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Smoothness and geometry of boundaries

associated to skeletal structures, II:

Geometry in the Blum case

James Damon

Abstract

A skeletal structure (M,U) in R
n+1 is a special type of n-dimensional Whitney stratified

set M on which is defined a multivalued ‘radial vector field’ U . This is an extension of
the notion of the Blum medial axis of a region in R

n+1 with generic smooth boundary.
For such a skeletal structure an ‘associated boundary’ B is defined. In part I of this paper,
we introduced radial and edge shape operators, which are geometric invariants of the
radial vector field U on M , and a ‘radial flow’ from M to B. In this paper, in the partial
Blum case we derive formulas for the differential geometric shape operator of the boundary
(and hence all curvature invariants) in terms of the shape operators on the medial axis.
We further derive the effects of a diffeomorphism of the skeletal structure on the radial
and edge shape operators using a distortion operator which is computed from the second
derivative of the diffeomorphism evaluated on the unit radial vector field. This allows one
to compute the geometry of the boundary associated to a deformed skeletal structure
purely in terms of operators defined on the original skeletal set.

Introduction

In the first part of this paper [Dam03], we introduced the notion of a skeletal structure (M,U)
as a generalization of the Blum medial axis M of a region with smooth boundary. It consists of a
Whitney stratified set M together with the multivalued radial vector field U from points of M to
the corresponding points of tangency on the boundary, e.g. Figure 1.

We may write U = r · U1 for a unit vector field U1 and radius function r. For such skeletal
structures we introduced a radial shape operator Srad, an edge shape operator SE and a compatibility
1-form ηU . Associated to Srad are the ‘principal radial curvatures’ κr i, the eigenvalues of Srad, and
to SE the ‘principal edge curvatures’ κE i, which are generalized eigenvalues of SE.

Using these objects we gave a trio of conditions, radial curvature condition, edge condition,
and compatibility condition, which are (necessary and) sufficient to ensure that the ‘associated
boundary’ B is smooth. The skeletal set M and associated boundary B are naturally related by
a radial map defined using the radial vector field U . The radial map is the time-one map of an
associated ‘radial flow’ from M to B. The three conditions control the properties of the radial flow.

In this second part we investigate the geometry of the associated boundary B in the ‘partial
Blum case’. This requires only one of the conditions which M must satisfy to be a Blum medial axis;
namely, the radial vector is orthogonal to the boundary, which is guaranteed by a ‘compatibility
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Figure 1. Blum medial axis giving a skeletal structure of an object.

condition’. By contrast, the full Blum condition also requires additional conditions such as, for
example, at smooth points of M the two values of U must have the same length and their difference
must be orthogonal to M .

In the partial Blum case, if the radius function is constant on an open set of M , then it follows
that U is orthogonal to M . Thus, the boundary is a parallel manifold whose geometry is determined
in a standard way from M (see e.g. [Spi75, vol. III, ch. 3]). When r is not constant (and U is no
longer orthogonal to M), there are more complicated relations between the differential geometry of
the boundary and that of the medial axis. These relations also involve derivative properties of the
radius function r. The 2D case for boundary curves originated with [BN78]. For boundary surfaces
in 3D, Nackman and Pizer obtained formulas for the Gaussian and mean curvatures of the boundary
[Nac82, NP85]. In the opposite direction, differential geometric properties of the medial axis have
been obtained from the differential geometry of the boundary by Siersma, Sotomayor, and Garcia
[Sie99, SSG99] (and also see [VaM03a, VaM03b]). Actually in both of these cases the relationship
is with the differential geometry of a parallel surface of the boundary.

We take a different approach to this problem which directly considers the ‘geometry of the radial
vector field’ as expressed by the radial and edge shape operators. To understand the geometry
of the boundary we determine how the radial shape operator for level hypersurfaces Bt evolves
under the radial flow, obtaining an expression in terms of the initial radial shape operator Srad (and
the edge shape operator for points corresponding to the edge of M). This allows us to determine
explicitly the differential geometry of the boundary B. When the compatibility condition holds on
an open subset W of smooth points of M , the lines along U from this set intersect B orthogonally
so we are partially in the Blum situation. In this case, we explicitly express (in Theorem 3.2) the
differential geometric shape operator SB of B on the subset corresponding to W by

SBv′ = (I − rSv)−1Sv,

where Sv denotes a matrix representation of Srad with respect to a basis v, and SBv′ is a matrix
representation with respect to an associated basis v′. From this we deduce formulas for the principal
curvatures κi of B in terms of the principal radial curvatures κr i and conversely

κi =
κr i

(1 − r · κr i)
or κr i =

κi
(1 + r · κi)

(in particular, although Srad is not self-adjoint, it can be diagonalized with real eigenvalues). In
addition, we show that the radial flow sends the eigendirections of Srad to the principal normal
directions of B.

In the case of ‘crest points’ on the boundary, which correspond to edge points of the
medial axis (see [BGT96] or [Gib00]), we obtain an analogous result expressing the differential
geometric shape operator of B at a crest point in terms of the edge shape operator SEv by
SBv′ = (In−1,1 − rSEv)−1SEv, where In−1,1 is obtained from the identity matrix by replacing the
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Geometry of boundaries

last element by 0. However, there is not such a simple relationship between the principal curvatures
of B and the principal edge curvatures.

We then determine the relation between the differential geometry of B and that of the medial
axis M via Srad. In Proposition 4.1 we give a relation between Srad and Smed, the differential
geometric shape operator of M . This relation also involves a ‘radial Hessian operator’ Hr as well
as an additional non-self-adjoint operator Z. In light of the formulas we obtain in terms of Sv, this
explains the added complications in computing the differential geometric shape operator SB of the
boundary in terms of Smed.

Second, we determine in § 5 the effect of a ‘deforming diffeomorphism’ ϕ of (an arbitrar-
ily small neighborhood of) the skeletal structure (M,U) to yield a skeletal structure (M ′, V ) =
(ϕ(M), dϕ(U)). We introduce a radial distortion operator Qϕv and edge distortion operator QEϕ,v

defined in terms of the second derivative of ϕ at points on M . A third operator Eϕv measures the
failure of ϕ to preserve orthogonality to the skeletal set at edge points. Then, we measure the change
in the radial and edge shape operators as a result of applying ϕ. With respect to a basis v for Tx0M
with associated basis v′ in the image, the image shape operators are given by Theorem 5.4

Sv′ = σ(Sv +Qϕ,v) and SEv′ = σ(SEv +QEϕ,v +Eϕv),

where σ is a ‘radial scaling factor’ relating ‖U‖ and ‖V ‖.
Hence, these distortion operators allow us to determine whether the radial curvature and edge

conditions for smoothness of the associated boundary of the image (M ′, V ) continue to hold. Also,
for diffeomorphisms which satisfy a radial rigidity condition we show that the compatibility 1-form
pushes forward to be the compatibility 1-form of the image skeletal structure (ϕ(M), dϕ(U)). This
implies that the compatibility condition is unaltered by such a diffeomorphism. Thus, we deduce
sufficient conditions that applying a diffeomorphism to a skeletal structure will yield a skeletal
structure which still satisfies the three conditions for the smoothness of the associated boundary
(Theorem 5.7).

