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Diophantine approximation by conjugate

algebraic integers

Damien Roy and Michel Waldschmidt

Abstract

Building on the work of Davenport and Schmidt, we mainly prove two results. The first
one is a version of Gel’fond’s transcendence criterion which provides a sufficient condition
for a complex or p-adic number ξ to be algebraic in terms of the existence of polynomi-
als of bounded degree taking small values at ξ together with most of their derivatives.
The second one, which follows from this criterion by an argument of duality, is a result
of simultaneous approximation by conjugate algebraic integers for a fixed number ξ that
is either transcendental or algebraic of sufficiently large degree. We also present several
constructions showing that these results are essentially optimal.

1. Introduction

Motivated by the work of Wirsing [Wir60], Davenport and Schmidt investigated, in their 1969
seminal paper [DS69], the approximation of an arbitrary fixed real number ξ by algebraic integers
of bounded degree. They proved that, if n � 3 is an integer and if ξ is not algebraic over Q of degree
at most (n− 1)/2, then there are infinitely many algebraic integers α of degree at most n such that

|ξ − α| � cH(α)−[(n+1)/2],

where c is a positive constant depending only on n and ξ and where H(α) denotes the usual height
of α, that is the maximum absolute value of the coefficients of its irreducible polynomial over Z.
They also provided refinements for n � 4. Recently, Bugeaud and Teulié revisited this result and
showed in [BT00] that we may also impose that all approximations α have degree exactly n over Q.
Moreover, a p-adic analog was proven by Teulié [Teu02].

Here we establish a similar result for simultaneous approximation by several conjugate algebraic
integers. In order to cover the case where ξ is a complex or p-adic number, we will assume more
generally that ξ belongs to the completion of a number field K at some place w.

Thus, we fix an algebraic extension K of Q of finite degree d. For each place v of K, we denote
by Kv the completion of K at v and by dv its local degree at v. We also normalize the corresponding
absolute value | |v as in [BV83] by asking that, when v is above a prime number p of Q, we have
|p|v = p−dv/d and that, when v is an Archimedean place, we have |x|v = |x|dv/d for any x ∈ Q.
Then, our result of approximation reads as follows.

Theorem A. Let n and t be integers with 1 � t � n/4. Let w be a place of K and let ξ be an
element of Kw which is not algebraic over K of degree � (n+1)/(2t). Assume further that |ξ|w � 1

Received 11 March 2002, accepted in final form 24 July 2002.
2000 Mathematics Subject Classification 11J13 (primary), 11J61, 11J82 (secondary).
Keywords: algebraic integers, algebraic numbers, approximation, convex bodies, degree, derivatives, duality, Gel’fond’s
criterion, height, polynomials, transcendence criterion.

The work of the first author is partially supported by NSERC and CICMA.
This journal is c© Foundation Compositio Mathematica 2004.

https://doi.org/10.1112/S0010437X03000708 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X03000708


D. Roy and M. Waldschmidt

if w is ultrametric. Then there exist infinitely many algebraic integers α which have degree n + 1
over K, degree d(n + 1) over Q and admit, over K, t distinct conjugates α1, . . . , αt in Kw satisfying

max
1�i�t

|ξ − αi|w � cH(α)−(n+1)/(4dt2), (1.1)

where c is a constant depending only on K, n, w and ξ.

Note that, for t = 1, K = Q and Kw = R, this result is comparable to Theorem 2 of [DS69]
mentioned above (with a shift of 1 in the degree of the approximation). Note also that, if w is ultra-
metric, any algebraic integer α in Kw satisfies |α|w � 1 and so the condition |ξ|w � 1 is necessary
to approximate ξ by such numbers.

In § 10, we show that the exponent of approximation (n + 1)/(4dt2) in (1.1) is essentially best
possible up to its numerical factor of 1/4 and that this factor cannot be replaced by a real number
greater than 2, although its value can be slightly improved using more precise estimates along the
lines of the present work. For the sake of simplicity, we do not go into such estimates here, nor do
we try to sharpen the exponent of approximation for small values of n. It is difficult to predict an
optimal value for this exponent (see [Roy04]).

In answer to a question of K. Tishchenko, we also show that one cannot hope to obtain a similar
exponent for simultaneous approximation of t numbers. Taking K = Q and Kw = R, we prove
a result which implies that, if 2 � t � n, then there exist a constant c > 0 and t real numbers
ξ1, . . . , ξt such that

max
1�i�t

|ξi − αi| � cH(α)−3n1/t

for any choice of t distinct conjugates α1, . . . , αt ∈ C of an algebraic number α of degree between t
and n.

The proof of Theorem A uses the same general strategy as Davenport and Schmidt in [DS69].
It relies on a duality argument combined with the following version of Gel’fond’s criterion of algebraic
independence where, for a polynomial Q ∈ K[T ], an integer j � 0 and a place v of K, the notation
‖Q‖v stands for the maximal v-adic absolute value of the coefficients of Q, while Q(j) denotes the
jth derivative of Q.

Theorem B. Let n and t be integers with 1 � t � n/4 and let k = [n/4] denote the integral part
of n/4. Let w be a place of K and let ξ be an element of Kw. There exists a constant c > 0 which
depends only on K, n, w and ξ and has the following property. Assume that, for each sufficiently
large real number X, there exists a non-zero polynomial Q ∈ K[T ] of degree at most n which
satisfies ‖Q‖v � 1 for each place v of K distinct from w and also

max
0�j�n−t

|Q(j)(ξ)|w � cX−t/(k+1−t) and max
n−t<j�n

|Q(j)(ξ)|w � X. (1.2)

Then, ξ is algebraic over K of degree � (n − k + 1)/(2t).

Note that Theorem B may still hold with an exponent smaller than t/([n/4]+1− t) in the above
conditions (1.2). However, we will see in § 3 that it would not hold with an exponent smaller than
t/(n + 1 − t).

It is also interesting to compare this result with the criterion of algebraic independence with
multiplicities of [LR99]. A main difference is that the above theorem requires from the polynomial
Q that a large proportion of its derivatives at ξ are small (at least three quarters of them), while the
conditions in Proposition 1 of [LR99] are sharp only when a small proportion of these derivatives
are taken into account (say, at most the first half of them).

This paper is organized as follows. Section 2 sets the various notions of heights that we use
throughout the paper. The results of duality which are needed to deduce Theorem A from Theorem B
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are given in § 3, but the proof of this implication is postponed to § 9. Sections 4–7 are devoted to
preliminary results towards the proof of Theorem B which is completed in § 8. In particular, we
establish in § 4 a version of Gel’fond’s criterion (without multiplicities) which includes Theorem 2b
of [DS69] and § 5 presents a height estimate which generalizes Theorem 3 of [DS69]. We conclude
in § 10 with two remarks on the exponent of approximation in Theorem A.

Notation. Throughout this paper, n denotes a positive integer, w denotes a place of K and ξ an
element of Kw. For conciseness, we will sometimes use the expressions a � b or b � a to mean
that the given non-negative real numbers a and b satisfy a � cb for some positive constant c which
depends only on K, n, w and ξ. Overall, we tried to be coherent with the notation of [DS69].

2. Heights

Recall that K is a fixed algebraic extension of Q of degree d. With the normalization of its absolute
values given in the Introduction, the product formula reads∏

v

|a|v = 1

for any non-zero element a of K.
Let n be a positive integer. For any place v of K and any n-tuple a = (a1, . . . , an) ∈ Kn

v , we
define the norm of a as its maximum norm ‖a‖v = max{|a1|v, . . . , |an|v}. Accordingly, the (absolute)
height of a point a of Kn is defined by

H(a) =
∏
v

‖a‖v.

