TWO REMARKS ON PQ^ϵ-PROJECTIVITY OF
RIEMANNIAN METRICS

VLADIMIR S. MATVEEV AND STEFAN ROSEMANN
Institute of Mathematics, FSU Jena, Jena 07737, Germany
e-mails: vladimir.matveev@uni-jena.de, stefan.rosemann@uni-jena.de

(Received 15 August 2011; revised 5 January 2012; accepted 25 February 2012;
first published online 2 August 2012)

Abstract. We show that PQ^ϵ-projectivity of two Riemannian metrics introduced
in [15] (P. J. Topalov, Geodesic compatibility and integrability of geodesic flows, J.
Math. Phys. 44(2) (2003), 913–929.) implies affine equivalence of the metrics unless
$\epsilon \in \{0, -1, -3, -5, -7, \ldots\}$. Moreover, we show that for $\epsilon = 0$, PQ^ϵ-projectivity implies
projective equivalence.

2000 Mathematics Subject Classification. 53B20, 53B35, 53C21, 53C22, 53C55,
37J35, 70H06

1. Introduction.

1.1. PQ^ϵ-projectivity of Riemannian metrics. Let g, \bar{g} be two Riemannian metrics
on an m-dimensional manifold M. Consider $(1, 1)$-tensors P, Q that satisfy

\begin{align}
 g(P., .) & = -g(., P.), \quad g(Q., .) = -g(., Q.) \\
 \bar{g}(P., .) & = -\bar{g}(., P.), \quad \bar{g}(Q., .) = -\bar{g}(., Q.) \\
 PQ & = \epsilon Id,
\end{align}

where Id is the identity on TM and ϵ is a real number, $\epsilon \neq 1, m + 1$. The following
definition was introduced in [15].

Definition 1. The metrics g, \bar{g} are called PQ^ϵ-projective if for a certain 1-form Φ
the Levi-Civita connections ∇ and $\bar{\nabla}$ of g and \bar{g} satisfy

\begin{equation}
 \bar{\nabla}_X Y - \nabla_X Y = \Phi(X)Y + \Phi(Y)X - \Phi(PX)QY - \Phi(PY)QX
\end{equation}

for all vector fields X, Y.

Example 1. If the two metrics g, \bar{g} are affinely equivalent, i.e. $\nabla = \bar{\nabla}$, then these
are PQ^ϵ-projective with P, Q, ϵ arbitrary and $\Phi \equiv 0$.

Example 2. Suppose that $\Phi(P.) = 0$ or $Q = 0$ and $\epsilon = 0$. It follows that equation
(2) becomes

\begin{equation}
 \bar{\nabla}_X Y - \nabla_X Y = \Phi(X)Y + \Phi(Y)X.
\end{equation}
By Levi-Civita [4], equation (3) is equivalent to the condition that \(g \) and \(\bar{g} \) have the same geodesics considered as unparametrised curves, i.e. \(g \) and \(\bar{g} \) are \textit{projectively equivalent}. The theory of projectively equivalent metrics has a very long tradition in differential geometry, see for example [5, 6, 8, 10, 13] and the references therein.

Example 3. Suppose that \(P = Q = J \) and \(\epsilon = -1 \). It follows that \(J \) is an almost complex structure, i.e. \(J^2 = -Id \), and by equation (1) the metrics \(g \) and \(\bar{g} \) are required to be Hermitian with respect to \(J \). Equation (2) now reads

\[
\bar{\nabla}_X Y - \nabla_X Y = \Phi(X)Y + \Phi(Y)X - \Phi(JX)JY - \Phi(JY)JX.
\] (4)

This equation defines the \textit{h-projective equivalence} of the Hermitian metrics \(g \) and \(\bar{g} \), and was introduced for the first time by Otsuki and Tashiro in [12, 14] for the Kaehlerian metrics. The theory of \(h \)-projectively equivalent metrics was introduced as an analog of projective geometry in the \(\text{K\"{e}hlerian} \) situation and has been studied actively over the years, see for example [1–3, 7, 11] and the references therein.

Remark 1. \(PQ' \)-projectivity of the Riemannian metrics is a special case of the so-called \(F \)-planar mappings introduced and investigated in [9], whose defining equation, i.e. equation (1) in [9] clearly generalises equation (2) above.