Moreover, in light of the above results, we are able to determine, in terms of the initial radial
and edge shape operators and the distortion operators on the initial Blum medial axis, the changes
in the differential geometric properties of the associated boundary for the image. What is rather
surprising is how the changes in differential geometric properties under diffeomorphisms can be
reduced to a ‘linear relation’ combined with the specific non-linear relation between radial shape
operators and geometric shape operators for the boundary.

1. Preliminaries: shape operators and radial flow

We recall from part I [Dam03] that, beginning with a skeletal structure (M,U) in R
n+1, we associate

a boundary B = {x+ U(x) : x ∈ M , all values of U}. A standard example we consider will be the
Blum medial axis M of a region Ω with generic smooth boundary B and its associated (multivalued)
radial vector field U . Then, the associated boundary B we consider here will be the initial boundary
of the object. We relate the boundary and skeletal set via the radial flow and the radial map which
is the time-one map of the radial flow. To define these globally requires the introduction of the
‘double of M ’; however, in the neighborhood W of a point x0 ∈ M with a smooth single-valued
choice for U , we define a local representation of the radial flow by ψt(x) = x + t · U(x), and the
radial map ψ1(x) = x+ U(x).

We define ‘shape operators’ for the skeletal structure (M,U). At a smooth point x0 of M we
choose a ‘smooth value’ of U . We recall that in a neighborhood of any smooth point of M ,
values of U on one side form a smooth vector field. By a smooth value of U we mean such a
smooth choice of U values. Then, U = r · U1 for a unit radial vector field U1.
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Radial shape operator. For v ∈ Tx0M , we define

Srad(v) = −projU

(
∂U1

∂v

)
,

where projU denotes projection onto Tx0M along U (in general, this is not orthogonal projection).
Sv denotes the matrix representation of Srad with respect to a basis v = {v1, . . . , vn}. The principal
radial curvatures κr i are the eigenvalues of Srad.

For a non-edge point x0 ∈ M , a value of U extends to be smooth on some local neighborhood
component Mα of x0. For this smooth value of U , we may likewise define the radial shape operator
at x0.

Remark. Thus, the radial shape operator is also multivalued in that at a non-edge point x0 there
will be a radial shape operator for each value of U at x0, which at smooth points means a value for
each side of M .

We may write the derivatives ∂U1/∂vi in vector notation (see (2.2) of [Dam03])

∂U1

∂v
= Av · U1 − ST

v · v, (1.1)

where ∂U1/∂v is a column vector with vector entries ∂U1/∂vi, and Av · U1 denotes the column
vector with entries ai · U1. We abuse notation to let v also denote a column vector with ith entry
the vector vi. Using this we compute the derivative of the radial flow (see (4.2) of [Dam03]):

∂ψt
∂v

= t(dr(v) + r · Av) · U1 + (I − t r · Sv)T · v, (1.2)

where ∂ψt/∂v and dr(v) are column vectors with ith entries ∂ψt/∂vi, respectively dr(vi).

Edge shape operator. For an edge point x0, with a smooth value of U defined on a neighborhood
of x0 (corresponding to one side of M), and a normal vector field n to M , we define

SE(v) = −proj′
(
∂U1

∂v

)
.

Here proj′ denotes projection onto Tx0∂M ⊕ 〈n〉 along U (again this is not orthogonal). Let v =
{v1, . . . , vn} be a basis of Tx0M so that {v1, . . . , vn−1} is a basis of Tx0∂M , and vn maps under the
edge parametrization map to c · U for c � 0. We refer to v as a special basis for Tx0M . Then, SEv

is a matrix representation of SE with respect to the basis v in the source and {v1, . . . , vn−1,n} in
the target. Again by (2.4) of [Dam03]

∂U1

∂v
= AU · U1 − ST

Ev ·
(
ṽ
n

)
, (1.3)

where ṽ is the (n− 1)-dimensional column vector with ith entry the vector vi. Then, the derivative
of the radial flow is given by the following (see (4.10) of [Dam03]):

∂ψt
∂v

= ÃU · U1 + (In−1,1 − t r · SEv)T ·
(
ṽ
n

)
. (1.4)

Here In−1,1 is the n × n diagonal matrix with 1 in the first n − 1 positions and 0 otherwise.
The principal edge curvatures κE i are the generalized eigenvalues of (SEv, In−1,1) (i.e. λ such that
SEv − λ · In−1,1 is singular).
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2. Evolution of the shape operators under the radial flow

Evolution of the radial shape operator from smooth points

We first consider the evolution of the radial shape operator under the radial flow. Let x0 ∈ Mreg,
and let {v1, . . . , vn} be a basis for Tx0M . We suppose we have chosen a smooth value of U in a
neighborhood of x0. If x0 is a non-edge singular point, then we can carry out an analogous argument
on a local component for x0.

For a given t, let

v′i = dψt(vi) =
∂ψt
∂vi

for i = 1, . . . , n.

We suppose that 1/(tr) is not an eigenvalue of Srad (at x0). Then, by the proof of Proposition 4.1 of
[Dam03], ψt maps a neighborhood W of x0 diffeomorphically to a smooth submanifold transverse
to U(x0). Thus, the image of U along ψt remains transverse in some neighborhood of x′0 = ψt(x0)
to W ′ = ψt(W ) ⊂ Bt. Hence, it has a well-defined radial shape operator, which we denote by Srad t.
We will compute Sv′ t, the matrix representation of Srad t with respect to the basis {v′i}.

Proposition 2.1. Suppose that, at a smooth point x0 ∈Mreg, we have a smooth value of U and a
basis {vi} for Tx0M . Let {v′i} denote the image of {vi} under dψt(x0). If 1/(tr) is not an eigenvalue
of the radial shape operator Sv at x0, then the radial shape operator Sv′ t for Bt at x′0 = ψt(x0) for
the corresponding smooth value of U is given by

Sv′ t = (I − t r · Sv)−1Sv. (2.1)

Proof. To carry out the computation we again use vector notation and let v′ denote the column
vector with ith entry the vector v′i. We wish to compute ∂U1/∂v

′
i.