If m is a positive integer with 1 � m � n and if M is an m × n matrix with coefficients in Kv

for some place v of K, we define ‖M‖v as the norm of the
(

n
m

)
-tuple formed by the minors of order

m of M in some order. When M has coefficients in K, we define H(M) as the height of the same
point. In particular, for an m × n matrix M of rank m with coefficients in K we have H(M) � 1.

If V is a subspace of Kn of dimension m � 1, we define the height H(V ) of V to be the height
of a set of Plücker coordinates of V . In other words, we define H(V ) = H(M) where M is an m×n
matrix whose rows form a basis of V . This is independent of the choice of M . According to a
well-known duality principle, we also have H(V ) = H(N) where N is any (n − m) × n matrix such
that V is the solution set {a ∈ Kn;Na = 0} of the homogeneous system attached to N (see [Sch67,
formula (4), p. 433]). When V = 0, we set H(V ) = 1.

We denote by En the subspace of K[T ] consisting of all polynomials of degree � n, and for each
place v of K, we denote by En,v the closure of En in Kv[T ]. We also identify En with Kn+1 and
En,v with Kn+1

v by mapping a polynomial a0 + a1T + · · · + anT n to the (n + 1)-tuple (a0, . . . , an)
of its coefficients. Accordingly, we define the norm ‖P‖v of a polynomial P ∈ En,v as the maximum
of the absolute values of its coefficients, and the height H(P ) of a polynomial P ∈ En as the
height of the (n + 1)-tuple of its coefficients. In the sequel, we will repeatedly use the fact that, if
P1, . . . , Ps ∈ K[T ] have product P = P1 · · ·Ps of degree � n, with P �= 0 and n � 1, then we have

e−nH(P1) · · ·H(Ps) < H(P ) < enH(P1) · · ·H(Ps),

as one gets for instance by comparing ‖P1‖v · · · ‖Ps‖v and ‖P‖v at all places v of K using the various
estimates of [Lan83, ch. 3, § 2]. Finally, note that, if P is an irreducible polynomial of K[T ] of degree
n, if α is a root of P in some extension of K and if deg(α) denotes the degree of α over Q, then
there exist positive constants c1 and c2 depending only on n and deg(α) such that

c1H(α)n � H(P )deg(α) � c2H(α)n.
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This follows from Proposition 2.5 in Chapter 3 of [Lan83] applied once to P and once to the
irreducible polynomial of α over Z (since we defined H(α) to be the height of the latter polynomial).

3. Duality

In this section, we fix a positive integer n, a place w of K and an element ξ of Kw. We define
below a family of adelic convex bodies and establish about them a result of duality that we will
need in order to deduce Theorem A from Theorem B. We also describe consequences of the adelic
Minkowski’s theorem of Macfeat [McF71] and Bombieri and Vaaler [BV83] for this type of convex.

For any (n+1)-tuple of positive real numbers X = (X0,X1, . . . ,Xn), we define an adelic convex
body

C(X) =
∏
v

Cv(X) ⊂
∏
v

En,v

by putting

Cw(X) = {P ∈ En,w; |P (j)(ξ)|w � Xj for j = 0, . . . , n}
at the selected place w and

Cv(X) = {P ∈ En,v; ‖P‖v � 1}
at the other places v �= w. For i = 1, . . . , n + 1, we denote by λi(X) = λi(C(X)) the ith minimum
of C(X) in En. By definition, this is the smallest positive real number λ such that λC(X) contains
i linearly independent elements of En, where λC(X) is the adelic convex body whose component at
any Archimedean place v consists of all products λP with P ∈ Cv(X) and whose component at any
ultrametric place v is Cv(X).

In order to apply the adelic Minkowski’s theorem of [BV83] in this context, we identify each
space En,v with Kn+1

v in the natural way described in § 2. This identifies
∏

v En,v with (KA)n+1

where KA denotes the ring of adèles of K, and we use the same Haar measure as in [BV83] on this
space. Explicitly, this means that, for an Archimedean place v of K, we choose the Haar measure
on Kv to be the Lebesgue measure if Kv = R and twice the Lebesgue measure if Kv = C. For an
ultrametric place v, we normalize the measure so that the ring of integers Ov of Kv has volume
|Dv|d/2

v where Dv denotes the local different of K at v. On each factor En,v � Kn+1
v we use the

product measure, and we take the product of these measures on
∏

v En,v.

Lemma 3.1. There are two constants c1 and c2 which depend only on K, n and w such that

c1(X0 · · ·Xn)d � Vol(C(X)) � c2(X0 · · ·Xn)d

for any (n + 1)-tuple of positive real numbers X = (X0,X1, . . . ,Xn).

Proof. Since the linear map from En,w to itself sending a polynomial P (T ) to P (T + ξ) has deter-
minant 1, the volume of Cw(X) is equal to that of

{P ∈ En,w; |P (j)(0)|w � Xj for j = 0, . . . , n} �
n∏

j=0

{a ∈ Kw; |j!a|w � Xj},

which in turn is bounded above and below by c′w(X0 · · ·Xn)d and c′′w(X0 · · ·Xn)d, respectively, for
some positive constants c′w and c′′w depending only on K, n and w. For the other places v �= w, the
volume of Cv(X) is a positive constant cv also depending only on K, n and v, with cv = 1 for almost
all places. The conclusion follows.
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Lemma 3.2. Let κ be a positive real number and let X = (X0,X1, . . . ,Xn) be an (n + 1)-tuple of
positive real numbers with

X0 · · ·Xn � c
−1/d
1 (2/κ)n+1, (3.1)

where c1 is the constant of Lemma 3.1. Then, κC(X) contains a non-zero element of En.

Proof. According to Theorem 3 of [BV83], we have(
λ1(X) · · · λn+1(X)

)d Vol(C(X)) � 2d(n+1). (3.2)

Since λ1(X) � · · · � λn+1(X) and since Vol(C(X)) � (2/κ)d(n+1) by Lemma 3.1 and condition
(3.1), this implies λ1(X) � κ, as required.

Note that, for any integer t with 1 � t � n and any real number X � 1, the condition (3.1) is
satisfied with

κ = 1, X0 = · · · = Xn−t = cX−t/(n+1−t) and Xn−t+1 = · · · = Xn = X

for an appropriate constant c. Then, the corresponding convex body C(X) contains a non-zero
element of En. In other words, for any integer t with 1 � t � n and any real number X � 1, there
exists a non-zero polynomial Q ∈ K[T ] of degree at most n which satisfies ‖Q‖v � 1 at each place
v of K distinct from w and also

max
0�j�n−t

|Q(j)(ξ)|w � cX−t/(n+1−t) and max
n−t<j�n

|Q(j)(ξ)|w � X.

This justifies the remark made after the statement of Theorem B, on comparing with the conditions
(1.2) of that theorem.

Our last objective of this section is to relate the successive minima of a convex C(X0, . . . ,Xn)
with those of C(X−1

n , . . . ,X−1
0 ). We achieve this, following ideas that go back to Mahler (see [Mah39]

and § VIII.5 of [Cas71]), by showing that these convex bodies are almost reciprocal with respect to
some bilinear form g on En. This will require two lemmas. The first one defines this bilinear form
g and shows a translation invariance property of it.