1.2. Results. The aim of our paper is to give a proof of the following two theorems.

Theorem 1. Let Riemannian metrics \(g \) and \(\bar{g} \) be \(PQ' \)-projective. If \(g \) and \(\bar{g} \) are not affinely equivalent, the number \(\epsilon \) is either zero or an odd negative integer, i.e. \(\epsilon \in \{0, -1, -3, -5, -7, ...\} \).

Theorem 2. Let Riemannian metrics \(g \) and \(\bar{g} \) be \(PQ' \)-projective. If \(\epsilon = 0 \) then \(g \) and \(\bar{g} \) are projectively equivalent.

1.3. Motivation and open questions. As was shown in [15], \(PQ' \)-projectivity of the metrics \(g, \bar{g} \) allows us to construct a family of commuting integrals for the geodesic flow of \(g \) (see Fact 2 and equation (9)). The existence of these integrals is an interesting phenomenon on its own. Besides, it appeared to be a powerful tool in the study of projectively equivalent and \(h \)-projectively equivalent metrics (Examples 2 and 3), see [3, 5–8]. Moreover, it was shown in [15] that given one pair of \(PQ' \)-projective metrics, one can construct an infinite family of \(PQ' \)-projective metrics. Under some non-degeneracy condition, this gives rise to an infinite family of integrable flows.

From the other side, the theories of projectively equivalent and \(h \)-projectively equivalent metrics appeared to be very useful mathematical theories of deep interest. The results in our paper suggest to look for other examples in the case when \(\epsilon = -1, -3, -5, ... \). If \(\epsilon = -1 \) but \(P^2 \neq -Id \), a lot of examples can be constructed using the ‘hierarchy construction’ from [15]. It is interesting to ask whether every pair of \(PQ^{-1} \)-projective metrics is in the hierarchy of some \(h \)-projectively equivalent metrics?

Another attractive problem is to find interesting examples for \(\epsilon = -3, -5, ... \). Besides the relation to integrable systems provided by [15], one could find other branches of differential geometry of similar interest as projective or \(h \)-projective geometry.
1.4. PDE for \(PQ^\varepsilon\)-projectivity. Given a pair of Riemannian metrics \(g, \bar{g}\) and tensors \(P, Q\) satisfying equation (1), we introduce the \((1, 1)\)-tensor \(A = A(g, \bar{g})\) defined by

\[
A = \left(\frac{\det \bar{g}}{\det g} \right)^{\frac{1}{m+1}} \bar{g}^{-1}g.
\] (5)

Here we view the metrics as vector bundle isomorphisms \(g : TM \to T^*M\) and \(\bar{g}^{-1} : T^*M \to TM\). We see that \(A\) is non-degenerate and self-adjoint with respect to \(g\) and \(\bar{g}\). Moreover, \(A\) commutes with \(P\) and \(Q\).

Fact 1. (Lemma 2 in [15], see also Theorems 5 and 6 in [9]). Two metrics \(g\) and \(\bar{g}\) are \(PQ^\varepsilon\)-projective if for a certain vector field \(\Lambda_1\), the \((1, 1)\)-tensor \(A\) defined in (5) is a solution of

\[
(\nabla_X A) Y = g(Y, X)\Lambda + g(Y, \Lambda)X + g(Y, QX)P\Lambda
\]

\[+ g(Y, P\Lambda)QX \text{ for all } X, Y \in TM.\] (6)

Conversely, if \(A\) is a \(g\)-self-adjoint positive solution of (6), which commutes with \(P\) and \(Q\), the Riemannian metric

\[
\bar{g} = (\det A)^{-\frac{1}{m+1}} g A^{-1}
\]

is \(PQ^\varepsilon\)-projective to \(g\).

Remark 2. Taking the trace of the \((1, 1)\)-tensors in equation (6) acting on the vector field \(Y\), we obtain

\[
\Lambda = \frac{1}{2(1 - \varepsilon)} \text{grad trace } A.\] (7)

Hence, (6) is a linear first-order PDE on the \((1, 1)\)-tensor \(A\).

Remark 3. From Fact 1 it follows that the metrics \(g, \bar{g}\) are affinely equivalent if and only if \(\Lambda \equiv 0\) on the whole \(M\).