We first claim ∂U1/∂v
′
i = ∂U1/∂vi. To see this, we let γ(u) be a curve in W with γ(0) = x0 and

derivative γ′(0) = vi. Then, γ1(u) = ψt ◦ γ(u) is a curve in W ′ ⊂ Bt with γ1(0) = x′0 and derivative
γ′1(0) = v′i. Then, note that one way to compute is

∂U1

∂v′i
=
∂(U1 ◦ γ1)(u)

∂u

∣∣∣∣
u=0

=
∂(U1 ◦ γ)(u)

∂u

∣∣∣∣
u=0

,

since U1 at γ1(u) is just the translation of U1 at γ(u), or

∂U1

∂v′i
=
∂U1

∂vi
. (2.2)

Thus, in vector form, ∂U1/∂v′ = ∂U1/∂v. Then, first from (1.2),

∂U1

∂v
= Av · U1 − ST

v · v. (2.3)

Also, from the calculation of the derivative of the radial flow (1.2),

v′ =
∂ψt
∂v

= t(dr(v) + r ·Av) · U1 + (I − t r · Sv)Tv. (2.4)

Hence, provided 1/(tr) is not an eigenvalue of Sv, (I − t r · Sv)T is invertible, so we may solve for
v and substitute into (2.3), using that ∂U1/∂v′ = ∂U1/∂v to obtain

∂U1

∂v′ = A′
v′ · U1 − (I − t r · ST

v )−1ST
v v′, (2.5)

where

A′
v′ = Av − t · (I − t r · ST

v )−1ST
v (dr(v) + r ·Av).

1661

https://doi.org/10.1112/S0010437X04000570 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04000570


J. Damon

Note that Sv and (I − t r ·Sv)−1 commute so they may be written in either order. By the definition
of Srad t and (2.5) we obtain

ST
v′ t = (I − t r · ST

v )−1ST
v ,

which implies (2.1).

Principal radial curvatures for Bt
Now, we can deduce information about the principal radial curvatures at x′0 in terms of those at x0.

Corollary 2.2. Under the assumptions of Proposition 2.1, there is a correspondence (counting
multiplicities) between the principal radial curvatures κr i of M at x0 and κr t i of Bt at x′0 given by

κr t i =
κr i

(1 − trκr i)
or equivalently κr i =

κr t i

(1 + trκr t i)
.

Furthermore, if ei is an eigenvector for the eigenvalue κr i, then e′i, which has the same coordinates
with respect to v′ as ei has with respect to v, is an eigenvector with eigenvalue κr t i.

Proof. We first use (2.1) to solve for Sv in terms of Sv′ t. From (2.1) we may write

Sv′ t = Sv(I + t r · Sv′ t) . (2.6)

Then, (I + t r · Sv′ t) is also non-singular, for if there were a vector v that (I + t r · Sv′ t)(v) = 0,
then, by (2.6), Sv′ t(v) = 0; and hence, v = I(v) = 0. Thus, we may use (2.6) to solve for Sv,

Sv = (I + t r · Sv′ t)−1Sv′ t. (2.7)

Now, (2.1) and (2.7) allow us to compare the eigenvalues of Sv and Sv′ t, and thus the principal
radial curvatures. If κr i is an eigenvalue for Sv with eigenvector ei, then (1 − t r · κr i)−1 is an
eigenvalue for (I − t r · Sv)−1 with the same eigenvector; and hence, by (2.1), κr i · (1 − trκr i)−1 is
an eigenvalue of Sv′ t with eigenvector ei. We can carry out a similar argument interchanging the
roles of Sv and Sv′ t using instead (2.7). Hence, we obtain the correspondence between the principal
curvatures and principal radial curvatures as well as the corresponding eigenvectors.

Evolution of the radial shape operator from edge points
We can carry out an analogous line of reasoning for the evolution of the radial shape operator for
points corresponding to an edge point x0. A smooth value of U in a neighborhood of x0 corresponds
to one side of M . Although Bt is not smooth at ψt(x0) if t < 1, we note that by Proposition 4.4
of [Dam03], provided 1/(tr) is not a generalized eigenvalue for (SEv, In−1,1), the one side of Bt
corresponding to U is smooth and is transverse to U at x0 when t > 0. Thus, the radial shape
operator is defined for Bt at points corresponding to edge points when t > 0. Hence, we may
compute the radial shape operator Sv′t for this one side as follows.

Proposition 2.3. Suppose that, at an edge point x0 ∈ ∂M , we have a smooth value of U (cor-
responding to one side of M) and a special basis {vi} for Tx0M . Let {v′i} denote the image of
{vi} under dψt(x0). If 1/(tr) is not a generalized eigenvalue of (SEv, In−1,1), then the radial shape
operator Sv′ t for Bt at x′0 = ψt(x0) is given by

Sv′ t = (In−1,1 − t r · SEv)−1SEv. (2.8)

We note that, unlike the situation for the radial shape operator, SEv does not necessarily
commute with In−1,1, so the order of the factors is important.

Proof. For the proof we argue as for Proposition 2.1, using (1.3) and (1.4) instead of (1.1) and (1.2).
We compute

∂U1

∂v′ = A′
U · U1 − ST

Ev(In−1,1 − t r · ST
Ev)−1v′, (2.9)
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where
A′
U = AU + ST

Ev(In−1,1 − t r · ST
Ev)−1ÃU .

Hence, (2.9) provides an expression for ∂U1/∂v′ in terms of the basis v′ and U1. Thus, by the
definition of Sv′t as a matrix representation for −projU (∂U1/∂v), where projU denotes projection
onto Tψt(x0)Bt along U(x0),

ST
v′t = ST

Ev(In−1,1 − t r · ST
Ev)−1,

implying (2.8).

Unlike the case of non-edge points, we cannot in general deduce a simple formula for the principal
radial curvatures for Sv′ t in terms of the principal edge curvatures. However, in a special case, we
can draw this conclusion.

Example 2.4. Suppose ∂U1/∂vi is orthogonal to n (i.e. ∈ Tx0M) for i = 1, . . . , n−1, and ∂U1/∂vn has
a non-zero component for n. Then, the bottom row of SEv has the form (0, . . . , 0, b). Let S̃Ev denote
the matrix obtained from SEv by removing the last row and column. It is the matrix representation
for −proj′′U(∂U1/∂v), where proj′′ denotes projection onto Tx0∂M along the subspace 〈n, U〉, with
respect to the basis ṽ = {v1, . . . , vn−1}.

Then, for each generalized eigenvalue λ �= 0 of (SEv, In−1,1), the eigenvector w = (w1, . . . , wn)
must have wn = 0 and then w̃ = (w1, . . . , wn−1) is an eigenvector of S̃Ev with eigenvalue λ. The
converse also holds even for λ = 0. Thus, the n−1 generalized eigenvalues κE i equal the eigenvalues
κ̃E i of S̃Ev counting multiplicities. Then, we see that (1− trκ̃E i) is an eigenvalue of In−1,1− t r ·SEv

and hence (1 − trκ̃E i)−1κ̃E i is an eigenvalue of (In−1,1 − t r · SEv)−1SEv both with the same
eigenvector (w̃, 0) for the corresponding eigenvector w̃ for S̃Ev. Also, a direct calculation shows that
the standard basis vector en is an eigenvector for (In−1,1 − t r ·SEv)−1SEv with eigenvalue −1/(tr).
These give the principal radial curvatures for Bt at x′0 = ψt(x0) (on the side corresponding to U)
to be

−1
tr

and κr t i =
κE i

(1 − trκE i)
i = 1, . . . , n− 1, (2.10)

where κE i = κ̃E i for i = 1, . . . , n− 1.