Lemma 3.3. Let g : En × En → K be the K-bilinear form given by the formula

g(P,Q) =
n∑

j=0

(−1)jP (j)(0)Q(n−j)(0)

for any choice of polynomials P,Q ∈ En. For each place v of K, denote by gv : En,v × En,v → Kv

the Kv-bilinear form which extends g. Then, for any polynomials P,Q ∈ En,w, we have

gw(P,Q) =
n∑

j=0

(−1)jP (j)(ξ)Q(n−j)(ξ).

Proof. For fixed P,Q ∈ En,w, the polynomial

A(T ) =
n∑

j=0

(−1)jP (j)(T )Q(n−j)(T )

has derivative

A′(T ) =
n−1∑
j=0

(−1)jP (j+1)(T )Q(n−j)(T ) +
n∑

j=1

(−1)jP (j)(T )Q(n−j+1)(T ) = 0.

So A(T ) is a constant. This implies A(ξ) = A(0) = gw(P,Q).
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Using this we get the following estimate.

Lemma 3.4. Let X = (X0,X1, . . . ,Xn) and Y = (Y0, Y1, . . . , Yn) be (n + 1)-tuples of positive real
numbers. Suppose that, for each place v of K, we are given polynomials Pv ∈ Cv(X) and Qv ∈ Cv(Y ).
Then, with the notation of Lemma 3.3, we have∏

v

|gv(Pv , Qv)|v � (n + 1)! max
0�j�n

XjYn−j.

Proof. For any place v of K with v �= w, we have, if v is Archimedean,

|gv(Pv, Qv)|v � (n + 1)dv/d max
0�j�n

|P (j)
v (0)|v |Q(n−j)

v (0)|v
� ((n + 1)!)dv/d‖Pv‖v‖Qv‖v

� ((n + 1)!)dv/d,

and, if v is ultrametric,

|gv(Pv, Qv)|v � max
0�j�n

|P (j)
v (0)|v |Q(n−j)

v (0)|v
� ‖Pv‖v‖Qv‖v

� 1.

Similarly, if w is Archimedean, the formula of Lemma 3.3 leads to

|gw(Pw, Qw)|w � (n + 1)dw/d max
0�j�n

|P (j)
w (ξ)|w|Q(n−j)

w (ξ)|w
� (n + 1)dw/d max

0�j�n
XjYn−j,

while, if w is non-Archimedean, it gives

|gw(Pw, Qw)|w � max
0�j�n

|P (j)
w (ξ)|w|Q(n−j)

w (ξ)|w
� max

0�j�n
XjYn−j.

The conclusion follows.

Proposition 3.5. Let X = (X0,X1, . . . ,Xn) be an (n + 1)-tuple of positive real numbers. Define
Y = (Y0, . . . , Yn) where Yi = X−1

n−i for i = 0, . . . , n. Then the products

λi(X)λn−i+2(Y ) (1 � i � n + 1)

are bounded below and above by positive constants that depend only on K, n and w.

Proof. Fix an integer i with 1 � i � n + 1. Put λ = λi(X) and µ = λn−i+2(Y ). By definition of
the successive minima of a convex body, the polynomials of K[T ] contained in λC(X) generate a
subspace U of En of dimension � i while those contained in µC(Y ) generate a subspace V of En of
dimension � n − i + 2. Since the sum of these dimensions is strictly greater than that of En and
since the bilinear form g of Lemma 3.3 is non-degenerate, it follows that U and V are not orthogonal
with respect to g. Thus, there exist non-zero polynomials P ∈ λC(X) and Q ∈ µC(Y ) which belong
to En and satisfy g(P,Q) �= 0. For any Archimedean place v of K, we view λ and µ as elements of
Kv under the natural embedding of R in Kv and define Pv = λ−1P and Qv = µ−1Q. For all the
other places of K, we put Pv = P and Qv = Q. Then, we have Pv ∈ Cv(X) and Qv ∈ Cv(Y ) for all
places v of K, and applying Lemma 3.4 we get∏

v�∞
|g(P,Q)|v

∏
v|∞

|gv(λ−1P, µ−1Q)|v � (n + 1)!.
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On noting that, for any Archimedean place v of K, the real numbers λ and µ viewed as elements
of Kv satisfy |λ|v = λdv/d and |µ|v = µdv/d, we find that the left-hand side of the above inequality is∏

v|∞
(λµ)−dv/d

∏
v

|g(P,Q)|v = (λµ)−1,

by virtue of the product formula applied to the non-zero element g(P,Q) of K. This shows that
λµ � ((n + 1)!)−1, and so all products λi(X)λn−i+2(Y ) are bounded below by ((n + 1)!)−1, for
i = 1, . . . , n + 1.

On the other hand, applying Theorem 3 of [BV83] to both C(X) and C(Y ) (see (3.2) above), we
find

n+1∏
i=1

(λi(X)λn−i+2(Y )) =
( n+1∏

i=1

λi(X)
)( n+1∏

i=1

λi(Y )
)

� 4n+1 Vol(C(X))−1/d Vol(C(Y ))−1/d

� 4n+1c
−2/d
1 ,

where c1 is the constant of Lemma 3.1. Thus the products λi(X)λn−i+2(Y ) are also bounded above
by 4n+1c

−2/d
1 ((n + 1)!)n.

4. A version of Gel’fond’s criterion

Let n, w and ξ be as in the preceding section. In this section, we prove a specialized version of
Gel’fond’s transcendence criterion which contains Theorem 2b of [DS69] and which we will need in
order to conclude the proof of Theorem B. It applies as well to the situation of Lemma 12 in § 10
of [DS69]. For its proof, we need the following estimate (cf. Lemma 1 of [Bro74]).

Lemma 4.1. Let P,Q ∈ K[T ] be relatively prime non-zero polynomials of degree at most n. Then,
we have

1 � c3 max
{ |P (ξ)|w

‖P‖w
,
|Q(ξ)|w
‖Q‖w

}
H(P )deg(Q)H(Q)deg(P ),

where c3 = (2n)!.

Proof. Since P and Q are relatively prime, their resultant Res(P,Q) is a non-zero element of K.
For any place v of K, the usual representation of Res(P,Q) as a Sylvester determinant leads to the
estimate

|Res(P,Q)|v � cv‖P‖deg(Q)
v ‖Q‖deg(P )

v ,

where cv = 1 if v � ∞ and cv = ((2n)!)dv/d if v|∞. Arguing as Brownawell in the proof of Lemma 1
of [Bro74], we also find

|Res(P,Q)|w � cw max
{ |P (ξ)|w

‖P‖w
,
|Q(ξ)|w
‖Q‖w

}
‖P‖deg(Q)

w ‖Q‖deg(P )
w

with the same value of cw as above. The conclusion follows by applying these estimates to the
product formula 1 =

∏
v |Res(P,Q)|v .

Theorem 4.2. Suppose that, for any sufficiently large real number X, there is a non-zero polynomial
P = PX ∈ K[T ] of degree � n and height � X such that

|P (ξ)|w
‖P‖w

� c−1
4 H(P )−nX−deg(P ),

where c4 = e2n(n+1)cn
3 . Then, ξ is algebraic over K of degree � n and the above polynomials vanish

at ξ for any sufficiently large X.
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Proof. We first reduce to a situation where we have monic irreducible polynomials. To this end,
choose X0 � 1 such that PX is defined for any X � X0. For a fixed X � X0, write P = PX in
the form P = aQ1 · · ·Qs, where a ∈ K× is the leading coefficient of P and Q1, . . . , Qs are monic
irreducible polynomials. Since H(a) = 1, we have H(Q1) · · ·H(Qs) � enH(P ) (see § 2) and so each
Qi has height at most enX. Using this as well as the simple estimate

‖P‖w � |a|w
s∏

i=1

((1 + deg(Qi))‖Qi‖w) � en|a|w
s∏

i=1

‖Qi‖w,

we deduce
s∏

i=1

( |Qi(ξ)|w
‖Qi‖w

H(Qi)n(en+1X)deg(Qi)

)
� e2n(n+1) |P (ξ)|w

‖P‖w
H(P )nXdeg(P ) � c−n

3 .