Remark 4. Relation between the 1-form \(\Phi\) in equation (2) and the vector field \(\Lambda\) in equation (6) is given by \(\Lambda = -Ag^{-1}\Phi\) (again \(g^{-1} : T^*M \to TM\) is considered as a bundle isomorphism), see [15]. Recall from Example 2 that projective equivalence is a special case of \(PQ^\varepsilon\)-projectivity with \(\Phi(P) = 0\) or \(Q = 0\) and \(\varepsilon = 0\). In view of Fact 1, we now have that \(g\) and \(\bar{g}\) are projectively equivalent if and only if \(A = A(g, \bar{g})\) given by equation (5) (with \(\varepsilon = 0\), satisfies equation (6) with \(P\Lambda = 0\) or \(Q = 0\), i.e.

\[
(\nabla_X A) Y = g(Y, X)\Lambda + g(Y, \Lambda)X \text{ for all } X, Y \in TM.\] (8)

2. Proof of the results.

2.1. Topalov's integrals. We first recall the following.

Fact 2. (Proposition 3 in [15]). Let \(g\) and \(\bar{g}\) be \(PQ^\varepsilon\)-projective metrics and let \(A\) be defined by (5). We identify \(TM\) with \(T^*M\) by \(g\), and consider the canonical symplectic
structure on $TM \cong T^*M$. Then the functions $F_t : TM \to \mathbb{R}$,

$$F_t(X) = |\det (A - tId)|^{-\frac{1}{2}} g((A - tId)^{-1}X, X), \quad X \in TM$$ \hspace{1cm} (9)

are commuting quadratic integrals for the geodesic flow of g.

Remark 5. Note that the function F_t in equation (9) is not defined in the points $x \in M$ such that $t \in \text{spec } A_x$. It will be clear from the proof of Theorem 1 that in the nontrivial case one can extend the functions F_t to these points as well.

2.2. Proof of Theorem 1. Suppose that g and \bar{g} are PQ^ϵ-projective Riemannian metrics, and let $A = A(g, \bar{g})$ be the corresponding solution of equation (6) defined by equation (5). Since A is self-adjoint with respect to the positively definite metric g, the eigenvalues of A in every point $x \in M$ are real numbers. We denote these by $\mu_1(x) \leq \cdots \leq \mu_m(x)$; depending on the multiplicity, some of the eigenvalues might coincide. The functions μ_i are continuous on M. Denote by $M^0 \subseteq M$ the set of points where the number of different eigenvalues of A is maximal on M. Since the functions μ_i are continuous, M^0 is open in M. Moreover, it was shown in [15] that M^0 is dense in M as well. The implicit function theorem now implies that μ_i are differentiable functions on M^0.

From Remark 3 and equation (7) we immediately obtain that g and \bar{g} are affinely equivalent if and only if all eigenvalues of A are constant. Suppose that g and \bar{g} are not affinely equivalent, that is there is a non-constant eigenvalue ρ of A with multiplicity $k \geq 1$. Let us choose a point $x_0 \in M^0$ such that $d\rho_{|x_0} \neq 0$, define $c := \rho(x_0)$ and consider the hypersurface $H = \{x \in U : \rho(x) = c\}$, where $U \subseteq M^0$ is a geodesically convex neighbourhood of x_0. We think that U is sufficiently small such that $\mu(x) \neq c$ for all eigenvalues μ of A different from ρ and all $x \in U$.

Lemma 1. There is a smooth nowhere vanishing $(0, 2)$-tensor T on U such that on $U \setminus H$, T coincides with

$$\text{sgn}(\rho - c)|\det (A - cId)|^{-\frac{1}{2}} g((A - cId)^{-1}X, X).$$ \hspace{1cm} (10)

Proof. Let us denote by $\rho = \rho_1, \rho_2, \ldots, \rho_r$ different eigenvalues of A on M^0 with multiplicities $k = k_1, k_2, \ldots, k_r$, respectively. Since the eigenspace distributions of A are differentiable on M^0, we can choose a local frame $\{U_1, \ldots, U_m\}$ on U such that g and A are given by matrices

$$g = \text{diag}(1, \ldots, 1) \quad \text{and} \quad A = \text{diag}(\rho_1, \ldots, \rho_1, \rho_2, \ldots, \rho_2, \ldots, \rho_r, \ldots, \rho_r)$$

k times k_r times
with respect to this frame. The tensor (10) can now be written as

\[
\text{sgn}(\rho - c) \left| \det (A - cI) \right|^{\frac{1}{r}} g(A - cI)^{-1} = \\
(\rho - c) \prod_{i=2}^{r} |\rho_i - c|^{\frac{1}{r}} \text{diag} \left(\frac{1}{\rho - c}, \ldots, \frac{1}{\rho - c}, \ldots, \frac{1}{\rho_r - c}, \ldots, \frac{1}{\rho_r - c} \right)
\]

\[
= \prod_{i=2}^{r} |\rho_i - c|^{\frac{1}{r}} \text{diag} \left(1, \ldots, 1, \ldots, \frac{\rho - c}{\rho_i - c}, \ldots, \frac{\rho - c}{\rho_i - c} \right).
\]

(11)

Since \(\rho_i \neq c\) on \(U \subseteq M^0\) for \(i = 2, \ldots, r\), we see that (11) is a smooth nowhere vanishing \((0, 2)\)-tensor on \(U\).