3. Differential geometry of the boundary in the Blum case

We now use the preceding to determine the differential geometry of the boundary in the Blum case.
For this we do not even require the full strength of the Blum conditions for the Blum medial axis.
Recall for a smooth value of U defined on a local component of M for x0, the compatibility 1-form
ηU (v) = v · U1 + dr(v); and the compatibility condition at x0 (for the given choice of U) asserts
ηU ≡ 0 at x0. We begin with a simple consequence of the compatibility condition holding at a
point x0. Then, as in Lemma 6.1 of [Dam03] we have the following lemma.

Lemma 3.1. Suppose (M,U) is a skeletal structure and that x0 ∈ M is a non-edge point. Let U
be a smooth value (on a non-edge local manifold component Mβ of x0) for which 1/r is not an
eigenvalue of Srad at x0. Then, the corresponding compatibility 1-form ηU vanishes at x0 if and only
if U(x0) is orthogonal to the associated boundary at ψ1(x0).

Proof. By the proof of Proposition 4.1 of part I, as 1/r is not an eigenvalue of Srad, it follows that
ψ1 is a local diffeomorphism. We choose a neighborhood W of the local manifold component Mβ

so that ψ1 is a diffeomorphism on W . For v ∈ Tx0Mβ, we compute the dot product (∂ψ1/∂v) · U1.
Recall that

∂ψt
∂v

= v + t

(
∂r

∂v
· U1 + r · ∂U1

∂v

)
. (3.1)
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Then, we have
∂ψ1

∂v
· U1 = v · U1 + dr(v)(U1 · U1) + r

(
∂U1

∂v
· U1

)
.

Since differentiating U1 · U1 = 1 implies (∂U1/∂v) · U1 = 0, we obtain

∂ψ1

∂v
· U1 = v · U1 + dr(v) = ηU (v). (3.2)

Thus, U1 being orthogonal to ∂ψ1/∂v for all v is equivalent to ηU ≡ 0 at x0.
Thus, U1(x′0), which is also the translate of U1 along the line spanned by U(x0), is orthogonal

to Tx′0B, where x′0 = ψ1(x0).

Thus, if, for a smooth value of U on an open set W of smooth points of M , the compatibility
condition holds for ηU on all of W , then by Lemma 3.1, U is orthogonal to the associated boundary
on W̃ = ψ1(W ). Thus, we see that the radial shape operator at a point x′ ∈ W̃ of the boundary is
really the differential geometric shape operator for B at x′. Hence, we can combine our calculation of
the radial shape operator at x′0 = ψ1(x0) given by Proposition 2.1 with Lemma 3.1 to compute the
differential geometric shape operator, principal curvatures, and principal directions of B in terms
of the radial shape operator, principal radial curvatures, and principal radial directions.

Differential geometry at associated smooth points
We consider a smooth point x0 ∈ M (however, we could equally well consider a local component
for a non-edge singular point of M).

Theorem 3.2. Suppose (M,U) is a skeletal structure such that, for a choice of smooth value of U ,
the associated compatibility 1-form ηU vanishes identically on a neighborhood of a smooth point x0

of M , and 1/r is not an eigenvalue of Srad at x0. Let x′0 = ψ1(x0), and v′ be the image of v for a
basis {v1, . . . , vn}.

1) The differential geometric shape operator SB of B at x′0 has a matrix representation with
respect to v′ given by

SB v′ = (I − r · Sv)−1Sv. (3.3)

2) Hence, there is a bijection between the principal curvatures κi of B at x′0 and the principal
radial curvatures κr i of M at x0 (counted with multiplicities) given by

κi =
κr i

(1 − rκr i)
or equivalently κr i =

κi
(1 + rκi)

. (3.4)

3) Furthermore, the principal radial directions corresponding to κr i are mapped by dψ1 to the
principal directions corresponding to κi.

Proof. By Lemma 3.1, the radial vector field U is orthogonal to the boundary at points in a neighbor-
hood of x′0 = ψ1(x0). Thus, the radial shape operator at a point x′0 is really the differential geometric
shape operator for B at x′0. Hence, we can apply our calculation of the radial shape operator at
x′0 given by Proposition 2.1. We deduce that the radial shape operator, principal radial curvatures,
and principal radial directions for Srad t at x′0 for t = 1 are really the differential geometric shape
operator, principal curvatures, and principal directions for B at x′0.

We obtain the following corollary for Blum medial axes.

Corollary 3.3. Suppose Ω is a region in R
n+1 with smooth boundary B and Blum medial axis and

radial vector field (M,U). Let x1 ∈ B be a point for which the projection onto the medial axis along
normals is a local diffeomorphism (with x1 mapping to x0 ∈ M). Then, the differential geometric
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shape operator for B at x1, the principal normal curvatures and principal directions are given by
the corresponding radial shape operator for (M,U) at x0, together with its principal curvatures and
principal directions, as in Theorem 3.2.

Proof. The Blum condition implies that U is orthogonal to B, which is the boundary of the medial
axis M with radial vector field U . Let x1 ∈ B be a point for which the projection onto the
medial axis along normals is a local diffeomorphism (with x1 mapping to x0 ∈ M). Then,
the inverse of the projection which is given by ψ1 is also a local diffeomorphism. Thus, 1/r is not
an eigenvalue of Srad for the corresponding smooth value of U . Hence, we can apply Theorem 3.2
to obtain the results.

Remark 3.4 (Geometry at points corresponding to singular points). In the situation of Corollary 3.3,
suppose instead that x1 maps to a non-edge singular point x0 ∈ Msing. Then x1 belongs to a
local complementary component Ci of x0. Let Mα be a local component for x0 which belongs
to ∂Ci. Then Mα together with the smooth value of U which points into Ci extend smoothly on
a neighborhood of x0. The corresponding differential geometric shape operator for B at x1, the
principal curvatures, and principal directions are again given by the corresponding radial shape
operator for the corresponding smooth choice of U on Mα, together with its principal curvatures
and principal directions. For the Blum medial axis, these must match up for the various choices of
local components Mα for x0 belonging to ∂Ci.

As an immediate consequence, we deduce the Riemannian curvature for the boundary using
Gauss’s formula (see e.g. [Spi75, vol. III]).

Corollary 3.5. Let Ω ⊂ R
n+1 be a region with smooth boundary and Blum medial axis and radial

vector field (M,U). Let x1 ∈ B be a point at which projection onto the medial axis along normals
is a local diffeomorphism (with x1 mapping to x0 ∈ M). The Riemannian curvature of B is given
with respect to basis v′, corresponding to the basis v at x0, by

R(v,w)(u) = 〈w̄, u〉v̄ − 〈v̄, u〉w̄, (3.5)

where v̄ = (I − rSv)−1Svv, etc.

