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Abstract. We show that PQ¢-projectivity of two Riemannian metrics introduced
in [15] (P. J. Topalov, Geodesic compatibility and integrability of geodesic flows, J.
Math. Phys. 44(2) (2003), 913-929.) implies affine equivalence of the metrics unless
€ €{0,—1,-3, -5, -7, ...}. Moreover, we show that fore = 0, PQ-projectivity implies
projective equivalence.
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1. Introduction.

1.1. PQ¢-projectivity of Riemannian metrics. Let g, g be two Riemannian metrics
on an m-dimensional manifold M. Consider (1, 1)-tensors P, Q that satisfy

g(P.,.)=—g(. P), g0..)=-g(0)
g, .)=-g pr) g0.,.)=-g0) (1)
PO =¢ld,

where Id is the identity on 7M and € is a real number, € # 1, m + 1. The following
definition was introduced in [15].

DEFINITION 1. The metrics g, g are called PQ*-projective if for a certain 1-form ¢
the Levi-Civita connections V and V of g and g satisfy

VyY — Vy Y = ®(X)Y + &(Y)X — &(PX)QY — ®(PY)QX ©)

for all vector fields X, Y.

EXAMPLE 1. If the two metrics g and g are affinely equivalent,i.e. V = V, then these
are PQ¢-projective with P, Q, € arbitrary and @ = 0.

ExAMPLE 2. Suppose that ®(P.) = 0 or Q = 0 and € = 0. It follows that equation
(2) becomes

VyY — VyY = &(X)Y + o(Y)X. 3)
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By Levi-Civita [4], equation (3) is equivalent to the condition that g and g have the same
geodesics considered as unparametrised curves, i.e. g and g are projectively equivalent.
The theory of projectively equivalent metrics has a very long tradition in differential
geometry, see for example [5, 6, 8, 10, 13] and the references therein.

ExAMPLE 3. Suppose that P = Q = J and € = —1. It follows that J is an almost
complex structure, i.e. J> = —Id, and by equation (1) the metrics g and g are required
to be Hermitian with respect to J. Equation (2) now reads

VyY —VyY = d(X)Y + &(Y)X — d(JX)JY — d(JY)JX. ()

This equation defines the /i-projective equivalence of the Hermitian metrics g and g, and
was introduced for the first time by Otsuki and Tashiro in [12, 14] for the Kaehlerian
metrics. The theory of s-projectively equivalent metrics was introduced as an analog
of projective geometry in the Kéhlerian situation and has been studied actively over
the years, see for example [1-3, 7, 11] and the references therein.

REMARK 1. PQ¢-projectivity of the Riemannian metrics is a special case of the so-
called F-planar mappings introduced and investigated in [9], whose defining equation,
i.e. equation (1) in [9] clearly generalises equation (2) above.

1.2. Results. The aim of our paper is to give a proof of the following two
theorems.

THEOREM 1. Let Riemannian metrics g and g be PQ¢-projective. If g and g are
not affinely equivalent, the number € is either zero or an odd negative integer, i.e. € €
{0,—-1,-3,-5,-7,...}.

THEOREM 2. Let Riemannian metrics g and g be PQ¢-projective. If € = 0 then g and
g are projectively equivalent.

1.3. Motivation and open questions. As was shown in [15], PQ¢-projectivity of
the metrics g, g allows us to construct a family of commuting integrals for the geodesic
flow of g (see Fact 2 and equation (9)). The existence of these integrals is an interesting
phenomenon on its own. Besides, it appeared to be a powerful tool in the study
of projectively equivalent and /-projectively equivalent metrics (Examples 2 and 3),
see [3, 5-8]. Moreover, it was shown in [15] that given one pair of PQ¢-projective
metrics, one can construct an infinite family of PQ¢-projective metrics. Under some
non-degeneracy condition, this gives rise to an infinite family of integrable flows.