Lemma 2. The multiplicity of the non-constant eigenvalues of \(A\) is equal to \(1 - \epsilon\).

Proof. Let us consider the integral \(F_c : TM \to \mathbb{R}\) defined in equation (9). Using the tensor \(T\) from Lemma 1, we can write \(F_c\) as

\[
F_c(X) = \text{sgn}(\rho - c) \left| \det (A - cI) \right|^{\frac{1}{r} - \frac{1}{k}} T(X, X), \quad X \in TM.
\]

(12)

Our goal is to show that \(\frac{1}{1-\epsilon} - \frac{1}{k} = 0\).

First suppose that \(\frac{1}{1-\epsilon} - \frac{1}{k} > 0\) and let \(y \in U \setminus H\). We choose a geodesic \(\gamma : [0, 1] \to U\) such that \(y = \gamma(0)\) and \(\gamma(1) \in H\), see Figure 1. Since \(\rho(\gamma(t)) \xrightarrow{t \to 1} c\), we see from equation (12) that \(f_c(\gamma(t)) \xrightarrow{t \to 1} 0\). It follows that \(f_c(\dot{\gamma}(0)) \xrightarrow{t \to 1} 0\). On the other hand, since \(F_c\) is an integral for the geodesic flow of \(g\) (see Fact 2), the value \(F_c(\dot{\gamma}(t))\) is independent of \(t\), and hence \(F_c(\dot{\gamma}(0)) = 0\). We have shown that \(F_c(\dot{\gamma}(0)) = 0\) for all initial velocities \(\dot{\gamma}(0) \in T_\gamma M\) of geodesics connecting \(y\) with points of \(H\). Since \(H\) is a hypersurface, it follows that the quadric \(\{X \in T_\gamma M : F_c(X) = 0\}\) contains an open subset that implies \(F_c \equiv 0\) on \(T_\gamma M\). This is a contradiction to Lemma 1, since \(T\) is non-vanishing in \(y\). We obtain that \(\frac{1}{1-\epsilon} - \frac{1}{k} \leq 0\).

Let us now treat the case when \(\frac{1}{1-\epsilon} - \frac{1}{k} < 0\). We choose a vector \(X \in T_{x_0} M\) which is not tangent to \(H\) and satisfies \(T(X, X) \neq 0\). Such a vector exists, since \(T_{x_0} M \setminus T_{x_0} H\) is open in \(T_{x_0} M\) and \(T\) is not identically zero on \(T_{x_0} M\) by Lemma 1. Let us consider the geodesic \(\gamma\) with \(\gamma(0) = x_0\) and \(\dot{\gamma}(0) = X\), see Figure 2. Since \(X \notin T_{x_0} H\), the geodesic
\(\gamma \) has to leave \(H \) for \(t > 0 \). In a point \(\gamma(t) \in U \setminus H \) the value \(F_c(\dot{\gamma}(t)) \) will be finite. On the other hand, since \(f_\epsilon(\gamma(t)) \xrightarrow{t \to 0} \infty \) and \(T(\dot{\gamma}(0), \dot{\gamma}(0)) \neq 0 \), we have \(F_c(\dot{\gamma}(t)) \xrightarrow{t \to 0} \infty \). Again this contradicts the fact that the value of \(F_c \) must remain constant along \(\dot{\gamma} \) by Fact 2. We have shown that \(1 \frac{1}{1 - \epsilon} - \frac{1}{k} = 0 \), and finally Lemma 2 is proven. \(\square \)

As a consequence of Lemma 2, if the metrics \(g, \tilde{g} \) are not affinely equivalent (i.e. at least one eigenvalue of \(A \) is non-constant), \(\epsilon \) is an integer less or equal to zero. If \(\epsilon \neq 0 \), the condition \(PQ = \epsilon Id \) in equation (1) implies that \(P \) is non-degenerate and by the first condition in equation (1), \(g(P, . . .) \) is a non-degenerate 2-form on each eigenspace of \(A \) (note that \(A \) and \(P \) commute). This implies that for \(\epsilon \neq 0 \) the eigenspaces of \(A \) have even dimension, in particular, \(1 - \epsilon \in \{2, 4, 6, 8, \ldots \} \). Theorem 1 is proven.