Writing Y = enX, we conclude that P has at least one monic irreducible factor Q of degree � n
and height � Y which satisfies

|Q(ξ)|w
‖Q‖w

H(Q)n(eY )deg(Q) � c−1
3 .

Fix such a choice of polynomial QY = Q for each Y � Y0 = enX0. Applying Lemma 4.1 to QY

and QY ′ for values of Y and Y ′ satisfying enX0 � Y � Y ′ < eY , we find that these polynomials
are not relatively prime. Being monic and irreducible, they are therefore equal to each other. So,
we have more generally that QY = QY0 for any Y � Y0. As |QY (ξ)|w/‖QY ‖w is bounded above by
c−1
3 (eY )−1 which tends to 0 as Y goes to infinity, this ratio must be 0 independently of Y � Y0.

This gives QY (ξ) = 0 for any Y � Y0 and therefore PX(ξ) = 0 for any X � X0.

5. A height estimate
Here we establish a height estimate which, in our application, will play the role of Theorem 3 of
[DS69]. Again, we start with a lemma.

Lemma 5.1. Let � � 0 be an integer and let x0, . . . , x� be indeterminates. For any integer k � 1,
the set Z[x0, . . . , x�]k of homogeneous polynomials of Z[x0, . . . , x�] of degree k is generated, as a
Z-module, by the minors of order k of the k × (k + �) matrix

R(k, �) =




x0 x1 . . . x� 0 . . . 0

0 x0 x1 . . . x�
. . .

...
...

. . .
. . .

. . .
. . . 0

0 . . . 0 x0 x1 . . . x�







k rows.

Proof. We proceed by induction on k + �. If k = 1 or � = 0 the result is clear. Assume k � 2 and
� � 1 and that the result is true for a smaller number of rows or a smaller number of indeterminates.
Denote by M the subgroup of Z[x0, . . . , x�]k generated by the minors of order k of the matrix
R(k, �). The ring homomorphism ϕ from Z[x0, . . . , x�] to Z[x0, . . . , x�−1] sending x� to 0 and all
other indeterminates to themselves maps M onto the subgroup of Z[x0, . . . , x�−1]k generated by the
minors of order k of R(k, � − 1). Thus, by the induction hypothesis, we have

ϕ(M) = Z[x0, . . . , x�−1]k.

On the other hand, the determinants of the k × k sub-matrices which contain the last column of
R(k, �) are the products x�d where d is a minor of order k− 1 of R(k− 1, �). Thus, by the induction
hypothesis, we also have

M ⊇ x�Z[x0, . . . , x�]k−1 = Z[x0, . . . , x�]k ∩ ker(ϕ).

These properties imply M = Z[x0, . . . , x�]k.
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Proposition 5.2. Let k and � be integers with k � 1 and � � 0. For any P ∈ E�, we have

c−1H(P )k � H(P · Ek−1) � cH(P )k,

where c is a positive constant depending only on k and � and where P · Ek−1 denotes the subspace
of Ek+�−1 consisting of all products PQ with Q ∈ Ek−1.

Proof. Write P = a0 + a1T + · · · + a�T
�. Then the height of P · Ek−1 is simply the height of the

matrix with k rows

R =




a0 a1 . . . a� 0
. . . . . . . . .

0 a0 a1 . . . a�


 .

By virtue of the preceding lemma, every monomial of degree k in a0, . . . , a� can be expressed as
a linear combination of the minors of order k of this matrix with integral coefficients that do not
depend on P . Conversely, the minors of order k of R can be written as linear combinations of
monomials of degree k in a0, . . . , a� with integral coefficients that do not depend on P . Thus, for
each place v of K, we have c−1

v ‖R‖v � ‖P‖k
v � cv‖R‖v for some constant cv � 1 independent of P ,

with cv = 1 when v is not Archimedean. The conclusion follows with c =
∏

v|∞ cv .

6. Construction of a polynomial

Let n, w and ξ be as in § 3. We fix a non-decreasing sequence of positive real numbers X0 � · · · � Xn

and assume that the corresponding convex body C(X0, . . . ,Xn) contains a non-zero polynomial Q
of K[T ]. Let

V = {P ∈ En; g(P,Q) = 0},
where g : En ×En → K is the K-bilinear form of Lemma 3.3. For each integer � with 0 � � � n, we
define a K-bilinear form B� : E� × En−� → K by the formula

B�(F,G) = g(FG,Q)

for F ∈ E� and G ∈ En−�. Its right kernel is

V� = {G ∈ En−�;G · E� ⊆ V }.
We also denote by B�,w : E�,w × En−�,w → Kw the Kw-bilinear form which extends B�. Finally, we
put

yi = (−1)ii!Q(n−i)(0) and zi = (−1)ii!Q(n−i)(ξ) (0 � i � n),
and, for each integer � = 0, 1, . . . , n, we define

M� =




y0 y1 . . . yn−�

y1 y2 . . . yn−�+1
...

...
...

y� y�+1 . . . yn


 and N� =




z0 z1 . . . zn−�

z1 z2 . . . zn−�+1
...

...
...

z� z�+1 . . . zn


 .

With this notation, we will prove below a series of lemmas leading, under some condition on
X0, . . . ,Xn, to the construction of a polynomial P ∈ K[T ] with several properties. The method
overall follows that of Davenport and Schmidt [DS69, §§ 7–9]. The first lemma is the following
observation.

Lemma 6.1. Fix an integer � with 0 � � � n. Then,

i) M� is the matrix of B� relative to the bases {1, T, . . . , T �} of E� and {1, T, . . . , Tn−�} of En−�;

ii) N� is the matrix of B�,w relative to the basis {1, T − ξ, . . . , (T − ξ)�} of E�,w and the basis
{1, T − ξ, . . . , (T − ξ)n−�} of En−�,w.
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Proof. This follows upon noting that, for i = 0, . . . , � and j = 0, . . . , n − �, we have

B�(T i, T j) = g(T i+j , Q(T )) = yi+j

and, by Lemma 3.3,

B�,w((T − ξ)i, (T − ξ)j) = gw((T − ξ)i+j , Q(T )) = zi+j. �

In particular, this result implies that M� and N� have the same rank for any value of �. Note that
the number of rows of these matrices is less than or equal to their number of columns if and only
if � � n/2. Under this hypothesis, we have the following estimates.

Lemma 6.2. There are constants c5, c6, c7 � 1 depending only on K, n, w and ξ such that, for any
integer � with 0 � � � n/2, we have

i) ‖N�‖w � c5Xn−� · · ·Xn,

ii) c−1
6 ‖N�‖w � ‖M�‖w � c6‖N�‖w,

iii) H(M�) � c7‖N�‖w when M� has rank � + 1.