From the other side, the theories of projectively equivalent and A-projectively
equivalent metrics appeared to be very useful mathematical theories of deep interest.

The results in our paper suggest to look for other examples in the case when
e=—1,-3,-5,... If e = —1 but P> # —Id, a lot of examples can be constructed
using the ‘hierarchy construction’ from [15]. It is interesting to ask whether every pair
of PQ~!-projective metrics is in the hierarchy of some /-projectively equivalent metrics?

Another attractive problem is to find interesting examples for ¢ = —3, -5, ....
Besides the relation to integrable systems provided by [15], one could find other
branches of differential geometry of similar interest as projective or A-projective
geometry.
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1.4. PDE for PQc-projectivity. Given a pair of Riemannian metrics g, g and
tensors P, Q satisfying equation (1), we introduce the (1, 1)-tensor 4 = A(g, g)

defined by
detg e 1
(detg) g g )

Here we view the metrics as vector bundle isomorphisms g : TM — T*M and g~ ! :
T*M — TM. We see that A4 is non-degenerate and self-adjoint with respect to g and
g. Moreover, A commutes with P and Q.

Fact 1. (Lemma 2 in [15], see also Theorems 5 and 6 in [9]). Two metrics g and g
are PQ¢-projective if for a certain vector field A, the (1, 1)-tensor A defined in (5) is a
solution of

(VxA)Y = g(¥, X)A + g(¥, A)X + g(¥, QX)PA
+g(Y, PAN)QX forall X,Y € TM. (6)

Conversely, if A is a g-self-adjoint positive solution of (6), which commutes with P and
Q, the Riemannian metric

g =(detA) Tega™!

is PQ¢-projective to g.

REMARK 2. Taking the trace of the (1, 1)-tensors in equation (6) acting on the
vector field Y, we obtain

1
A= 2= e)grad trace 4. 7

Hence, (6) is a linear first-order PDE on the (1, 1)-tensor A.

REMARK 3. From Fact 1 it follows that the metrics g, g are affinely equivalent if
and only if A = 0 on the whole M.

REMARK 4. Relation between the 1-form @ in equation (2) and the vector field A
in equation (6) is given by A = —4g~'® (again g~! : T*M — T M is considered as a
bundle isomorphism), see [15]. Recall from Example 2 that projective equivalence is a
special case of PQ¢-projectivity with ®(P.) = 0 or Q = 0 and € = 0. In view of Fact 1,
we now have that g and g are projectively equivalent if and only if 4 = A(g, g) given
by equation (5) (with € = 0), satisfies equation (6) with PA =0or Q =0, i.e.

(VxA)Y =g(Y, X)A+g(Y,A)X forall X, Y € TM. ®)
2. Proof of the results.
2.1. Topalov’s integrals. We first recall the following.

FAct 2. (Proposition 3 in [15]). Let g and g be PQ¢-projective metrics and let A be
defined by (5). We identify TM with T*M by g, and consider the canonical symplectic
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structure on TM = T*M. Then the functions F; : TM — R,
F(X) = |det (4 — tId)| 7 g((A — tId) ' X, X), X € TM )

are commuting quadratic integrals for the geodesic flow of g.

REMARK 5. Note that the function F, in equation (9) is not defined in the
points x € M such that ¢ € spec 4. It will be clear from the proof of Theorem
1 that in the nontrivial case one can extend the functions F; to these points as
well.

2.2. Proof of Theorem 1. Suppose that g and g are PQ¢-projective Riemannian
metrics, and let 4 = A(g, g) be the corresponding solution of equation (6) defined
by equation (5). Since 4 is self-adjoint with respect to the positively definite metric
g, the eigenvalues of A in every point x € M are real numbers. We denote these by
n1(x) < -+ < up(x); depending on the multiplicity, some of the eigenvalues might
coincide. The functions y; are continuous on M. Denote by M C M the set of points
where the number of different eigenvalues of A4 is maximal on M. Since the functions u;
are continuous, M is open in M. Moreover, it was shown in [15] that M° is dense in M
as well. The implicit function theorem now implies that u; are differentiable functions
on M°.