2.3. Proof of Theorem 2. Let \(g, \tilde{g} \) be two \(PQ^\epsilon \)-projective metrics and let \(A \) be the corresponding solution of equation (6) defined by equation (5). As it was already stated in the proof of Theorem 1, the eigenspace distributions of \(A \) are differentiable in a neighbourhood of almost every point of \(M \). First let us prove the following.

Lemma 3. Let \(X \) be an eigenvector of \(A \) corresponding to the eigenvalue \(\rho \). If \(\mu \) is another eigenvalue of \(A \) and \(\rho \neq \mu \), then \(X(\mu) = 0 \). In particular, \(\text{grad} \mu \) is an eigenvector of \(A \) corresponding to the eigenvalue \(\mu \).

Remark 6. Lemma 3 is known for projectively equivalent (Example 2) and \(h \)-projectively equivalent (Example 3) metrics. For projectively equivalent metrics, it is a classical result that was already known to Levi-Civita [4]. For \(h \)-projectively equivalent metrics, it follows from [1, 7].

Proof. Let \(Y \) be an eigenvector field of \(A \) corresponding to the eigenvalue \(\mu \). For arbitrary \(X \in TM \), we obtain \(\nabla_X(AY) = \nabla_X(\mu Y) = X(\mu)Y + \mu \nabla_X Y \) and \(\nabla_X(AY) = (\nabla_X A)Y + A \nabla_X Y \). Combining these equations and replacing the expression \((\nabla_X A)Y \) by equation (6) we obtain

\[
(A - \mu Id)\nabla_X Y = X(\mu)Y - g(Y, X)\Lambda - g(Y, \Lambda)X - g(Y, QX)\Lambda - g(Y, PA)QX.
\]

(13)

Now let \(X \) be an eigenvector of \(A \) corresponding to the eigenvalue \(\rho \) and suppose that \(\rho \neq \mu \). Since \(A \) is \(g \)-self-adjoint, the eigenspaces of \(A \) corresponding to different eigenvalues are orthogonal to each other. Moreover, since \(A \) and \(Q \) commute, \(Q \) leaves...
the eigenspaces of A invariant. Using equation (13) we obtain
\[(A - \mu \text{Id}) \nabla_X Y + g(Y, \Lambda)X + g(Y, P \Lambda)QX = X(\mu)Y.\]

Since the left-hand side is orthogonal to the μ-eigenspace of A, we necessarily have $X(\mu) = 0$. We have shown that $g(\text{grad } \mu, X) = X(\mu) = 0$ for any eigenvalue μ and any eigenvector field X corresponding to an eigenvalue which is different from μ. This forces $\text{grad } \mu$ to be contained in the eigenspace of A corresponding to μ.

Now suppose $\epsilon = 0$. Let us denote the non-constant eigenvalues of A by ρ_1, \ldots, ρ_l. Using Lemma 2, the corresponding eigenspaces are 1-dimensional and Lemma 3 implies that these are spanned by the gradients $\text{grad } \rho_1, \ldots, \text{grad } \rho_l$ respectively. Since P and A commute, P leaves the eigenspaces of A invariant, hence $P \text{grad } \rho_i = p_i \text{grad } \rho_i$ for some real number p_i. Now P is skew with respect to g and we obtain $0 = g(\text{grad } \rho_i, P \text{grad } \rho_i) = p_i g(\text{grad } \rho_i, \text{grad } \rho_i)$, which implies that

\[P \text{grad } \rho_i = 0.\]

On the other hand, by equation (7)
\[\Lambda = \frac{1}{2} \text{grad } \text{trace } A = \frac{1}{2} (\text{grad } \rho_1 + \ldots + \text{grad } \rho_l).\]

Combining the last two equations, we obtain $P \Lambda = 0$. It follows from Remark 4 that g and \bar{g} are projectively equivalent and hence Theorem 2 is proved.

ACKNOWLEDGEMENT. We thank Peter Topalov for useful discussions, and Deutsche Forschungsgemeinschaft (Research training group 1523 – Quantum and Gravitational Fields) and FSU Jena for partial financial support.

REFERENCES