Hence, all intrinsic geometry of the boundary B is determined by the radial shape operator.
In the special case of surfaces in R

3, this reduces to multiplication by the determinant of SB, which
is the Gauss curvature. In fact, in [Dam04] we further show that, as a result of the radial curvature
condition, the signs of the principal and the Gauss curvatures are determined by the signs of κr i

and det(Sv).
By contrast the ‘relative geometry’ of B is more subtle and depends on more than just Sv. For

example, if we wish to compare principal curvatures κi at different points or to determine rates of
change of κi along curves we cannot do it solely using κr i. The relation is most easily expressed
using the signed radii of curvatures ri = 1/κi and the signed radii of radial curvatures rr i = 1/κr i.
We may reexpress the relation (3.4) in the following simple radii of curvatures equation:

rr i = r + ri. (3.6)

This reveals at the level of eigenvalues the basic relation between SBv′ and Sv given by (3.3) which
can be rewritten in the case Sv is invertible as

S−1
v = r · I + S−1

Bv′ . (3.7)

Then (3.6) allows us to relate the properties of ri at different points and the rate of change of
ri along various curves in terms of the corresponding changes for rr i, but such comparison must
involve r or its derivatives. We explicitly determine in [Dam04] both the intrinsic and relative
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geometry for surfaces in R
3 using the radial (and edge) shape operators, the principal radial (and

edge) curvatures, and for the relative geometry the ‘relative critical set’ of r.

Differential geometry at crest points (associated to edge points)
In the partial Blum case, Theorem 3.2 allows us to compute the differential geometric shape operator
at smooth points of M . Hence, for a crest point of M which corresponds to an edge point x0 under
the radial map, we could determine the geometry at a point on the boundary by taking the limit
as x → x0 of SB v′ = (I − r · Sv)−1Sv. The problem with this is the unstable nature of Sv as
we approach the edge of M . Srad is computed by projection onto TxM along U . As we approach
the edge, the angle between U and TxM approaches 0, so the projection increasingly becomes
numerically unstable. It would be preferable to compute the shape operator at a crest point using
the edge shape operator because it involves projection along U but onto the subspace Tx0∂M ⊕〈n〉.
Generically U will be bounded away from this subspace providing a lower bound for the stability of
the projection. We consider a smooth value U corresponding to one side of M near an edge point x0.
Then, we can obtain the analogue of Corollary 3.3 for crest points.

Corollary 3.6. Suppose Ω is a region in R
n+1 with smooth boundary B and Blum medial axis

and radial vector field (M,U). Let x1 ∈ B be a crest point corresponding to an edge point x0 ∈ ∂M .
We let v be a special basis for Tx0M with v′ the corresponding basis for Tx1B. Then, the differential
geometric shape operator for B at x1 has a matrix representation with respect to v′ given by

SBv′ = (In−1,1 − r · SEv)−1SEv. (3.8)

Hence, the principal curvatures κi and principal directions of B at x1 are the eigenvalues and
eigendirections (after identification) of the right-hand side of (3.3).

Proof. By the Blum condition, the U will be orthogonal to B. Thus, the radial shape operator at a
point will, in fact, be the differential geometric shape operator. Then, we can apply Proposition 2.3
to obtain the stated form for SB v′ , and then the corresponding eigenvalues and eigendirections.

Example 3.7. We return to Example 2.4, except that now we suppose M is the Blum medial axis
of B. We consider a crest point x1 which corresponds to a point x0 ∈ ∂M for which ∂U1/∂vi is
orthogonal to n for i = 1, . . . , n − 1, and ∂U1/∂vn has a non-zero component for n. Then, by
Example 2.4, we conclude that, at the corresponding crest point x1, the principal curvatures of B
are

−1
r

and κi =
κE i

(1 − rκE i)
i = 1, . . . , n− 1, (3.9)

where the κE i are the principal edge curvatures.

Using Corollary 3.6 and the edge shape operator to compute the principal curvatures at a crest
point x1 is difficult because the computation requires the use of edge coordinates which are typically
not known when given a Blum medial axis. There is still a way to compute the principal curvatures
as limits but now coming from a stable computation.

We let {vi} denote a local frame for M in a neighborhood W of x0, an edge point corresponding
to x1. For i = 1, . . . , n − 1, we choose the vi to be tangent to T∂M and smooth relative to local
coordinates for M a manifold with boundary (they are then also smooth with respect to edge
coordinates). We also let vn = U1 tan, the tangential component of U1. It is smooth with respect to
edge coordinates. By possibly shrinking W , we may assume that the vi together with n will form a
frame for R

n+1 at each point of W . We can define an operator S′
E at each point of W and extend

SE as follows:

S′
E(v) = −proj′′U

(
∂U1

∂v

)
, (3.10)
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where now proj′′U denotes projection along U but onto L, the subspace spanned by {v1, . . . , vn−1,n}.
We note that, at a non-edge point x near x0, the difference between Srad and S′

E is just the subspace
to which we project. For Srad it is TxM , while for S′

E it is L. However, as x → x0, L → Tx0M .
We let S′

Ev denote the matrix representation of S′
E with respect to the basis v in the source and

{v1, . . . , vn−1,n} in the target. If Sv′ t denotes the matrix representation of the radial shape operator
on Bt at x′0 = ψt(x0) with respect to the corresponding basis v′, then it can be computed as a limit.

Lemma 3.8. In the preceding situation,

Sv′ t = lim
x→x0

(In−1,1 − t r · S′
Ev)−1S′

Ev. (3.11)

Proof. The same argument used to compute (2.8) in Proposition 2.3 shows that, at x′ = ψt(x) for
x in a small neighborhood of x0,

Sv′ t = (In−1,1 − t r · S′
Ev)−1S′

Ev. (3.12)

In (3.12), we take the limit as x→ x0. By continuity S′
Ev → SEv, so we obtain

lim
x→x0

(In−1,1 − t r · S′
Ev)−1S′

Ev = (In−1,1 − t r · SEv)−1SEv. (3.13)

By Proposition 2.3, the right-hand side of (3.13) is Sv′ t, yielding (3.11).

We deduce the following as a consequence.

Corollary 3.9. The principal curvatures of B at a crest point x1 corresponding to x0 ∈ ∂M
(which are the eigenvalues of SBv′) are the limits as x→ x0 of the eigenvalues of

(In−1,1 − r · S′
Ev)−1S′

Ev. (3.14)

Moreover, if the principal curvatures at x0 are distinct, then the principal directions are the limits
of the eigendirections of (3.14) as x→ x0.

Hence, the principal curvatures at x1 (and principal directions in the generic case) can be
approximated by the eigenvalues of (In−1,1 − r ·S′

Ev)−1S′
Ev (respectively, the eigendirections) for x

sufficiently close to x0.

4. Relation between the radial and differential geometry
of the skeletal set in the Blum case

In the preceding section we established in the (partial) Blum case the fundamental relation between
the radial geometry on the skeletal set and the differential geometry of the boundary. By contrast,
in the Introduction we referred to work in the Blum case relating the differential geometry of the
boundary and that of the skeletal set using derivative information of the radial function r. We derive
an explicit relation in the (partial) Blum case between the differential geometric shape operator of
the skeletal set and the radial shape operator.