From Remark 3 and equation (7) we immediately obtain that g and g are
affinely equivalent if and only if all eigenvalues of 4 are constant. Suppose that
g and g are not affinely equivalent, that is there is a non-constant eigenvalue p
of A with multiplicity k > 1. Let us choose a point xo € M® such that dp,, #
0, define ¢ := p(x¢) and consider the hypersurface H = {x € U : p(x) = ¢}, where
Uc M° is a geodesically convex neighbourhood of xo. We think that U is
sufficiently small such that u(x) # ¢ for all eigenvalues u of A4 different from p and
all x e U.

LEMMA 1. There is a smooth nowhere vanishing (0, 2)-tensor T on U such that on
U\ H, T coincides with

sgn(p — o)|det (4 — cId)|tg((4 — cId)™"., ). (10)

Proof. Let us denote by p = pi, pa, ..., p, different eigenvalues of 4 on M° with
multiplicities k = k1, k3, ..., k., respectively. Since the eigenspace distributions of A are
differentiable on M°, we can choose a local frame {Uj, ..., U,} on U such that g and
A are given by matrices

g = diag(l, ..., 1) and 4 = diag(p, ..., 0, ..., Or, vy OF)
—— ——

k times kr times
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Figure 1. Case ﬁ — % > 0: We connect the point y € U \ H with the points in H by

geodesics. The value of the integral F, is zero on each of these geodesics.

with respect to this frame. The tensor (10) can now be written as

sgn(p — o)|det (4 — cId)|ig(A — cId)™" =

. ki 1 1 1 1
(p—c)l_[|pi—c|fdiag( s )
L p—c Tp—cp = p—c
k times k,- times
4 ki p—c —c
_ 1_[|p,~—c|7'diag<1, ol L ) (11)
i=2 \T"—/ pr—¢ pr—¢
- K times —
k,- times

Since p; # con U € M fori =2, ..., r, we see that (11) is a smooth nowhere vanishing
(0, 2)-tensor on U. ]

LEMMA 2. The multiplicity of the non-constant eigenvalues of A is equal to 1 — €.

Proof. Let us consider the integral F, : TM — R defined in equation (9). Using
the tensor 7" from Lemma 1, we can write F, as

F.(X) = sgn(p — o)|det (4 — cId)|7+ ¢ T(X, X), X € TM. (12)
=fe

Our goal is to show that 11: — ,l( =0.
First suppose that ﬁ — % >0 and let y € U\ H. We choose a geodesic y :

[0, 1] = U such that y = y(0) and y(1) € H, see Figure 1. Since p(y(1)) ndt ¢, we

t—1

see from equation (12) that f.(y(¢)) — 0. It follows that F.(y(?)) L 0. On the other
hand, since F, is an integral for the geodesic flow of g (see Fact 2), the value F.(y(1))
is independent of 7z, and hence F.(y(0)) = 0. We have shown that F.(y(0)) = 0 for all
initial velocities y(0) € T),M of geodesics connecting y with points of H. Since H is
a hypersurface, it follows that the quadric {X € T, M : F.(X) = 0} contains an open
subset that implies /. = 0 on T,,M. This is a contradiction to Lemma 1, since T is
non-vanishing in y. We obtain that ﬁ — % <0.