Proof. i) The upper bound on ‖N�‖w follows from the fact that, for i = 1, . . . , �+1, all the elements
of the ith row of N� have their absolute value bounded above by a constant times Xn+1−i.

ii) By Lemma 6.1, M� and N� are matrices of B�,w corresponding to different choices of bases
for E�,w and En−�,w. Accordingly, we have M� = tUN�V , where U and V are matrices of change of
bases which depend only on ξ, � and n. Since U and V are invertible, this implies that any minor
of order �+1 of M� (respectively N�) can be expressed as a linear combination of the minors of order
� + 1 of N� (respectively M�) with coefficients that are independent of Q, and the second assertion
follows.

iii) At any place v of K with v �= w, the elements of M� have their absolute value bounded above
by a constant which depends only on n and which can be taken to be 1 when v � ∞. So, the same
is true of ‖M�‖v. The height of M� is thus bounded above by a constant times ‖M�‖w or, according
to assertion ii, by a constant times ‖N�‖w.

Lemma 6.3. For any integer � with 0 � � � n, we have

dim V� = n − � + 1 − rank(M�).

When M� has rank � + 1, we also have H(V�) = H(M�).

Proof. A polynomial P = a0 + a1T + · · · + an−�T
n−� of En−� belongs to V� if and only if, for

i = 0, . . . , �, it satisfies

0 = g(T iP (T ), Q(T )) = B�(T i, P (T )) =
n−�∑
j=0

yi+jaj .

Thus, identifying En−� with Kn−�+1 in the usual way, the subspace V� of En−� is identified with
the solution space of the homogeneous system associated to M�. This proves the formula for dimV�.
Moreover, if M� has rank � + 1, then, according to the duality principle mentioned in § 2, we have
H(V�) = H(M�).

Lemma 6.4. Suppose that there exists an integer h with 1 � h � n/2 such that Mh−1 has rank h
and Mh has rank � h. Then, Vn−h contains a non-zero element P . Such a polynomial P has degree
� h and satisfies P · En−2h+1 = Vh−1. In particular, P divides any polynomial of Vh−1.

Proof. Since Mn−h is the transpose of Mh, the two matrices have the same rank. By Lemma 6.3,
this gives

dimVn−h = (h + 1) − rank(Mn−h) � 1.
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So, Vn−h contains a non-zero element P . Using Lemma 6.3, we also find

dim Vh−1 = (n − h + 2) − rank(Mh−1) = n − 2h + 2.

Since Vh−1 contains P ·En−2h+1, and since the latter subspace of En−h+1 also has dimension n−2h+2,
this inclusion is an equality.

Lemma 6.5. Let � and t be integers with 0 � � < n/2 and 1 � t � n − 2�. Suppose that N� has
rank � +1 and that there exists a non-zero polynomial P ∈ K[T ] such that P ·Et−1 ⊆ V�. Then, we
have ( |P (ξ)|w

‖P‖w

)t

� Xn−t−� · · ·Xn−t

‖N�‖w
.

Proof. Denote by z0, . . . , zn−� the columns of N� and, for each integer s with 1 � s � t + 1, denote
by N

(s)
� the sub-matrix of N� consisting of the columns zs−1, . . . , zn−�. Observe that, since t � n−2�,

these matrices all have at least � + 1 columns. Write

P = b0 + b1(T − ξ) + · · · + bh(T − ξ)h,

where h is the degree of P . For any integer s as above, we have (T − ξ)s−1P (T ) ∈ V� and so, for
i = 0, . . . , �, we find

0 = B�,w((T − ξ)i, (T − ξ)s−1P (T )) =
h∑

j=0

zi+s−1+jbj .

This means that the columns of N� satisfy the recurrence relation

b0zs−1 + b1zs + · · · + bhzs−1+h = 0 (1 � s � t).

Now, fix an integer s with 1 � s � t and choose indices j0, j1, . . . , j� satisfying the inequalities
s − 1 � j0 < j1 < · · · < j� � n − � such that

‖N (s)
� ‖w = |det(zj0 , . . . , zj�

)|w. (6.1)

If j0 = s − 1, we find, using the recurrence relation, that

|P (ξ)|w‖N (s)
� ‖w = |det(b0zs−1, zj1 , . . . , zj�

)|w
=
∣∣∣∣det

(
−

h∑
j=1

bjzs−1+j , zj1 , . . . , zj�

)∣∣∣∣
w

=
∣∣∣∣

h∑
j=1

bj det(zs−1+j , zj1 , . . . , zj�
)
∣∣∣∣
w

� c‖P‖w‖N (s+1)
� ‖w

for some positive constant c depending only on n and |ξ|w. If j0 � s, this is still true because
(6.1) then implies ‖N (s)

� ‖w � ‖N (s+1)
� ‖w. Since ‖N (1)

� ‖w = ‖N�‖w �= 0, this inequality implies by
induction on s that we have ‖N (s)

� ‖w �= 0 for s = 1, . . . , t + 1, and therefore we can write

|P (ξ)|w
‖P‖w

� c
‖N (s+1)

� ‖w

‖N (s)
� ‖w

(1 � s � t).

Multiplying term by term these inequalities, we get( |P (ξ)|w
‖P‖w

)t

� ct ‖N (t+1)
� ‖w

‖N�‖w
,
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and the conclusion follows upon noting that, for i = 1, . . . , � + 1, the ith row of N
(t+1)
� has norm

� Xn−t−i+1 and thus ‖N (t+1)
� ‖w � Xn−t−� · · ·Xn−t.

Proposition 6.6. Let k be an integer with 1 � k � n/2. Assume that there is an integer t with
1 � t � n + 2 − 2k such that

X0 � · · · � Xn−t < 1 and 1 � Xn−t+1 � · · · � Xn.

Put δ = Xn−t and Y = Xn−t+1 · · ·Xn, and assume moreover that

Y δk+1−t < (c5c7)−1, (6.2)

where c5 and c7 are defined in Lemma 6.2. Then there exists an integer h with 1 � h � k and a
non-zero polynomial P ∈ K[T ] of degree � h and height � δ−k/n which divides any polynomial of
Vh−1 and satisfies ( |P (ξ)|w

‖P‖w

)t

� c8δ
hH(P )−(n+2−2h), (6.3)

where c8 is a constant depending only on K, n, w and ξ.

Proof. For any integer � for which M� has rank � + 1, we find, using Lemma 6.2,

H(M�) � c7‖N�‖w � c5c7Xn−� · · ·Xn � c5c7Y δ�+1−t. (6.4)

Since we also have H(M�) � 1 for these values of �, the assumption (6.2) implies that Mk has
rank � k. The rank of M0 being 1, we conclude that there exists an integer h with 1 � h � k such
that Mh−1 has rank h and Mh has rank � h. Then, according to Lemma 6.4, there exists a non-zero
polynomial P ∈ Eh such that P · En−2h+1 = Vh−1. This implies that P divides any polynomial of
Vh−1 and, by Proposition 5.2, that

H(P )n+2−2h � H(Vh−1) � H(P )n+2−2h. (6.5)

Combining Lemma 6.3 with (6.2) and (6.4) (for � = h − 1), we also find

H(Vh−1) = H(Mh−1) � c5c7Y δh−t < δ−(k+1−h). (6.6)

Note that, since k � n/2, the ratio (k+1−h)/(n+2−2h) is a decreasing function of h in the range
1 � h � k. So, it is bounded above by k/n. Combining this observation with the above estimates
(6.5) and (6.6), we get

H(P ) � δ−(k+1−h)/(n+2−2h) � δ−k/n. (6.7)
Since t � n+2−2k, we have P ·Et−1 ⊆ P ·En−2h+1 ⊆ Vh−1 and applying Lemma 6.5 with � = h−1
gives ( |P (ξ)|w

‖P‖w

)t

� δh

‖Nh−1‖w
.