Let (M,U) be a skeletal structure which satisfies the compatibility condition on an open set
W ⊂Mreg. Then, as a submanifold of R

n+1, Mreg has a Riemannian structure. We let Smed denote
the differential geometric shape operator of M (‘med’ is to remind us that in the Blum case M
is the Blum medial axis). To obtain a relation, we will introduce two other operators on W . To
do so we decompose U1 into tangential and normal components U1 = U1 tan + ρn, where n is a
unit normal vector field pointing to the same side as the smooth value of U . We let ∇f denote
the Riemannian gradient (so that 〈∇f, v〉 = df(v)). Then, by the compatibility condition, dr(v) =
−〈U1, v〉 = 〈−U1 tan, v〉. Thus, ∇r = −U1 tan. Hence, ρ = (1 − ‖∇r‖2)1/2, which we can think of as
the ‘normal component function for U1’.
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The Riemannian Hessian is defined by H(f)(v,w) def= 〈∇v(∇f), w〉. Here ∇v denotes the covari-
ant derivative of the vector field ∇f (we recall that, for a vector field X, ∇vX(x0) = projn(∂X/∂v)
where projn denotes orthogonal projection onto Tx0N). By properties of the covariant deriva-
tive, H(f) is symmetric in v and w. We define the Hessian operator Hf : Tx0N → Tx0N by
Hf (v) = ∇v(∇f)(x0). As 〈Hf (v), w〉 = H(f)(v,w), it follows that Hf is self-adjoint. We are inter-
ested in the radial Hessian operator Hr. In the (partial) Blum case, Hr(v) = −∇vU1 tan.

One further operator must be defined. We let

Z(v) = ρ−1

(
∂U1

∂v
· n

)
U1 tan. (4.1)

Unlike the case of Smed and Hr, Z need not be self-adjoint. Also, Z does not have an obvious
geometric meaning. Nonetheless, there is the following relation between the radial and the differential
geometric shape operators.

Proposition 4.1. Let (M,U) be a skeletal structure which satisfies the compatibility condition on
an open set W ⊂Mreg. Let U be a smooth value on W . Then, on W there is the following relation:

Srad = ρ · Smed +Hr + Z. (4.2)

Before deriving this relation, we note two consequences. We first see that, although Smed and
Hr are self-adjoint, Z measures the failure of Srad to be self-adjoint. Second, given that we have
derived in Theorem 3.2 the simple relations between the differential geometric shape operator of
the associated boundary and radial shape operators SB and Srad, there follows from (3.4) combined
with (4.2) the relation between SB and Smed. In this relation, it is necessary to include both Hr and
Z as well as ρ. Hence, we see that using Srad instead of Smed leads to a more natural relation with
the differential geometric shape operator of the boundary.

Proof. We are comparing

Srad(v) = −projU

(
∂U1

∂v

)
and Smed(v) = −projn

(
∂n
∂v

)
.

In addition, we have

Hr(v) = −∇vU1 tan = −projn

(
∂U1 tan

∂v

)
.

Thus, we first compare projU and projn.
Let w = awn+w̃ be the decomposition into tangential and normal components. Then, projn(w)

= w̃. By the decomposition of U1, n = ρ−1(U1 − U1 tan). Thus, we can decompose w by

w = awρ
−1(U1 − U1 tan) + w̃

= awρ
−1 · U1 + (w̃ − awρ

−1 · U1 tan). (4.3)

Thus, from (4.3), projU (w) = w̃ − awρ
−1 · U1 tan. Hence,

projn(w) = projU (w) + awρ
−1 · U1 tan. (4.4)

Then,

Srad(v) = −projU

(
∂U1

∂v

)
= −projn

(
∂U1

∂v

)
+ aρ−1 · U1 tan, (4.5)

where a denotes the normal coefficient of ∂U1/∂v.
Then, from the decomposition for U1, we compute

∂U1

∂v
=
∂U1 tan

∂v
+ dρ(v) · n + ρ · ∂n

∂v
. (4.6)
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Thus, from (4.6)

−projn

(
∂U1

∂v

)
= −projn

(
∂U1 tan

∂v

)
+ 0 − ρ · projn

(
∂n
∂v

)

= −∇vU1 tan + ρ · Smed(v)
= Hr(v) + ρ · Smed(v). (4.7)

We substitute (4.7) into (4.5) and observe that as a = (∂U1/∂v) · n, the last term in (4.5) is
Z(v). This yields (4.2).

5. Effects of a diffeomorphism of the skeleton on the smoothness of boundaries

We are now in a position to consider the effect of a diffeomorphism of a skeletal structure on the
associated boundary as in Figure 2.

Figure 2. Diffeomorphism of a skeletal structure.

Definition 5.1. A diffeomorphism of skeletal structures ϕ : (M,U) → (M ′, V ) consists of a diffeo-
morphism ϕ from an open neighborhood W of M to an open subset of R

n+1 such that M ′ = ϕ(M)
and V = dϕ(U).

Even though such a ϕ is defined geometrically, it is only defined on a small neighborhood of M ;
hence it does not guarantee any properties of the associated boundary of the image skeletal structure.

We ask how the radial shape operators, edge shape operators, and compatibility 1-forms compare
so we can determine the effects of ϕ on the curvature, edge and compatibility conditions and also
on the geometry of the associated boundary.

We let V = r1 ·V1, and V1(ϕ(x)) = σ(x) ·dϕx(U1(x)). We call σ the radial scaling factor. As with
U and r, σ is multivalued with a value at x for each value of U at x. Then,

V = r1 · V1 = r1(ϕ(x))σ(x)dϕx(U1(x)) = dϕx(r1σ(x)U1(x)).

Hence, we conclude that r1(ϕ(x))σ(x) · U1(x) = r(x) · U1(x) or in abbreviated form r = σ · r1 ◦ ϕ.

Compatibility conditions
We really consider compatibility conditions in two different contexts: for points of Msing as one of
the three conditions to ensure smoothness of the associated boundary, and on open subsets of M
to ensure the partial Blum condition for the associated boundary. We wish to identify a natural
condition which guarantees that either of these conditions is preserved by ϕ.

We begin by determining the effect of ϕ on the compatibility 1-form. We use this to identify
a special case when the compatibility 1-forms behave well under pull-back by ϕ (or equivalently
under push-forward by ϕ). Let ηV be the compatibility 1-form for (M ′, V ), and let x′0 = ϕ(x0).

Definition 5.2. A diffeomorphism of skeletal structures ϕ : (M,U) → (M ′, V ) will be said to be
radially rigid at (x0, U0) if

dϕ(U0) · dϕ(v) = U0 · v
for all v ∈ R

n+1; and in addition dσ(x0) ≡ 0.
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In particular, this implies that ‖dϕ(U0)‖ = ‖U0‖ and that the dot product of U0 with vectors
in Tx0Mβ is preserved for each local component Mβ on which the value U0 extends smoothly.
In terms of the preceding notation, it follows that σ(x0) = 1. If ϕ is radially rigid on an open
set, of smooth points, then σ ≡ 1 on the open set, so dσ ≡ 0, and the second condition is
superfluous.