Let us now treat the case when ﬁ — % < 0. We choose a vector X € T, M which
is not tangent to H and satisfies 7(X, X) # 0. Such a vector exists, since Tx,M \ Ty, H
isopenin Ty, M and T is not identically zero on Ty, M by Lemma 1. Let us consider the

geodesic y with y(0) = xo and y(0) = X, see Figure 2. Since X ¢ Ty H, the geodesic
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Figure 2. Case ﬁ — % < 0: For any geodesic y starting in xo € H and leaving H, the
value of integral F, along this geodesic is infinite.

y has to leave H for ¢t > 0. In a point y(¢) € U \ H the value F.(y(¢)) will be finite. On

the other hand, since £.(y(£)) =5 0o and T(7(0), 7(0)) # 0, we have F.(y(£)) =3 oo.
Again this contradicts the fact that the value of F. must remain constant along y by
Fact 2. We have shown that ﬁ — % = 0, and finally Lemma 2 is proven. O

As a consequence of Lemma 2, if the metrics g, g are not affinely equivalent (i.e. at
least one eigenvalue of 4 is non-constant), € is an integer less or equal to zero. If € # 0,
the condition PQ = €ld in equation (1) implies that P is non-degenerate and by the
first condition in equation (1), g(P., .) is a non-degenerate 2-form on each eigenspace
of A (note that 4 and P commute). This implies that for € # 0 the eigenspaces of A
have even dimension, in particular, 1 — € € {2, 4,6, 8, ...}. Theorem 1 is proven.

2.3. Proof of Theorem 2. Let g, g be two PQ¢-projective metrics and let 4 be
the corresponding solution of equation (6) defined by equation (5). As it was already
stated in the proof of Theorem 1, the eigenspace distributions of 4 are differentiable
in a neighbourhood of almost every point of M. First let us prove the following.

LEMMA 3. Let X be an eigenvector of A corresponding to the eigenvalue p. If u is
another eigenvalue of A and p # u, then X () = 0. In particular, grad p is an eigenvector
of A corresponding to the eigenvalue 1.

REMARK 6. Lemma 3 is known for projectively equivalent (Example 2) and /-
projectively equivalent (Example 3) metrics. For projectively equivalent metrics, it is a
classical result that was already known to Levi-Civita [4]. For h-projectively equivalent
metrics, it follows from [1, 7].

Proof. Let Y be an eigenvector field of 4 corresponding to the eigenvalue u. For
arbitrary X € TM,we obtain Vy(AY) = Vy(uY) = X(w)Y + uVyYand Vx(4Y) =
(VxA)Y + AVyx Y. Combining these equations and replacing the expression (VyA)Y
by equation (6) we obtain

(A — uld)Vy Y = X(0)Y — g(¥, X)A — g(Y, )X — g(Y, OX)PA — g(¥, PA)OX.
13)
Now let X be an eigenvector of 4 corresponding to the eigenvalue p and suppose

that p # u. Since 4 is g-self-adjoint, the eigenspaces of 4 corresponding to different
eigenvalues are orthogonal to each other. Moreover, since 4 and Q commute, Q leaves
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the eigenspaces of A invariant. Using equation (13) we obtain
(A—puld)VyY 4+ g(Y, A)X + g(Y, PA)OX = X(u)Y.

Since the left-hand side is orthogonal to the u-eigenspace of A4, we necessarily have
X () = 0. We have shown that g(grad i, X) = X(u) = 0 for any eigenvalue u and any
eigenvector field X corresponding to an eigenvalue which is different from . This
forces grad u to be contained in the eigenspace of 4 corresponding to w«. ]

Now suppose € = 0. Let us denote the non-constant eigenvalues of 4 by py, ..., p;.
Using Lemma 2, the corresponding eigenspaces are 1-dimensional and Lemma 3
implies that these are spanned by the gradients grad py, ..., grad p; respectively. Since
P and A commute, P leaves the eigenspaces of 4 invariant, hence Pgrad p; = p;grad p;
for some real number p;. Now P is skew with respect to g and we obtain 0 =
g(grad p;, Pgrad p;) = p;g(grad p;, grad p;), which implies that

Pgrad p; = 0.

On the other hand, by equation (7)

1 1
A= Egrad trace A = E(grad o1+ ... + grad p)).

Combining the last two equations, we obtain PA = 0. It follows from Remark 4 that
g and g are projectively equivalent and hence Theorem 2 is proved.
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