Moreover, Lemma 6.2 part iii, Lemma 6.3 and (6.5) provide

‖Nh−1‖w � c−1
7 H(Mh−1) = c−1

7 H(Vh−1) � H(P )n+2−2h,

and the conclusion follows.

In our application, we will simply need the following consequence of this proposition.

Corollary 6.7. Assume that all the hypotheses of Proposition 6.6 are satisfied and that we have
δ < c−1

8 . Then there exists an irreducible polynomial P ∈ K[T ] which divides any polynomial of
Vk−1 and satisfies ( |P (ξ)|w

‖P‖w

)t

� c9δ
deg(P )H(P )−(n+2−2k), (6.8)

where c9 = max{1, en2
c8}.
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Proof. Let h and P be as in the conclusion of Proposition 6.6. Since H(P ) � 1, the right-hand
side of (6.3) is bounded above by c8δ

h � c8δ < 1. So P cannot be a constant. Moreover, since
deg(P ) � h � k, the same inequality (6.3) gives( |P (ξ)|w

‖P‖w

)t

� c8δ
deg(P )H(P )−(n+2−2k).

Write P as a product P = P1 · · ·Ps of irreducible polynomials of K[T ]. Then the above inequality
leads to

s∏
i=1

(( |Pi(ξ)|w
‖Pi‖w

)t

δ−deg(Pi)H(Pi)n+2−2k

)
� en2

c8 � cs
9.

So, at least one factor of the product on the left must be bounded above by c9. The corresponding
polynomial Pi divides every element of Vk−1 since it divides P and Vk−1 is contained in Vh−1.

Note that this statement provides no upper bound on the degree and height of P . We will get
such upper bounds by an indirect argument, using the construction of an auxiliary polynomial in
the next section.

7. Degree and height estimates

The notation is as in the preceding section. We assume that the adelic convex body C(X0, . . . ,Xn)
contains a non-zero polynomial Q of K[T ] for some non-decreasing sequence of positive real numbers
X0 � · · · � Xn, and we define corresponding subspaces V� of En−� for � = 0, . . . , n as in § 6.

Lemma 7.1. Put c = ((n + 1)!)−2. Then, for any integer � with 0 � � � n we have

C(cX−1
n , . . . , cX−1

� ) ∩ En−� ⊆ V�. (7.1)

Proof. Let � be an integer with 0 � � � n, and let G be an element of the set on the left-hand side of
(7.1). We need to show that g(TmG,Q) = 0 for m = 0, . . . , �. To this end, we proceed by induction.
We fix an integer m with 0 � m � � and assume, when m � 1, that we have g(T jG,Q) = 0 for
j = 0, . . . ,m − 1. Let P = TmG(T ). We define Pw = (T − ξ)mG(T ) and Qw = Q and, for the
other places v �= w of K, we put Pv = P and Qv = Q. These polynomials satisfy Pv ∈ Cv(Y ) and
Qv ∈ Cv(X) for each place v of K, where Y = (Y0, . . . , Yn) denotes the (n + 1)-tuple of positive real
numbers given by Yi = n!cX−1

n−i for i = 0, . . . , n. Moreover, the hypotheses imply

gw(Pw, Qw) = g(P,Q),

since the difference Pw−P can be written as a linear combination of G, . . . , Tm−1G with coefficients
in Kw in the case m � 1 and is zero when m = 0. Using Lemma 3.4, we therefore get∏

v

|g(P,Q)|v =
∏
v

|gv(Pv, Qv)|v � (n + 1)!n!c < 1.

By the product formula, this implies g(P,Q) = 0.

Proposition 7.2. There is a constant c10 > 0 which depends only on K, n, w and ξ and has the
following property. Suppose that � and u are non-negative integers with � + u < n, such that

Xu+1
n Xn−1 · · ·X�+u � c10. (7.2)

Then, there is a non-zero polynomial G of K[T ] of degree � n − � and height � X−1
�+u such that

G(i) ∈ V� for i = 0, . . . , u.
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Proof. Let c be as in Lemma 7.1. Put κ = (n!)−1 and define real numbers Y0, . . . , Yn−� by

Yi =

{
cX−1

n for i = 0, . . . , u,

cX−1
n−i+u for i = u + 1, . . . , n − �.

Lemma 3.2 shows that the convex κC(Y0, . . . , Yn−�) contains a non-zero element G of En−� if the
condition (7.2) is satisfied for a sufficiently small constant c10 > 0. Such a polynomial has height
H(G) � Yn−� � X−1

�+u. Moreover, for i = 0, . . . , u, we find

G(i) ∈ C(Yi, . . . , Yn−�) ⊆ C(cX−1
n , . . . , cX−1

� ),

and so G(i) ∈ V� by Lemma 7.1.

We will apply this proposition in the following context.

Corollary 7.3. Let � and u be as in Proposition 7.2, and assume that there exists an irreducible
polynomial P ∈ K[T ] which divides every element of V�. Then, we have

deg(P ) � n − �

u + 1
and H(P ) � X

−1/(u+1)
�+u .

Proof. The hypotheses imply that P divides all derivatives of the polynomial G of Proposition 7.2,
up to order u. So, P u+1 divides G and the conclusion follows.

8. Proof of Theorem B

Let the notation be as in Theorem B (stated in § 1) and assume that the hypothesis of this theorem
holds with a constant c < min{1, (c5c7)−1}. Then, for any real number X � 1 the condition (6.2)
of Proposition 6.6 is satisfied with

δ = X0 = X1 = · · · = Xn−t = cX−t/(k+1−t) and Xn−t+1 = · · · = Xn = X.

Moreover, if X is sufficiently large, the hypothesis of Theorem B is that the corresponding convex
C(X) with X = (X0, . . . ,Xn) contains a non-zero element Q of En. Since t � n + 2 − 2k, we may
then apply Corollary 6.7. It shows that, if X is sufficiently large so that δ < c−1

8 , then there is an
irreducible polynomial P ∈ K[T ] which divides every element of the vector space Vk−1 attached to
Q and satisfies

|P (ξ)|w
‖P‖w

� H(P )−(n+2−2k)/tδdeg(P )/t.

Since c � 1 and n − t � 2t + k − 2, we also find

X2t
n Xn−1 · · ·X2t+k−2 = X3t−1δn−3t−k+3 � X3t−1δ3k−3t+3 � X−1.

So, the condition (7.2) of Proposition 7.2 is satisfied with � = k − 1 and u = 2t − 1 provided that
X is sufficiently large. Assuming that this is the case, Corollary 7.3 then shows that

deg(P ) � n − k + 1
2t

and H(P ) � κδ−1/(2t)

for some constant κ > 0. Putting m = [(n − k + 1)/(2t)] and Y = κδ−1/(2t), and noting that
(n + 2− 2k)/t � m, we thus have found the existence of a polynomial P ∈ K[T ] of degree � m and
height � Y such that

|P (ξ)|w
‖P‖w

� H(P )−mY −2 deg(P ).

Since Y is a monotone increasing unbounded continuous function of X, for X � 1, Theorem 4.2
then shows that ξ is algebraic over K of degree � m. This completes the proof.
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9. Proof of Theorem A

We first generalize the construction of Davenport and Schmidt [DS69, § 2].

Lemma 9.1. Let t be an integer with 1 � t � n and let δ, κ and Y be real numbers satisfying
0 < δ < 1 < Y and κ � 1. Assume that Y = (Y0, . . . , Yn) is an (n+1)-tuple of positive real numbers
satisfying

λn+1(Y ) � κ and Yj �
{

Y δt−j for j = 0, . . . , t − 1,

Y for j = t, . . . , n.