We begin with a simple consequence of ϕ being radially rigid.

Lemma 5.3. Let ϕ : (M,U) → (M ′, V ) be a diffeomorphism of skeletal structures. Suppose U is a
smooth value on a local component for x0 with V the corresponding image value at x′0 = ϕ(x0). If ϕ
is radially rigid at x0 then ϕ∗ηV = ηU at x0. Hence, if ϕ is radially rigid at x0 and the compatibility
condition holds for ηU at x0, then it holds for ηV at x′0.

In particular, if both ϕ is radially rigid and (M,U) satisfies the compatibility condition on an
open set W , then so does (M ′, V ) satisfy the compatibility condition on ϕ(W ).

Proof. To be specific, suppose the smooth value U is defined on the local component Mβ of x0.
We consider the corresponding component for M ′

β = ϕ(Mβ). We let v′ = dϕ(v) for v ∈ Tx0Mβ.
Then,

ηV (v′) = V1 · v′ + dr1(v′)

= σdϕ(U1) · dϕ(v) + dr1(dϕ(v)),

or as r1 ◦ ϕ = r/σ,

ηV (v′) = σdϕ(U1) · dϕ(v) +
(

1
σ
dr(v) − r

σ2
dσ(v)

)
. (5.1)

However, by radial rigidity σ(x0) = 1 (so r1(x′0) = r ◦ϕ(x0)) and dσ(x0) ≡ 0. Hence, (5.1) simplifies
to

ηV (v′) = dϕ(U1) · dϕ(v) + dr(v)

= (dϕ(U1) · dϕ(v) − U1 · v) + ηU (v). (5.2)

Then, first ϕ is radially rigid at x0 if and only if the first term on the right-hand side of (5.2) is zero
for all v ∈ Tx0Mβ . This term in (5.2) is zero for all v ∈ Tx0Mβ if and only if ϕ∗ηV (x0) = ηU (x0)
on Mβ.

If ηU (x0) = 0 for a local component Mβ , then, as d(ϕ|Mβ)(x0) is an isomorphism, ηV = 0 on
Tx′0ϕ(Mβ).

Hence, a diffeomorphism ϕ : (M,U) → (M ′, V ) of skeletal structures which is radially rigid at all
points preserves the compatibility condition in that (M ′, V ) will satisfy the compatibility condition
on all open sets ϕ(W ) for which (M,U) satisfies it on W .

We should remark that being radially rigid at all points is a fairly restrictive condition in that
V will have the same length as U at all corresponding points and have the same relative position to
the tangent spaces. For example, if on some open W ⊂ Mreg, U is a normal vector field with ‖U‖
constant, then the associated boundary to M corresponding to W will consist of parallel manifolds
of M . If ϕ is radially rigid on W , then V will also be a normal vector field of constant length
‖V ‖ (= ‖U‖) so the associated boundary for (M ′, V ) will also consist of parallel manifolds of M ′

for ϕ(W ). However, the diffeomorphism ϕ|W is otherwise arbitrary.
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Radial and edge distortion operators
We secondly examine how a diffeomorphism of skeletal structures ϕ modifies the radial and edge
shape operators. We do so by introducing operators which measure the radial and edge distortion
due to ϕ. Let x′0 = ϕ(x0) and M ′

β = ϕ(Mβ). For a linear operator A : Tx0Mβ → Tx′0M
′
β , we use dϕ

to define an associated operator (dϕx0)
−1 ◦ A from Tx0Mβ to itself.

We define the radial distortion operator Qϕ for non-edge points x0 of M and smooth value U on
Mβ by

Qϕ(v) = −dϕ−1(projV (d2ϕx0(v, U1))), (5.3)

where projV denotes projection along V onto Tx′0M
′
β . To obtain a matrix representation for a basis

{v1, . . . , vn} with vi′ = dϕ(vi) for all i, let

d2ϕx0(vi, U1) = aϕ i · V1 −
n∑
i=1

qjiv
′
j , (5.4)

or in vector form as earlier

d2ϕ(v, U1) = Aϕv · V1 −QT
ϕv · v′, (5.5)

where d2ϕ(v, U1) is a column vector with ith entry the vector d2ϕx0(vi, U1). Then, Qϕv = (qij) is
a matrix representation of Qϕ with respect to the basis v.

Likewise at a point x0 ∈ ∂M , we define the edge distortion operator QEϕ by

QEϕ(v) = −dϕ−1(proj′V (d2ϕx0(v, U1))). (5.6)

We let {v1, . . . , vn} be a special basis for Tx0M so {v1, . . . , vn−1} is a basis for Tx0∂M and vn maps
under the edge parametrization to c · U1. Again we write v′i = dϕ(vi), and let n′ be a unit normal
vector field to M ′ in a neighborhood of the edge point x′0 = ϕ(x0). Then, we analogously obtain,
for i = 1, . . . , n,

d2ϕx0(vi, U1) = aϕ i · V1 − cϕ i · n′ −
n−1∑
j=1

bϕjiv
′
j , (5.7)

or in vector form (for n-dimensional vectors)

d2ϕ(v, U1) = Aϕv · V1 − Cϕv · n′ −Bϕv · ṽ′ (5.8)

(ṽ′ denotes the n− 1 dimensional column vector with ith entry vi). We let QEϕ,v = (Bϕv Cϕv)T.
Then QEϕ,v is the matrix representation for QEϕ with respect to the special basis {v1, . . . , vn} in
the source and {v1, . . . , vn−1,n} in the target.

Third, because ϕ need not preserve orthogonality to the skeletal set at the edge points, we also
express

dϕx0(n) = an · V1 + cn · n′ +
n−1∑
j=1

bn j · v′j . (5.9)

Then, we define the n×nmatrix Eϕv whose (j, i) entry is eji = ci ·bn j for j < n and eni = ci ·(cn−1),
with ci denoting the ith entry of CU in (1.4).

Radial and edge curvature conditions for the image skeletal structure
We next see that Qϕv measures how ϕ contributes to the radial curvature of the image (M ′, V ).
While QEϕ,v also measures the contribution of ϕ to the edge shape operator of ∂M ′ at edge points,
there is a second contribution from Eϕv, resulting from the failure of ϕ to preserve orthogonality
to the skeletal set on the edge points.

