaces of A invariant. Using equation (13) we obtain

(A − μId)∇X Y + g(Y,�)X + g(Y, P�)QX = X(μ)Y.

Since the left-hand side is orthogonal to the μ-eigenspace of A, we necessarily have
X(μ) = 0. We have shown that g(grad μ, X) = X(μ) = 0 for any eigenvalue μ and any
eigenvector field X corresponding to an eigenvalue which is different from μ. This
forces grad μ to be contained in the eigenspace of A corresponding to μ. �

Now suppose ε = 0. Let us denote the non-constant eigenvalues of A by ρ1, . . . , ρl .
Using Lemma 2, the corresponding eigenspaces are 1-dimensional and Lemma 3
implies that these are spanned by the gradients grad ρ1, ..., grad ρl respectively. Since
P and A commute, P leaves the eigenspaces of A invariant, hence Pgrad ρi = pigrad ρi

for some real number pi. Now P is skew with respect to g and we obtain 0 =
g(grad ρi, Pgrad ρi) = pig(grad ρi, grad ρi), which implies that

Pgrad ρi = 0.

On the other hand, by equation (7)

� = 1
2

grad trace A = 1
2

(grad ρ1 + ... + grad ρl).

Combining the last two equations, we obtain P� = 0. It follows from Remark 4 that
g and ḡ are projectively equivalent and hence Theorem 2 is proved.
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