Assume moreover that |ξ|w � 1 in the case where w is ultrametric. Then there exists a monic
polynomial P ∈ OK [T ] which is irreducible over K of degree n + 1, has height H(P ) � κY
(as defined in § 2), admits d distinct conjugates over Q, and has at least t distinct roots in the
closed disk of Kw centered at ξ of radius δ.

Proof. Let ε be a fixed but arbitrarily small positive real number with ε � 1. Put δ0 = min{δ, ε} and
choose elements P1, . . . , Pn+1 in En realizing the successive minima of C(Y ) in En. Since we have
λn+1(Y ) � κ, these polynomials all belong to κC(Y ). In particular, they have integral coefficients
at any ultrametric place v of K distinct from w. Moreover, they form a basis of En over K. We will
construct the required polynomial P in the form

P (T ) = T n+1 +
n+1∑
i=1

biPi(T )

for suitable elements b1, . . . , bn+1 of K. Each bi will be obtained as the solution of a system of inhomo-
geneous inequalities using the strong approximation theorem (see Theorem 3, p. 440 of [Mah64]
or § 15 of [Cas67]). According to this result, there is a constant C > 0 depending only on K with
the following property. For any finite set S of places of K, any choice of elements βv ∈ Kv (v ∈ S),
and any choice of positive real numbers εv (v ∈ S), with

∏
v∈S εv � C, there exists an element b of

K satisfying |b − βv |v � εv for v ∈ S and |b|v � 1 for v /∈ S.
To ensure that P is irreducible over K and admits d distinct conjugates over Q, we proceed

essentially as Bugeaud and Teulié in [BT00]. We choose a prime number q of Z which splits com-
pletely in OK into a product of d distinct prime ideals none of which defines the place w. We fix a
place v0 among the corresponding d places of K above q and we choose an element π of K satisfying
|π|v0 = |q|v0 and |π|v = 1 for v|q with v �= v0. We write

π =
n+1∑
i=1

γiPi(T )

with γ1, . . . , γn+1 ∈ K and we ask that

|bi − γi|v � |q|2v = q−2/d (v|q, 1 � i � n + 1). (9.1)

Under these conditions, the corresponding polynomial P satisfies

‖P (T ) − T n+1 − π‖v =
∥∥∥∥

n+1∑
i=1

(bi − γi)Pi(T )
∥∥∥∥

v

� |q|2v

for v|q. Thus, P has integral coefficients at the places of K above q. Since π is a uniformizing
parameter for v0, the above relation implies that P is an Eisenstein polynomial of K[T ] at v0 and
thus it is irreducible over K (see for instance Theorem 24 in § 3, Chapter III of [FT93]). Moreover
this relation also gives |P (0)|v0 < 1 and |P (0)|v = 1 for v|q with v �= v0. Thus the constant coefficient
P (0) of P admits d distinct conjugates over Q.
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To ensure that P has t roots close to ξ in Kw, we fix a monic polynomial B ∈ Kw[T ] of degree t
with t (simple) distinct roots in the open unit disk Dw = {z ∈ Kw; |z|w < 1} of Kw and we use the
fact that, by explicit forms of the inverse function theorem such as Theorem 4.4.1 in Chapter I of
[Car77], any polynomial S(T ) ∈ Kw[T ] of degree � n + 1 for which ‖S − B‖w is sufficiently small
also has t distinct roots in Dw. We proceed as follows.

If w is ultrametric, lying above an ordinary prime number p, we choose an element r of Kw with
p−1δ0 � |r|w � δ0 and put s = rt. If w is Archimedean, we choose r, s ∈ Kw with |r|w = δ0 and
|s|w = κdw/dε−t−2δt

0Y . In both cases, we define

R(T ) = (T − ξ)n+1 + sB

(
T − ξ

r

)
∈ Kw[T ].

We write this polynomial in the form

R(T ) = T n+1 +
n+1∑
i=1

θiPi(T )

with θ1, . . . , θn+1 ∈ Kw and ask that

|bi − θi|w �
{

ε−1 if w is Archimedean,
εn+1Y −1 if w is ultrametric.

(9.2)

The polynomial S = s−1P (rT + ξ) then satisfies

‖S − B‖w =
∥∥∥∥s−1rn+1T n+1 + s−1

n+1∑
i=1

(bi − θi)Pi(rT + ξ)
∥∥∥∥

w

� ε,

using |s|−1
w |r|n+1

w � δ0 � ε and noting that, for i = 1, . . . , n + 1, we have

‖Pi(rT + ξ)‖w �
{

κdw/dδtY if w is Archimedean,

δtY if w is ultrametric.

If ε is sufficiently small, this implies that S has t roots in the disk Dw and, therefore, that P has at
least t distinct roots in the disk of Kw centered at ξ with radius δ.

If w is Archimedean and again if ε is small enough, the strong approximation theorem allows us
to require, aside from (9.1) and (9.2), that

|bi|v � 1 (1 � i � n + 1), (9.3)

for all places v of K with v �= w and v � q. Then P has integral coefficients at v for each ultrametric
place v of K and therefore it has coefficients in OK . Moreover, as we may take ε � 1, we find
‖P‖w � κdw/dε−t−2Y � κdw/dY . Since ‖P‖v � κdv/d for all the other Archimedean places v of K,
this implies H(P ) �∏

v|∞ ‖P‖v � κY .
If w is ultrametric, we choose an Archimedean place v1. We require that (9.1) and (9.2) hold,

that (9.3) holds for all places v of K with v �= w, v �= v1 and v � q, and that

|bi|v1 � ε−n−2Y (1 � i � n + 1).

Again, the strong approximation theorem shows that these conditions have solutions bi ∈ K for
i = 1, . . . , n+1 provided that ε is small enough. Then, the corresponding polynomial P has integral
coefficients at v for each ultrametric place v of K with v �= w. At the place w, we find

‖P − R‖w =
∥∥∥∥

n+1∑
i=1

(bi − θi)Pi(T )
∥∥∥∥

w

� εn+1Y −1 max
1�i�n+1

‖Pi‖w � εn+1.
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Moreover, R has coefficients in Ow since |ξ|w � 1 and ‖B‖w � 1. Thus, P also has coefficients
in Ow if ε is sufficiently small, and then it has coefficients in OK . Since we may take ε � 1,
this gives ‖P‖v1 � κdv1/dY and, since ‖P‖v � κdv/d for all Archimedean places v �= v1, we find
H(P ) �∏

v|∞ ‖P‖v � κY .

Finally, we can move on to the proof of Theorem A.

9.1 Proof of Theorem A

Let t, n and ξ be as in Theorem A (see § 1), let k = [n/4], and let c be the constant of Theorem B
corresponding to these data. Since ξ is not algebraic over K of degree � (n−k+1)/(2t), Theorem B
shows that there are arbitrary large positive real numbers X for which the (n + 1)-tuple X =
(X0, . . . ,Xn) given by

Xj =

{
cX−t/(k+1−t) for j = 0, . . . , n − t,

X for j = n − t + 1, . . . , n

satisfies λ1(X) > 1. According to Proposition 3.5, this implies that the (n+1)-tuple Y = (Y0, . . . , Yn)
given by

Yj = X−1
n−j =

{
X−1 for j = 0, . . . , t − 1,

c−1Xt/(k+1−t) for j = t, . . . , n

satisfies λn+1(Y ) � κ with a constant κ � 1 depending only on K, n and w. Assuming X sufficiently
large, we may thus apply Lemma 9.1 with

Y = c−1Xt/(k+1−t) and δ = c1/tX−(k+1)/(t(k+1−t)).