We relate the radial and edge shape operators for the two skeletal structures as follows.
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Theorem 5.4. With the above notation, we obtain the following:

1) For a non-edge point x0 ∈ M and choice of smooth value for U (on a local component of x0),
with corresponding value for V , let Sv, respectively Sv′ , denote the matrix representations of
the radial shape operators at x0 for the basis {v1, . . . , vn}, respectively x′0 = ϕ(x0) for the basis
{v′1, . . . , v′n}. Then

Sv′ = σ(Sv +Qϕv). (5.10)
2) For a point x0 ∈ ∂M , let SEv, respectively SEv′ , denote the matrix representations of the edge

shape operators at x0 for the special basis {v1, . . . , vn}, respectively x′0 = ϕ(x0) for the special
basis {v′1, . . . , v′n}. Then,

SEv′ = σ(SEv +QEϕ,v + Eϕv). (5.11)

Remark 5.5. If dϕ preserves orthogonality to the skeletal set at the point x0 ∈ ∂M in the sense
that dϕ(x0)(n) = n′, then at x0, cn = 1 and bn i = 0 for 1 � i � n− 1, and so Eϕv = 0. Then, the
edge shape operator is only altered by the effects of d2ϕ.

Proof of Theorem 5.4. For part 1, we must compute ∂V1/∂v
′
i at a point of x0 ∈Mreg. Then,

∂V1

∂v′i
=

∂

∂v′i
(σ ◦ ϕ−1 · dϕ(U1) ◦ ϕ−1)

=
(
∂σ

∂vi
◦ ϕ−1

)
· dϕ(U1) ◦ ϕ−1 + (σ ◦ ϕ−1) · ∂(dϕ(U1))

∂vi
◦ ϕ−1. (5.12)

After differentiating, we will not include composition with ϕ−1 which will be understood. We note
that the derivative in the second term on the right-hand side of (5.12) is really ∂(dϕx(U1(x)))/∂vi,
so we compute it by applying the chain rule:

∂

∂vi
(dϕx(U1(x))) = d2ϕx(vi, U1) + dϕx

(
∂U1

∂vi

)
. (5.13)

Then, by (5.12), (5.13), (5.4), and (1.2) we obtain

∂V1

∂v′i
=
∂σ

∂vi
dϕ(U1) + σ

(
aϕ i · V1 −

n∑
j=1

qjiv
′
j

)
+ σ · dϕx

(
ai · U1 −

n∑
j=1

sjivj

)

=
(
∂σ

∂vi
· σ−1 + σ · aϕ i + ai

)
· V1 − σ

( n∑
j=1

(sji + qji)v′j

)
. (5.14)

We can write this in vector form as
∂V1

∂v′ = Ãϕv′ · V1 − σ(Sv +Qv)T · v′, (5.15)

where
Ãϕv′ = σ−1 · dσ(v) + σ · Aϕv′ +Av.

Applying projV and then −dϕ to Equation (5.15) yields (5.10).
For part 2, we analogously compute ∂V1/∂v

′
i at a point x0 ∈ ∂M , using instead (5.7), (5.9), and

(1.4). We obtain in vector form

∂V1

∂v′ = AV v′ · V1 − σ
(
SEv +QEϕ,v +Eϕv

)T ·
(
ṽ′

n′

)
, (5.16)

where ṽ′ is the (n − 1)-dimensional column vector with ith entry v′i and where the actual form of
AV v′ is not important. Again, applying proj′V and −dϕ to (5.16) yields (5.11).
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Geometry of boundaries

We let {bi} denote the eigenvalues of Sv +Qϕv, and {di} denote the generalized eigenvalues of
(SEv +QEϕ,v + Eϕ,v, In−1,1). Then, we note the following as a corollary.

Corollary 5.6. Let ϕ : (M,U) → (M ′, V ) be a diffeomorphism of skeletal structures. Then,
(M ′, V ) satisfies the radial curvature condition if and only if at all non-edge points of M

r < min
{

1
bi

}
for all positive eigenvalues bi of Sv +Qϕv. (5.17)

Likewise, (M ′, V ) satisfies the edge condition if and only if at all points of ∂M ,

r < min
{

1
di

}
for all positive generalized eigenvalues di of (SEv +QEϕ,v +Eϕ,v, In−1,1). (5.18)

Proof. By Theorem 5.4, the principal radial curvatures are the eigenvalues of σ(Sv + Qϕv), i.e.
σ · bi; and the principal edge curvatures are the generalized eigenvalues of σ(SEv +QEϕ,v +Eϕ,v),
i.e. σ · di. Thus, the radial curvature condition requires

r

σ
= r1 < min

{
1

σ · bi

}
for all positive eigenvalues bi.

This is equivalent to (5.17). A similar argument establishes (5.18).

Thus, Corollary 5.6 provides us with concrete criteria for checking the smoothness of the
associated boundary for (M ′, V ) away from singular points by only using the radial curvature
and distortion data on the original M .

At singular points we combine the preceding results to obtain sufficient conditions in terms of the
shape operators and distortion operators on M in the case ϕ is radially rigid. We must separately
verify that the image skeletal structure satisfies the initial local conditions from part I [Dam03,
Definition 1.7]. However, provided the image skeletal structure satisfies the initial local conditions,
we can combine the results of Corollary 5.6 and Lemma 5.3 together with Theorem 2.3 of [Dam03]
to conclude the smoothness of the boundary for an image skeletal structure.

Theorem 5.7. Suppose that ϕ : (M,U) → (M ′, V ) is a diffeomorphism of skeletal structures which
is radially rigid at the singular points of M . Suppose M satisfies the compatibility condition on
Msing and at non-edge points

r < min
{

1
bi

}
for all positive eigenvalues bi of Sv +Qϕv;

and at all points of ∂M ,

r < min
{

1
di

}
for all positive generalized eigenvalues di of (SEv +QEϕ,v + Eϕ,v, In−1,1).

Provided (M ′, V ) satisfies the local initial conditions [Dam03, Definition 1.7], then it has a smooth
boundary in the sense of Theorem 2.3 of Part I [Dam03].

Geometry of the associated boundary of the image skeletal structure
The results of Theorem 5.4 also allow us to compute the differential geometry of the associated
boundary of the image skeletal structure (M ′, V ).

Corollary 5.8. Let ϕ : (M,U) → (M ′, V ) be a diffeomorphism of skeletal structures which is
radially rigid on an open set Z ⊂ M . Suppose (M ′, V ) satisfies the conditions (5.17) and (5.18)
on Z, and that x0 ∈ Z with a choice of smooth value of U on a local component of x0.
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1) If x0 is not an edge closure point, then

SB′ v′ = (I − r(Sv +Qϕv))−1 · σ(Sv +Qϕv). (5.19)

2) If x0 is an edge closure point then

SB′ v′ = (In−1,1 − r(SEv +QEϕ,v + Eϕ,v))−1 · σ(SEv +QEϕ,v + Eϕ,v). (5.20)

Remark 5.9. With the assumptions of Corollary 5.8, if both SB v and SB′ v′ are invertible, we may
use (5.19) to rewrite (3.7) as follows:

σ−1S−1
B′ v′ = S−1

Bv − (S−1
v Qϕ,v(Sv +Qϕ,v)−1). (5.21)

We see that (5.21) is a consequence of (3.7) by using (5.19) and r1 ◦ ϕ = r to write

σ−1S−1
B′ v′ − S−1

Bv = (Sv +Qϕ,v)−1 − S−1
v ,

which we easily verify implies (5.21).
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