It shows the existence of a monic polynomial P ∈ OK [T ] which is irreducible over K of degree
n + 1 and height � κY , admits d distinct conjugates over Q, and has at least t distinct roots
α1, . . . , αt ∈ Kw with

max
1�i�t

|ξ − αi|w � Y −(k+1)/t2 . (9.4)

In particular, α = α1 is an algebraic integer of degree n + 1 over K and degree d(n + 1) over Q.
From the remark at the end of § 2, we find H(α) � H(P )d � Y d. Combining this with (9.4), we
obtain that the conjugates α1, . . . , αt of α over K satisfy

max
1�i�t

|ξ − αi|w � H(α)−(k+1)/(dt2) � H(α)−(n+1)/(4dt2).

Moreover, since the right-hand side of (9.4) can be made arbitrarily small by choosing X sufficiently
large, we produce an infinity of such numbers α by varying X.

10. Remarks on simultaneous approximations

We fix a place w of K and an algebraic closure K̄w of Kw, and we extend the absolute value | |w of
Kw to an absolute value of K̄w also denoted | |w. Our first result below shows that, for t � 2, the
exponent (n + 1)/(4dt2) in the inequality (1.1) of Theorem A cannot be replaced by a real number
greater than 2n/(dt(t − 1)).

Proposition 10.1. Let n and t be integers with 2 � t � n, and let ξ be an element of Kw.
There exists a constant c = c(n, t) > 0 such that, for any algebraic number α of degree n over K
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and any choice of t distinct conjugates α1, . . . , αt of α in K̄w, we have

max
1�i�t

|ξ − αi|w � cH(α)−2n(n−1)/(deg(α)t(t−1)),

where deg(α) denotes the degree of α over Q.

Proof. Let P ∈ K[T ] be an irreducible polynomial of degree n, let a0 be its leading coefficient, and
let α1, . . . , αn be the roots of P ordered so that |ξ − α1|w � · · · � |ξ − αn|w. The discriminant of P
is the non-zero element of K given by

Disc(P ) = a0
2(n−1)

∏
1�i<j�n

(αi − αj)2.

Using the estimates

|αi − αj |w �
{

2cw max{1, |αi|w}max{1, |αj |w}|ξ − αj |w when 1 � i < j � t,

2cw max{1, |αi|w}max{1, |αj |w} otherwise,

with cw = 0 if w is ultrametric and cw = dw/d otherwise, we find

|Disc(P )|w � 2n(n−1)cwMw(P )2(n−1)
t∏

j=1

|ξ − αj|2(j−1)
w ,

where Mw(P ) = |a0|w
∏m

i=1 max{1, |αi|w} denotes the Mahler measure of P at w. Since Mw(P ) �
(n + 1)cw/2‖P‖w (see Chapter 3 of [Lan83]), this gives

|Disc(P )|w � (2n(n + 1))(n−1)cw‖P‖2(n−1)
w |ξ − αt|t(t−1)

w .

Similarly, for all other places v of K, we find, with the same definition of cv,

|Disc(P )|v � (2n(n + 1))(n−1)cv‖P‖2(n−1)
v .

Applying the product formula we therefore obtain

1 =
∏
v

|Disc(P )|v �
(
2n(n + 1)

)n−1H(P )2(n−1)|ξ − αt|t(t−1)
w .

The conclusion follows since we have H(P ) � H(α)n/deg(α) for a root α of P (see § 2).

Our last result justifies the remark made in the Introduction concerning simultaneous approxi-
mation of several numbers by conjugate algebraic numbers.

Proposition 10.2. Assume that K = Q. Let n and t be positive integers, and let κ be a real
number with

κ > t−1(t + 1)1+(1/t).

Then, there exist elements ξ1, . . . , ξt of Qw and a constant H0 � 1 (depending on n, t, w, κ) with
the following property. For any real number H � H0 and any choice of numbers α1, . . . , αt ∈ Q̄w

that are algebraic over Q of degree � n and height � H, we have

max
1�j�t

|ξj − αj |w � H−κn1/t
.

Note that t−1(t + 1)1+(1/t) is a decreasing function of t for t > 0 tending to 1 as t tends to
infinity. For t � 2, we can take κ = 3.
Proof. Put b = (t+1)n and define a sequence of positive integers (a�)��1 by the formula a� = [b�/t].
Define also π = 1/2 if w is the place at infinity of Q and π = p if w corresponds to a prime number p.
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We claim that the elements of Qw given by

ξj =
∞∑
i=0

πaj+ti (j = 1, . . . , t)

have the required property.
To prove this, we choose a real number ε with 0 < ε < 1 such that

κ >
t + 1 + ε

t − ε
(t + 1)1/t,

and consider the sequence of closed intervals (I�)��1 of R given by

I� = [κ−1(t + 1 + ε)a�n
1−(1/t), (t − ε)a�n].

Two consecutive such intervals I� and I�+1 overlap for sufficiently large values of � since

lim
�→∞

(t − ε)a�n

κ−1(t + 1 + ε)a�+1n1−(1/t)
=

(t − ε)κ
(t + 1 + ε)(t + 1)1/t

> 1.

Therefore, the union of these intervals contains a half line [c,∞) for some constant c > 0. Choose
a real number H with H � |π|−c

w , and let α1, . . . , αt ∈ Q̄w be algebraic over Q of degree � n
and height � H. By definition of c, there exists an integer � � 1 such that − log H/ log |π|w ∈ I�.
Writing � in the form � = j + tm for some integers j and m with 1 � j � t and m � 0, we claim
more precisely that, if H is sufficiently large (so that � is large), we have

|ξj − αj |w � H−κn1/t
.

For brevity, since the ultrametric case is simpler, we shall only prove this refined claim in the
case where w = ∞. Then, we have Qw = R, Q̄w = C, π = 1

2 and log H/log 2 ∈ I�. From now on, we
drop the subscript w on the absolute value and consider the rational number

r =
m∑

i=0

2−aj+ti .

Since (aj+ti)i�0 is a strictly increasing sequence of positive integers, it satisfies

H(r) = 2a� and 2−a�+t � ξj − r =
∞∑
i=1

2−a�+ti � 2−a�+t+1.

If αj = r, we find

|ξj − αj | = ξj − r � 2−a�+t � H−κn1/t
,

assuming that H (and thus �) is sufficiently large so that

a�+t � (t + 1 + ε)na� � κn1/t log H/ log 2.

If αj �= r, Liouville’s inequality (see for example Proposition 3.14 of [Wal00]) gives

|αj − r| � γH(αj)−1H(r)−n � γH−12−a�n,

with γ = γ(n) = 21−n(n + 1)−1/2. This implies

|αj − r| � γ2−(t−ε)a�n−a�n � 2−a�+t+2 � 2|ξj − r|,
assuming that H is sufficiently large, so that

(t + 1 − ε)a�n � a�+t − 2 + log γ/ log 2.

Since κ > (t + 1 + ε)/(t + ε), we may also assume (γ/2)H−1 � H−((t+ε)/(t+1+ε))κn1/t
and so we get

|ξj − αj | � |αj − r| − |ξj − r| � 1
2
|αj − r| � γ

2
H−12−a�n � H−κn1/t

. �
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(Academic Press, New York, 1967), ch. II.
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